Version 28.3 by Xiaoling on 2022/06/24 14:27

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71 (% style="color:red" %)** Notice 2:**
72
73 Due to shipment and importation limitation, user is better to purchase below parts locally:
74
75 * Solar Panel
76 * Storage Battery
77 * MPPT Solar Recharger
78 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
79 * Cabinet.
80
81
82
83 == 2.2 How it works? ==
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91
92 [[image:1656042192857-709.png]]
93
94
95 (% style="color:red" %)**Notice:**
96
97 1. WSC1-L will auto scan available weather sensors when power on or reboot.
98 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
99
100
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
105
106
107 [[image:1656042612899-422.png]]
108
109
110
111 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
112
113
114 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
115
116 Each WSC1-L is shipped with a sticker with the default device EUI as below:
117
118 [[image:image-20220624115043-1.jpeg]]
119
120
121 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
122
123 **Add APP EUI in the application.**
124
125 [[image:1656042662694-311.png]]
126
127 [[image:1656042673910-429.png]]
128
129
130
131
132 **Choose Manually to add WSC1-L**
133
134 [[image:1656042695755-103.png]]
135
136
137
138 **Add APP KEY and DEV EUI**
139
140 [[image:1656042723199-746.png]]
141
142
143
144 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
145
146
147 [[image:1656042745346-283.png]]
148
149
150
151 == 2.4 Uplink Payload ==
152
153 Uplink payloads include two types: Valid Sensor Value and other status / control command.
154
155 * Valid Sensor Value: Use FPORT=2
156 * Other control command: Use FPORT other than 2.
157
158
159 === 2.4.1 Uplink FPORT~=5, Device Status ===
160
161 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
162
163
164 (((
165 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
166 )))
167
168 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
169 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
170 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
171
172 [[image:1656043061044-343.png]]
173
174
175 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
176
177
178
179 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
180
181 For WSC1-L, this value is 0x0D.
182
183
184
185 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
186
187 0x0100, Means: v1.0.0 version.
188
189
190
191 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
192
193 *0x01: EU868
194
195 *0x02: US915
196
197 *0x03: IN865
198
199 *0x04: AU915
200
201 *0x05: KZ865
202
203 *0x06: RU864
204
205 *0x07: AS923
206
207 *0x08: AS923-1
208
209 *0x09: AS923-2
210
211 *0x0a: AS923-3
212
213
214
215 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
216
217 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
218
219
220
221 ==== (% style="color:#037691" %)**BAT:**(%%) ====
222
223 shows the battery voltage for WSC1-L MCU.
224
225 Ex1: 0x0BD6/1000 = 3.03 V
226
227
228
229 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
230
231 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
232 |Byte3|Byte2|Byte1
233
234 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
235
236 [[image:image-20220624134713-1.png]]
237
238
239 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
240
241 External sensors detected by WSC1-L include :
242
243 custom sensor A1,
244
245 PAR sensor (WSS-07),
246
247 Total Solar Radiation sensor (WSS-06),
248
249 CO2/PM2.5/PM10 (WSS-03),
250
251 Wind Speed/Direction (WSS-02)
252
253
254 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
255
256 (% style="color:#037691" %)**Downlink:0x26 01**
257
258 [[image:1656049673488-415.png]]
259
260
261
262 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
263
264 (((
265 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
266 )))
267
268 (((
269 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
270 )))
271
272
273 (((
274 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
275 )))
276
277
278 (% style="color:#4472c4" %)** Uplink Payload**:
279
280 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
281 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
282
283 (% style="color:#4472c4" %)** Sensor Segment Define**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
286 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
287
288 (% style="color:#4472c4" %)**Sensor Type Table:**
289
290 [[image:image-20220624140352-2.png]]
291
292
293 Below is an example payload:  [[image:image-20220624140615-3.png]]
294
295
296 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
297
298 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
299
300 Uplink 1:  [[image:image-20220624140735-4.png]]
301
302 Uplink 2:  [[image:image-20220624140842-5.png]]
303
304
305 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
306
307 Uplink 1:  [[image:image-20220624141025-6.png]]
308
309 Uplink 2:  [[image:image-20220624141100-7.png]]
310
311
312
313
314 === 2.4.3 Decoder in TTN V3 ===
315
316 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
317
318
319 Download decoder for suitable platform from:
320
321 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
322
323 and put as below:
324
325 [[image:1656051152438-578.png]]
326
327
328
329 == 2.5 Show data on Application Server ==
330
331 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
332
333
334 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
335
336 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
337
338 [[image:1656051197172-131.png]]
339
340
341 **Add TagoIO:**
342
343 [[image:1656051223585-631.png]]
344
345
346 **Authorization:**
347
348 [[image:1656051248318-368.png]]
349
350
351 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
352
353 [[image:1656051277767-168.png]]
354
355
356
357 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
358
359 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
360
361 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
362 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
363
364
365 There are two kinds of commands to configure WSC1-L, they are:
366
367 * (% style="color:#4472c4" %)**General Commands**.
368
369 These commands are to configure:
370
371 * General system settings like: uplink interval.
372 * LoRaWAN protocol & radio related command.
373
374
375 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
376
377 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
378
379
380 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
381
382 These commands only valid for WSC1-L, as below:
383
384
385 == 3.1 Set Transmit Interval Time ==
386
387 Feature: Change LoRaWAN End Node Transmit Interval.
388
389 (% style="color:#037691" %)**AT Command: AT+TDC**
390
391 [[image:image-20220624142619-8.png]]
392
393
394 (% style="color:#037691" %)**Downlink Command: 0x01**
395
396 Format: Command Code (0x01) followed by 3 bytes time value.
397
398 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
399
400 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
401 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
402
403
404
405
406
407 == 3.2 Set Emergency Mode ==
408
409 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
410
411
412 (% style="color:#037691" %)**AT Command:**
413
414 |**Command Example**|**Function**|**Response**
415 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
416 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
417
418 (% style="color:#037691" %)**Downlink Command:**
419
420 * 0xE101     Same as: AT+ALARMMOD=1
421 * 0xE100     Same as: AT+ALARMMOD=0
422
423
424
425
426
427 == 3.3 Add or Delete RS485 Sensor ==
428
429 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
430
431 (% style="color:#037691" %)**AT Command: **
432
433 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
434
435 * Type_Code range: A1 ~~ A4
436 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
437 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
438 * Read_Length: RS485 response frame length supposed to receive. Max can receive
439 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
440 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
441 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
442
443 Example:
444
445 User need to change external sensor use the type code as address code.
446
447 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
448
449 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
450 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
451 | | | | | | | |
452
453 The response frame of the sensor is as follows:
454
455 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
456 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
457 | | | | | | | |
458
459 Then the following parameters should be:
460
461 * Address_Code range: A1
462 * Query_Length: 8
463 * Query_Command: A103000000019CAA
464 * Read_Length: 8
465 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
466 * has_CRC: 1
467 * timeout: 1500 (Fill in the test according to the actual situation)
468
469 So the input command is:
470
471 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
472
473
474 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
475
476 |Type Code|Length (Bytes)|Measured Value
477 |A1|2|0x000A
478
479 Related commands:
480
481 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
482
483 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
484
485
486 (% style="color:#037691" %)**Downlink Command:  **
487
488 **delete custom sensor A1:**
489
490 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
491
492 **Remove all custom sensors**
493
494 * 0xE5FF  
495
496
497
498
499
500 == 3.4 RS485 Test Command ==
501
502 (% style="color:#037691" %)**AT Command:**
503
504 |**Command Example**|**Function**|**Response**
505 |AT+RSWRITE=xxxxxx|(((
506 Send command to 485 sensor
507
508 Range : no more than 10 bytes
509 )))|OK
510
511 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
512
513 AT+RSWRITE=0103000001840A
514
515
516 (% style="color:#037691" %)**Downlink Command:**
517
518 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
519
520
521
522
523
524 == 3.5 RS485 response timeout ==
525
526 Feature: Set or get extended time to receive 485 sensor data.
527
528 (% style="color:#037691" %)**AT Command:**
529
530 |**Command Example**|**Function**|**Response**
531 |AT+DTR=1000|(((
532 Set response timeout to:
533
534 Range : 0~~10000
535 )))|OK
536
537 (% style="color:#037691" %)**Downlink Command:**
538
539 Format: Command Code (0xE0) followed by 3 bytes time value.
540
541 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
542
543 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
544 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
545
546
547
548
549
550 == 3.6 Set Sensor Type ==
551
552 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
553
554 See [[definition>>||anchor="H"]] for the sensor type.
555
556
557 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
558 | |A4|A3|A2|A1| | |
559 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
560 | | |Solar Radiation|PAR|PM10|PM2.5|(((
561 Rain
562
563 Gauge
564 )))|(((
565 Air
566
567 Pressure
568 )))
569 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
570 |Humidity|Temperature|CO2|(((
571 Rain/Snow
572
573 Detect
574 )))|illuminance|(((
575 Wind
576
577 Direction
578 )))|Wind Speed|BAT
579
580 (% style="color:#037691" %)**AT Command:**
581
582 |**Command Example**|**Function**|**Response**
583 |AT+STYPE=80221|Set sensor types|OK
584
585 Eg: The setting command **AT+STYPE=802212** means:
586
587 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
588 |0|0|0|0|1|0|0|0
589 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
590 |0|0|0|0|0|0|1|0
591 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
592 |0|0|1|0|0|0|0|1
593
594 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
595
596
597 (% style="color:#037691" %)**Downlink Command:**
598
599 * 0xE400802212     Same as: AT+STYPE=80221
600
601 (% style="color:red" %)**Note:**
602
603 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
604
605
606
607
608
609 = 4. Power consumption and battery =
610
611 == 4.1 Total Power Consumption ==
612
613 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
614
615
616 == 4.2 Reduce power consumption ==
617
618 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
619
620
621
622 == 4.3 Battery ==
623
624 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
625
626
627 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
628
629
630
631 = 5. Main Process Unit WSC1-L =
632
633 == 5.1 Features ==
634
635 * Wall Attachable.
636 * LoRaWAN v1.0.3 Class A protocol.
637 * RS485 / Modbus protocol
638 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
639 * AT Commands to change parameters
640 * Remote configure parameters via LoRaWAN Downlink
641 * Firmware upgradable via program port
642 * Powered by external 12v battery
643 * Back up rechargeable 1000mAh battery
644 * IP Rating: IP65
645 * Support default sensors or 3rd party RS485 sensors
646
647 == 5.2 Power Consumption ==
648
649 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
650
651
652
653 == 5.3 Storage & Operation Temperature ==
654
655 -20°C to +60°C
656
657
658 == 5.4 Pin Mapping ==
659
660 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
661
662
663 == 5.5 Mechanical ==
664
665 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
666
667
668
669
670 == 5.6 Connect to RS485 Sensors ==
671
672 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
673
674
675 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
676
677
678 Hardware Design for the Converter Board please see:
679
680 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
681
682
683
684
685
686 = 6. Weather Sensors =
687
688 == 6.1 Rain Gauge ~-~- WSS-01 ==
689
690 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
691
692
693 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
694
695 shape to make sure it works smoothly and is easy to clean.
696
697
698 WSS-01 is designed to support the Dragino Weather station solution.
699
700 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
701
702 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
703
704
705 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
706
707 to screw up and adjust the bottom horizontally.
708
709
710 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
711
712
713
714 === 6.1.1 Feature ===
715
716 * RS485 Rain Gauge
717 * Small dimension, easy to install
718 * Vents under funnel, avoid leaf or other things to avoid rain flow.
719 * ABS enclosure.
720 * Horizontal adjustable.
721
722 === 6.1.2 Specification ===
723
724 * Resolution: 0.2mm
725 * Accuracy: ±3%
726 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
727 * Input Power: DC 5~~24v
728 * Interface: RS485
729 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
730 * Working Humidity: <100% (no dewing)
731 * Power Consumption: 4mA @ 12v.
732
733 === 6.1.3 Dimension ===
734
735 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
736
737
738 === 6.1.4 Pin Mapping ===
739
740 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
741
742
743
744
745 === 6.1.5 Installation Notice ===
746
747 Do not power on while connect the cables. Double check the wiring before power on.
748
749 Installation Photo as reference:
750
751
752 (% style="color:#4472c4" %)** Install on Ground:**
753
754 WSS-01 Rain Gauge include screws so can install in ground directly .
755
756
757 (% style="color:#4472c4" %)** Install on pole:**
758
759 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
760
761 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
762
763
764 WS-K2: Bracket Kit for Pole installation:
765
766 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
767
768 WSSC-K2 dimension document, please see:
769
770 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
771
772
773
774 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
775
776 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
777
778 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
779
780
781 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
782
783
784 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
785
786 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
787
788
789 === 6.2.1 Feature ===
790
791 * RS485 wind speed / direction sensor
792 * PC enclosure, resist corrosion
793
794 === 6.2.2 Specification ===
795
796 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
797 * Wind direction range: 0 ~~ 360°
798 * Start wind speed: ≤0.3m/s
799 * Accuracy: ±(0.3+0.03V)m/s , ±1°
800 * Input Power: DC 5~~24v
801 * Interface: RS485
802 * Working Temperature: -30℃~70℃
803 * Working Humidity: <100% (no dewing)
804 * Power Consumption: 13mA ~~ 12v.
805 * Cable Length: 2 meters
806
807 === 6.2.3 Dimension ===
808
809 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
810
811
812 === 6.2.4 Pin Mapping ===
813
814 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
815
816
817 === 6.2.4 Angle Mapping ===
818
819 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
820
821
822 === 6.2.5 Installation Notice ===
823
824 Do not power on while connect the cables. Double check the wiring before power on.
825
826
827 The sensor must be installed with below direction, towards North.
828
829
830 |(((
831 North
832 )))
833
834 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
835
836
837
838
839
840
841
842
843 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
844
845 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
846
847
848 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
849
850
851 WSS-03 is designed to support the Dragino Weather station solution.
852
853 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
854
855 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
856
857
858 === 6.3.1 Feature ===
859
860 * RS485 CO2, PM2.5, PM10 sensor
861 * NDIR to measure CO2 with Internal Temperature Compensation
862 * Laser Beam Scattering to PM2.5 and PM10
863
864 === 6.3.2 Specification ===
865
866 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
867 * CO2 resolution: 1ppm
868 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
869 * PM2.5/PM10 resolution: 1μg/m3
870 * Input Power: DC 7 ~~ 24v
871 * Preheat time: 3min
872 * Interface: RS485
873 * Working Temperature:
874 ** CO2: 0℃~50℃;
875 ** PM2.5/PM10: -30 ~~ 50℃
876 * Working Humidity:
877 ** PM2.5/PM10: 15~80%RH (no dewing)
878 ** CO2: 0~95%RH
879 * Power Consumption: 50mA@ 12v.
880
881 === 6.3.3 Dimension ===
882
883 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
884
885
886 === 6.3.4 Pin Mapping ===
887
888 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
889
890
891 === 6.3.5 Installation Notice ===
892
893 Do not power on while connect the cables. Double check the wiring before power on.
894
895 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
896
897 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
898
899
900
901
902
903
904 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
905
906 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
907
908
909 WSS-04 has auto heating feature, this ensures measurement more reliable.
910
911
912 WSS-04 is designed to support the Dragino Weather station solution.
913
914 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
915
916 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
917
918
919
920 === 6.4.1 Feature ===
921
922 * RS485 Rain/Snow detect sensor
923 * Surface heating to dry
924 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
925
926 === 6.4.2 Specification ===
927
928 * Detect if there is rain or snow
929 * Input Power: DC 12 ~~ 24v
930 * Interface: RS485
931 * Working Temperature: -30℃~70℃
932 * Working Humidity: 10~90%RH
933 * Power Consumption:
934 ** No heating: 12mA @ 12v,
935 ** heating: 94ma @ 12v.
936
937 === 6.4.3 Dimension ===
938
939 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
940
941
942 === 6.4.4 Pin Mapping ===
943
944 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
945
946
947 === 6.4.5 Installation Notice ===
948
949 Do not power on while connect the cables. Double check the wiring before power on.
950
951
952 Install with 15°degree.
953
954 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
955
956 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
957
958
959
960
961 === 6.4.6 Heating ===
962
963
964 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
965
966
967
968
969
970 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
971
972 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
973
974
975 WSS-05 is designed to support the Dragino Weather station solution.
976
977 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
978
979 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
980
981
982 === 6.5.1 Feature ===
983
984 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
985
986 === 6.5.2 Specification ===
987
988 * Input Power: DC 12 ~~ 24v
989 * Interface: RS485
990 * Temperature Sensor Spec:
991 ** Range: -30 ~~ 70℃
992 ** resolution 0.1℃
993 ** Accuracy: ±0.5℃
994 * Humidity Sensor Spec:
995 ** Range: 0 ~~ 100% RH
996 ** resolution 0.1 %RH
997 ** Accuracy: 3% RH
998 * Pressure Sensor Spec:
999 ** Range: 10~1100hPa
1000 ** Resolution: 0.1hPa
1001 ** Accuracy: ±0.1hPa
1002 * Illuminate sensor:
1003 ** Range: 0~2/20/200kLux
1004 ** Resolution: 10 Lux
1005 ** Accuracy: ±3%FS
1006 * Working Temperature: -30℃~70℃
1007 * Working Humidity: 10~90%RH
1008 * Power Consumption: 4mA @ 12v
1009
1010 === 6.5.3 Dimension ===
1011
1012 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1013
1014
1015 === 6.5.4 Pin Mapping ===
1016
1017 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1018
1019
1020 === 6.5.5 Installation Notice ===
1021
1022 Do not power on while connect the cables. Double check the wiring before power on.
1023
1024
1025
1026 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1027
1028
1029 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1030
1031
1032 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1033
1034 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1035
1036
1037 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1038
1039
1040 WSS-06 is designed to support the Dragino Weather station solution.
1041
1042
1043 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1044
1045 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1046
1047
1048
1049 === 6.6.1 Feature ===
1050
1051 * RS485 Total Solar Radiation sensor
1052 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1053 * Measure Reflected Radiation if sense area towards ground.
1054
1055 === 6.6.2 Specification ===
1056
1057 * Input Power: DC 5 ~~ 24v
1058 * Interface: RS485
1059 * Detect spectrum: 0.3~3μm(300~3000nm)
1060 * Measure strength range: 0~2000W/m2
1061 * Resolution: 0.1W/m2
1062 * Accuracy: ±3%
1063 * Yearly Stability: ≤±2%
1064 * Cosine response: ≤7% (@ Sun angle 10°)
1065 * Temperature Effect: ±2%(-10℃~40℃)
1066 * Working Temperature: -40℃~70℃
1067 * Working Humidity: 10~90%RH
1068 * Power Consumption: 4mA @ 12v
1069
1070 === 6.6.3 Dimension ===
1071
1072 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1073
1074
1075 === 6.6.4 Pin Mapping ===
1076
1077 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1078
1079
1080 === 6.6.5 Installation Notice ===
1081
1082 Do not power on while connect the cables. Double check the wiring before power on.
1083
1084 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1085
1086 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1087
1088
1089 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1090
1091 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1092
1093
1094 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1095
1096
1097
1098 WSS-07 is designed to support the Dragino Weather station solution.
1099
1100
1101 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1102
1103 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1104
1105
1106 === 6.7.1 Feature ===
1107
1108 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1109
1110
1111 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1112
1113
1114 === 6.7.2 Specification ===
1115
1116 * Input Power: DC 5 ~~ 24v
1117 * Interface: RS485
1118 * Response Spectrum: 400~700nm
1119 * Measure range: 0~2500μmol/m2•s
1120 * Resolution: 1μmol/m2•s
1121 * Accuracy: ±2%
1122 * Yearly Stability: ≤±2%
1123 * Working Temperature: -30℃~75℃
1124 * Working Humidity: 10~90%RH
1125 * Power Consumption: 3mA @ 12v
1126
1127 === 6.7.3 Dimension ===
1128
1129 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1130
1131
1132 === 6.7.4 Pin Mapping ===
1133
1134 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1135
1136
1137 === 6.7.5 Installation Notice ===
1138
1139 Do not power on while connect the cables. Double check the wiring before power on.
1140
1141
1142 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1143
1144 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1145
1146
1147 = 7. FAQ =
1148
1149 == 7.1 What else do I need to purchase to build Weather Station? ==
1150
1151 Below is the installation photo and structure:
1152
1153 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1154
1155
1156 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1157
1158
1159
1160
1161 == 7.2 How to upgrade firmware for WSC1-L? ==
1162
1163 Firmware Location & Change log:
1164
1165 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1166
1167
1168 Firmware Upgrade instruction:
1169
1170 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1171
1172
1173 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1174
1175 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1176
1177
1178
1179 == 7.4 Can I add my weather sensors? ==
1180
1181 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1182
1183
1184 = 8. Trouble Shooting =
1185
1186
1187
1188
1189
1190
1191 = 9. Order Info =
1192
1193
1194 == 9.1 Main Process Unit ==
1195
1196 Part Number: **WSC1-L-XX**
1197
1198 **XX**: The default frequency band
1199
1200 * **AS923**: LoRaWAN AS923 band
1201 * **AU915**: LoRaWAN AU915 band
1202 * **EU433**: LoRaWAN EU433 band
1203 * **EU868**: LoRaWAN EU868 band
1204 * **KR920**: LoRaWAN KR920 band
1205 * **US915**: LoRaWAN US915 band
1206 * **IN865**: LoRaWAN IN865 band
1207 * **CN470**: LoRaWAN CN470 band
1208
1209 == 9.2 Sensors ==
1210
1211 |**Sensor Model**|**Part Number**
1212 |**Rain Gauge**|WSS-01
1213 |**Rain Gauge installation Bracket for Pole**|WS-K2
1214 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1215 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1216 |**Rain/Snow Detect Sensor**|WSS-04
1217 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1218 |**Total Solar Radiation Sensor**|WSS-06
1219 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1220
1221 = 10. Support =
1222
1223 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1224 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1225
1226 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1227
1228
1229
1230
1231
1232 = 11. Appendix I: Field Installation Photo =
1233
1234
1235 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1236
1237
1238 **Storage Battery**: 12v,12AH li battery
1239
1240
1241 Wind Speed/Direction.
1242
1243 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1244
1245
1246 Total Solar Radiation sensor
1247
1248 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1249
1250
1251
1252 PAR Sensor
1253
1254 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1255
1256
1257 CO2/PM2.5/PM10 3 in 1 sensor
1258
1259 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1260
1261
1262 Rain / Snow Detect:
1263
1264 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1265
1266
1267 Rain Gauge.
1268
1269 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0