Version 27.9 by Xiaoling on 2022/06/24 14:24

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71 (% style="color:red" %)** Notice 2:**
72
73 Due to shipment and importation limitation, user is better to purchase below parts locally:
74
75 * Solar Panel
76 * Storage Battery
77 * MPPT Solar Recharger
78 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
79 * Cabinet.
80
81
82
83 == 2.2 How it works? ==
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
91
92 [[image:1656042192857-709.png]]
93
94
95 (% style="color:red" %)**Notice:**
96
97 1. WSC1-L will auto scan available weather sensors when power on or reboot.
98 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
99
100
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
105
106
107 [[image:1656042612899-422.png]]
108
109
110
111 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
112
113
114 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
115
116 Each WSC1-L is shipped with a sticker with the default device EUI as below:
117
118 [[image:image-20220624115043-1.jpeg]]
119
120
121 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
122
123 **Add APP EUI in the application.**
124
125 [[image:1656042662694-311.png]]
126
127 [[image:1656042673910-429.png]]
128
129
130
131
132 **Choose Manually to add WSC1-L**
133
134 [[image:1656042695755-103.png]]
135
136
137
138 **Add APP KEY and DEV EUI**
139
140 [[image:1656042723199-746.png]]
141
142
143
144 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
145
146
147 [[image:1656042745346-283.png]]
148
149
150
151 == 2.4 Uplink Payload ==
152
153 Uplink payloads include two types: Valid Sensor Value and other status / control command.
154
155 * Valid Sensor Value: Use FPORT=2
156 * Other control command: Use FPORT other than 2.
157
158
159 === 2.4.1 Uplink FPORT~=5, Device Status ===
160
161 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
162
163
164 (((
165 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
166 )))
167
168 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
169 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
170 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
171
172 [[image:1656043061044-343.png]]
173
174
175 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
176
177
178
179 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
180
181 For WSC1-L, this value is 0x0D.
182
183
184
185 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
186
187 0x0100, Means: v1.0.0 version.
188
189
190
191 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
192
193 *0x01: EU868
194
195 *0x02: US915
196
197 *0x03: IN865
198
199 *0x04: AU915
200
201 *0x05: KZ865
202
203 *0x06: RU864
204
205 *0x07: AS923
206
207 *0x08: AS923-1
208
209 *0x09: AS923-2
210
211 *0x0a: AS923-3
212
213
214
215 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
216
217 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
218
219
220
221 ==== (% style="color:#037691" %)**BAT:**(%%) ====
222
223 shows the battery voltage for WSC1-L MCU.
224
225 Ex1: 0x0BD6/1000 = 3.03 V
226
227
228
229 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
230
231 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
232 |Byte3|Byte2|Byte1
233
234 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
235
236 [[image:image-20220624134713-1.png]]
237
238
239 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
240
241 External sensors detected by WSC1-L include :
242
243 custom sensor A1,
244
245 PAR sensor (WSS-07),
246
247 Total Solar Radiation sensor (WSS-06),
248
249 CO2/PM2.5/PM10 (WSS-03),
250
251 Wind Speed/Direction (WSS-02)
252
253
254 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
255
256 (% style="color:#037691" %)**Downlink:0x26 01**
257
258 [[image:1656049673488-415.png]]
259
260
261
262 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
263
264 (((
265 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
266 )))
267
268 (((
269 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
270 )))
271
272
273 (((
274 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
275 )))
276
277
278 (% style="color:#4472c4" %)** Uplink Payload**:
279
280 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
281 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
282
283 (% style="color:#4472c4" %)** Sensor Segment Define**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
286 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
287
288 (% style="color:#4472c4" %)**Sensor Type Table:**
289
290 [[image:image-20220624140352-2.png]]
291
292
293 Below is an example payload:  [[image:image-20220624140615-3.png]]
294
295
296 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
297
298 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
299
300 Uplink 1:  [[image:image-20220624140735-4.png]]
301
302 Uplink 2:  [[image:image-20220624140842-5.png]]
303
304
305 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
306
307 Uplink 1:  [[image:image-20220624141025-6.png]]
308
309 Uplink 2:  [[image:image-20220624141100-7.png]]
310
311
312
313
314 === 2.4.3 Decoder in TTN V3 ===
315
316 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
317
318
319 Download decoder for suitable platform from:
320
321 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
322
323 and put as below:
324
325 [[image:1656051152438-578.png]]
326
327
328
329 == 2.5 Show data on Application Server ==
330
331 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
332
333
334 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
335
336 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
337
338 [[image:1656051197172-131.png]]
339
340
341 **Add TagoIO:**
342
343 [[image:1656051223585-631.png]]
344
345
346 **Authorization:**
347
348 [[image:1656051248318-368.png]]
349
350
351 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
352
353 [[image:1656051277767-168.png]]
354
355
356
357 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
358
359 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
360
361 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
362 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
363
364
365 There are two kinds of commands to configure WSC1-L, they are:
366
367 * (% style="color:#4472c4" %)**General Commands**.
368
369 These commands are to configure:
370
371 * General system settings like: uplink interval.
372 * LoRaWAN protocol & radio related command.
373
374
375 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
376
377 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
378
379
380 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
381
382 These commands only valid for WSC1-L, as below:
383
384
385 == 3.1 Set Transmit Interval Time ==
386
387 Feature: Change LoRaWAN End Node Transmit Interval.
388
389 (% style="color:#037691" %)**AT Command: AT+TDC**
390
391 |**Command Example**|**Function**|**Response**
392 |AT+TDC?|Show current transmit Interval|(((
393 30000
394
395 OK
396
397 the interval is 30000ms = 30s
398 )))
399 |AT+TDC=60000|Set Transmit Interval|(((
400 OK
401
402 Set transmit interval to 60000ms = 60 seconds
403 )))
404
405 (% style="color:#037691" %)**Downlink Command: 0x01**
406
407 Format: Command Code (0x01) followed by 3 bytes time value.
408
409 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
410
411 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
412 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
413
414 == 3.2 Set Emergency Mode ==
415
416 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
417
418
419 (% style="color:#037691" %)**AT Command:**
420
421 |**Command Example**|**Function**|**Response**
422 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
423 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
424
425 (% style="color:#037691" %)**Downlink Command:**
426
427 * 0xE101     Same as: AT+ALARMMOD=1
428 * 0xE100     Same as: AT+ALARMMOD=0
429
430 == 3.3 Add or Delete RS485 Sensor ==
431
432 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
433
434 (% style="color:#037691" %)**AT Command: **
435
436 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
437
438 * Type_Code range: A1 ~~ A4
439 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
440 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
441 * Read_Length: RS485 response frame length supposed to receive. Max can receive
442 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
443 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
444 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
445
446 Example:
447
448 User need to change external sensor use the type code as address code.
449
450 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
451
452 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
453 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
454 | | | | | | | |
455
456 The response frame of the sensor is as follows:
457
458 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
459 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
460 | | | | | | | |
461
462 Then the following parameters should be:
463
464 * Address_Code range: A1
465 * Query_Length: 8
466 * Query_Command: A103000000019CAA
467 * Read_Length: 8
468 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
469 * has_CRC: 1
470 * timeout: 1500 (Fill in the test according to the actual situation)
471
472 So the input command is:
473
474 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
475
476
477 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
478
479 |Type Code|Length (Bytes)|Measured Value
480 |A1|2|0x000A
481
482 Related commands:
483
484 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
485
486 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
487
488
489 (% style="color:#037691" %)**Downlink Command:  **
490
491 **delete custom sensor A1:**
492
493 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
494
495 **Remove all custom sensors**
496
497 * 0xE5FF  
498
499 == 3.4 RS485 Test Command ==
500
501 (% style="color:#037691" %)**AT Command:**
502
503 |**Command Example**|**Function**|**Response**
504 |AT+RSWRITE=xxxxxx|(((
505 Send command to 485 sensor
506
507 Range : no more than 10 bytes
508 )))|OK
509
510 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
511
512 AT+RSWRITE=0103000001840A
513
514
515 (% style="color:#037691" %)**Downlink Command:**
516
517 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
518
519 == 3.5 RS485 response timeout ==
520
521 Feature: Set or get extended time to receive 485 sensor data.
522
523 (% style="color:#037691" %)**AT Command:**
524
525 |**Command Example**|**Function**|**Response**
526 |AT+DTR=1000|(((
527 Set response timeout to:
528
529 Range : 0~~10000
530 )))|OK
531
532 (% style="color:#037691" %)**Downlink Command:**
533
534 Format: Command Code (0xE0) followed by 3 bytes time value.
535
536 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
537
538 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
539 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
540
541 == 3.6 Set Sensor Type ==
542
543 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
544
545 See [[definition>>||anchor="H"]] for the sensor type.
546
547
548 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
549 | |A4|A3|A2|A1| | |
550 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
551 | | |Solar Radiation|PAR|PM10|PM2.5|(((
552 Rain
553
554 Gauge
555 )))|(((
556 Air
557
558 Pressure
559 )))
560 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
561 |Humidity|Temperature|CO2|(((
562 Rain/Snow
563
564 Detect
565 )))|illuminance|(((
566 Wind
567
568 Direction
569 )))|Wind Speed|BAT
570
571 (% style="color:#037691" %)**AT Command:**
572
573 |**Command Example**|**Function**|**Response**
574 |AT+STYPE=80221|Set sensor types|OK
575
576 Eg: The setting command **AT+STYPE=802212** means:
577
578 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
579 |0|0|0|0|1|0|0|0
580 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
581 |0|0|0|0|0|0|1|0
582 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
583 |0|0|1|0|0|0|0|1
584
585 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
586
587
588 (% style="color:#037691" %)**Downlink Command:**
589
590 * 0xE400802212     Same as: AT+STYPE=80221
591
592 (% style="color:red" %)**Note:**
593
594 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
595
596
597
598
599
600 = 4. Power consumption and battery =
601
602 == 4.1 Total Power Consumption ==
603
604 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
605
606
607 == 4.2 Reduce power consumption ==
608
609 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
610
611
612
613 == 4.3 Battery ==
614
615 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
616
617
618 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
619
620
621
622 = 5. Main Process Unit WSC1-L =
623
624 == 5.1 Features ==
625
626 * Wall Attachable.
627 * LoRaWAN v1.0.3 Class A protocol.
628 * RS485 / Modbus protocol
629 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
630 * AT Commands to change parameters
631 * Remote configure parameters via LoRaWAN Downlink
632 * Firmware upgradable via program port
633 * Powered by external 12v battery
634 * Back up rechargeable 1000mAh battery
635 * IP Rating: IP65
636 * Support default sensors or 3rd party RS485 sensors
637
638 == 5.2 Power Consumption ==
639
640 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
641
642
643
644 == 5.3 Storage & Operation Temperature ==
645
646 -20°C to +60°C
647
648
649 == 5.4 Pin Mapping ==
650
651 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
652
653
654 == 5.5 Mechanical ==
655
656 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
657
658
659
660
661 == 5.6 Connect to RS485 Sensors ==
662
663 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
664
665
666 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
667
668
669 Hardware Design for the Converter Board please see:
670
671 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
672
673
674
675
676
677 = 6. Weather Sensors =
678
679 == 6.1 Rain Gauge ~-~- WSS-01 ==
680
681 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
682
683
684 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
685
686 shape to make sure it works smoothly and is easy to clean.
687
688
689 WSS-01 is designed to support the Dragino Weather station solution.
690
691 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
692
693 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
694
695
696 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
697
698 to screw up and adjust the bottom horizontally.
699
700
701 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
702
703
704
705 === 6.1.1 Feature ===
706
707 * RS485 Rain Gauge
708 * Small dimension, easy to install
709 * Vents under funnel, avoid leaf or other things to avoid rain flow.
710 * ABS enclosure.
711 * Horizontal adjustable.
712
713 === 6.1.2 Specification ===
714
715 * Resolution: 0.2mm
716 * Accuracy: ±3%
717 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
718 * Input Power: DC 5~~24v
719 * Interface: RS485
720 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
721 * Working Humidity: <100% (no dewing)
722 * Power Consumption: 4mA @ 12v.
723
724 === 6.1.3 Dimension ===
725
726 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
727
728
729 === 6.1.4 Pin Mapping ===
730
731 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
732
733
734
735
736 === 6.1.5 Installation Notice ===
737
738 Do not power on while connect the cables. Double check the wiring before power on.
739
740 Installation Photo as reference:
741
742
743 (% style="color:#4472c4" %)** Install on Ground:**
744
745 WSS-01 Rain Gauge include screws so can install in ground directly .
746
747
748 (% style="color:#4472c4" %)** Install on pole:**
749
750 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
751
752 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
753
754
755 WS-K2: Bracket Kit for Pole installation:
756
757 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
758
759 WSSC-K2 dimension document, please see:
760
761 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
762
763
764
765 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
766
767 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
768
769 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
770
771
772 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
773
774
775 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
776
777 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
778
779
780 === 6.2.1 Feature ===
781
782 * RS485 wind speed / direction sensor
783 * PC enclosure, resist corrosion
784
785 === 6.2.2 Specification ===
786
787 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
788 * Wind direction range: 0 ~~ 360°
789 * Start wind speed: ≤0.3m/s
790 * Accuracy: ±(0.3+0.03V)m/s , ±1°
791 * Input Power: DC 5~~24v
792 * Interface: RS485
793 * Working Temperature: -30℃~70℃
794 * Working Humidity: <100% (no dewing)
795 * Power Consumption: 13mA ~~ 12v.
796 * Cable Length: 2 meters
797
798 === 6.2.3 Dimension ===
799
800 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
801
802
803 === 6.2.4 Pin Mapping ===
804
805 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
806
807
808 === 6.2.4 Angle Mapping ===
809
810 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
811
812
813 === 6.2.5 Installation Notice ===
814
815 Do not power on while connect the cables. Double check the wiring before power on.
816
817
818 The sensor must be installed with below direction, towards North.
819
820
821 |(((
822 North
823 )))
824
825 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
826
827
828
829
830
831
832
833
834 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
835
836 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
837
838
839 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
840
841
842 WSS-03 is designed to support the Dragino Weather station solution.
843
844 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
845
846 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
847
848
849 === 6.3.1 Feature ===
850
851 * RS485 CO2, PM2.5, PM10 sensor
852 * NDIR to measure CO2 with Internal Temperature Compensation
853 * Laser Beam Scattering to PM2.5 and PM10
854
855 === 6.3.2 Specification ===
856
857 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
858 * CO2 resolution: 1ppm
859 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
860 * PM2.5/PM10 resolution: 1μg/m3
861 * Input Power: DC 7 ~~ 24v
862 * Preheat time: 3min
863 * Interface: RS485
864 * Working Temperature:
865 ** CO2: 0℃~50℃;
866 ** PM2.5/PM10: -30 ~~ 50℃
867 * Working Humidity:
868 ** PM2.5/PM10: 15~80%RH (no dewing)
869 ** CO2: 0~95%RH
870 * Power Consumption: 50mA@ 12v.
871
872 === 6.3.3 Dimension ===
873
874 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
875
876
877 === 6.3.4 Pin Mapping ===
878
879 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
880
881
882 === 6.3.5 Installation Notice ===
883
884 Do not power on while connect the cables. Double check the wiring before power on.
885
886 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
887
888 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
889
890
891
892
893
894
895 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
896
897 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
898
899
900 WSS-04 has auto heating feature, this ensures measurement more reliable.
901
902
903 WSS-04 is designed to support the Dragino Weather station solution.
904
905 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
906
907 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
908
909
910
911 === 6.4.1 Feature ===
912
913 * RS485 Rain/Snow detect sensor
914 * Surface heating to dry
915 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
916
917 === 6.4.2 Specification ===
918
919 * Detect if there is rain or snow
920 * Input Power: DC 12 ~~ 24v
921 * Interface: RS485
922 * Working Temperature: -30℃~70℃
923 * Working Humidity: 10~90%RH
924 * Power Consumption:
925 ** No heating: 12mA @ 12v,
926 ** heating: 94ma @ 12v.
927
928 === 6.4.3 Dimension ===
929
930 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
931
932
933 === 6.4.4 Pin Mapping ===
934
935 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
936
937
938 === 6.4.5 Installation Notice ===
939
940 Do not power on while connect the cables. Double check the wiring before power on.
941
942
943 Install with 15°degree.
944
945 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
946
947 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
948
949
950
951
952 === 6.4.6 Heating ===
953
954
955 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
956
957
958
959
960
961 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
962
963 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
964
965
966 WSS-05 is designed to support the Dragino Weather station solution.
967
968 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
969
970 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
971
972
973 === 6.5.1 Feature ===
974
975 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
976
977 === 6.5.2 Specification ===
978
979 * Input Power: DC 12 ~~ 24v
980 * Interface: RS485
981 * Temperature Sensor Spec:
982 ** Range: -30 ~~ 70℃
983 ** resolution 0.1℃
984 ** Accuracy: ±0.5℃
985 * Humidity Sensor Spec:
986 ** Range: 0 ~~ 100% RH
987 ** resolution 0.1 %RH
988 ** Accuracy: 3% RH
989 * Pressure Sensor Spec:
990 ** Range: 10~1100hPa
991 ** Resolution: 0.1hPa
992 ** Accuracy: ±0.1hPa
993 * Illuminate sensor:
994 ** Range: 0~2/20/200kLux
995 ** Resolution: 10 Lux
996 ** Accuracy: ±3%FS
997 * Working Temperature: -30℃~70℃
998 * Working Humidity: 10~90%RH
999 * Power Consumption: 4mA @ 12v
1000
1001 === 6.5.3 Dimension ===
1002
1003 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1004
1005
1006 === 6.5.4 Pin Mapping ===
1007
1008 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1009
1010
1011 === 6.5.5 Installation Notice ===
1012
1013 Do not power on while connect the cables. Double check the wiring before power on.
1014
1015
1016
1017 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1018
1019
1020 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1021
1022
1023 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1024
1025 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1026
1027
1028 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1029
1030
1031 WSS-06 is designed to support the Dragino Weather station solution.
1032
1033
1034 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1035
1036 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1037
1038
1039
1040 === 6.6.1 Feature ===
1041
1042 * RS485 Total Solar Radiation sensor
1043 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1044 * Measure Reflected Radiation if sense area towards ground.
1045
1046 === 6.6.2 Specification ===
1047
1048 * Input Power: DC 5 ~~ 24v
1049 * Interface: RS485
1050 * Detect spectrum: 0.3~3μm(300~3000nm)
1051 * Measure strength range: 0~2000W/m2
1052 * Resolution: 0.1W/m2
1053 * Accuracy: ±3%
1054 * Yearly Stability: ≤±2%
1055 * Cosine response: ≤7% (@ Sun angle 10°)
1056 * Temperature Effect: ±2%(-10℃~40℃)
1057 * Working Temperature: -40℃~70℃
1058 * Working Humidity: 10~90%RH
1059 * Power Consumption: 4mA @ 12v
1060
1061 === 6.6.3 Dimension ===
1062
1063 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1064
1065
1066 === 6.6.4 Pin Mapping ===
1067
1068 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1069
1070
1071 === 6.6.5 Installation Notice ===
1072
1073 Do not power on while connect the cables. Double check the wiring before power on.
1074
1075 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1076
1077 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1078
1079
1080 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1081
1082 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1083
1084
1085 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1086
1087
1088
1089 WSS-07 is designed to support the Dragino Weather station solution.
1090
1091
1092 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1093
1094 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1095
1096
1097 === 6.7.1 Feature ===
1098
1099 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1100
1101
1102 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1103
1104
1105 === 6.7.2 Specification ===
1106
1107 * Input Power: DC 5 ~~ 24v
1108 * Interface: RS485
1109 * Response Spectrum: 400~700nm
1110 * Measure range: 0~2500μmol/m2•s
1111 * Resolution: 1μmol/m2•s
1112 * Accuracy: ±2%
1113 * Yearly Stability: ≤±2%
1114 * Working Temperature: -30℃~75℃
1115 * Working Humidity: 10~90%RH
1116 * Power Consumption: 3mA @ 12v
1117
1118 === 6.7.3 Dimension ===
1119
1120 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1121
1122
1123 === 6.7.4 Pin Mapping ===
1124
1125 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1126
1127
1128 === 6.7.5 Installation Notice ===
1129
1130 Do not power on while connect the cables. Double check the wiring before power on.
1131
1132
1133 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1134
1135 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1136
1137
1138 = 7. FAQ =
1139
1140 == 7.1 What else do I need to purchase to build Weather Station? ==
1141
1142 Below is the installation photo and structure:
1143
1144 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1145
1146
1147 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1148
1149
1150
1151
1152 == 7.2 How to upgrade firmware for WSC1-L? ==
1153
1154 Firmware Location & Change log:
1155
1156 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1157
1158
1159 Firmware Upgrade instruction:
1160
1161 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1162
1163
1164 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1165
1166 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1167
1168
1169
1170 == 7.4 Can I add my weather sensors? ==
1171
1172 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1173
1174
1175 = 8. Trouble Shooting =
1176
1177
1178
1179
1180
1181
1182 = 9. Order Info =
1183
1184
1185 == 9.1 Main Process Unit ==
1186
1187 Part Number: **WSC1-L-XX**
1188
1189 **XX**: The default frequency band
1190
1191 * **AS923**: LoRaWAN AS923 band
1192 * **AU915**: LoRaWAN AU915 band
1193 * **EU433**: LoRaWAN EU433 band
1194 * **EU868**: LoRaWAN EU868 band
1195 * **KR920**: LoRaWAN KR920 band
1196 * **US915**: LoRaWAN US915 band
1197 * **IN865**: LoRaWAN IN865 band
1198 * **CN470**: LoRaWAN CN470 band
1199
1200 == 9.2 Sensors ==
1201
1202 |**Sensor Model**|**Part Number**
1203 |**Rain Gauge**|WSS-01
1204 |**Rain Gauge installation Bracket for Pole**|WS-K2
1205 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1206 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1207 |**Rain/Snow Detect Sensor**|WSS-04
1208 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1209 |**Total Solar Radiation Sensor**|WSS-06
1210 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1211
1212 = 10. Support =
1213
1214 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1215 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1216
1217 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1218
1219
1220
1221
1222
1223 = 11. Appendix I: Field Installation Photo =
1224
1225
1226 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1227
1228
1229 **Storage Battery**: 12v,12AH li battery
1230
1231
1232 Wind Speed/Direction.
1233
1234 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1235
1236
1237 Total Solar Radiation sensor
1238
1239 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1240
1241
1242
1243 PAR Sensor
1244
1245 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1246
1247
1248 CO2/PM2.5/PM10 3 in 1 sensor
1249
1250 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1251
1252
1253 Rain / Snow Detect:
1254
1255 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1256
1257
1258 Rain Gauge.
1259
1260 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]