Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71 (% style="color:red" %)** Notice 2:**
72
73 Due to shipment and importation limitation, user is better to purchase below parts locally:
74
75 * Solar Panel
76 * Storage Battery
77 * MPPT Solar Recharger
78 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
79 * Cabinet.
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
98
99
100 == 2.3 Example to use for LoRaWAN network ==
101
102 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
103
104
105 [[image:1656042612899-422.png]]
106
107
108
109 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
110
111
112 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
113
114 Each WSC1-L is shipped with a sticker with the default device EUI as below:
115
116 [[image:image-20220624115043-1.jpeg]]
117
118
119 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
120
121 **Add APP EUI in the application.**
122
123 [[image:1656042662694-311.png]]
124
125 [[image:1656042673910-429.png]]
126
127
128
129
130 **Choose Manually to add WSC1-L**
131
132 [[image:1656042695755-103.png]]
133
134
135
136 **Add APP KEY and DEV EUI**
137
138 [[image:1656042723199-746.png]]
139
140
141
142 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
143
144
145 [[image:1656042745346-283.png]]
146
147
148
149 == 2.4 Uplink Payload ==
150
151 Uplink payloads include two types: Valid Sensor Value and other status / control command.
152
153 * Valid Sensor Value: Use FPORT=2
154 * Other control command: Use FPORT other than 2.
155
156
157 === 2.4.1 Uplink FPORT~=5, Device Status ===
158
159 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
160
161
162 (((
163 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
164 )))
165
166 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
167 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
168 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
169
170 [[image:1656043061044-343.png]]
171
172
173 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
174
175
176
177 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
178
179 For WSC1-L, this value is 0x0D.
180
181
182
183 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
184
185 0x0100, Means: v1.0.0 version.
186
187
188
189 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
190
191 *0x01: EU868
192
193 *0x02: US915
194
195 *0x03: IN865
196
197 *0x04: AU915
198
199 *0x05: KZ865
200
201 *0x06: RU864
202
203 *0x07: AS923
204
205 *0x08: AS923-1
206
207 *0x09: AS923-2
208
209 *0x0a: AS923-3
210
211
212
213 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
214
215 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
216
217
218
219 ==== (% style="color:#037691" %)**BAT:**(%%) ====
220
221 shows the battery voltage for WSC1-L MCU.
222
223 Ex1: 0x0BD6/1000 = 3.03 V
224
225
226
227 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
228
229 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
230 |Byte3|Byte2|Byte1
231
232 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
233
234 [[image:image-20220624134713-1.png]]
235
236
237 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
238
239 External sensors detected by WSC1-L include :
240
241 custom sensor A1,
242
243 PAR sensor (WSS-07),
244
245 Total Solar Radiation sensor (WSS-06),
246
247 CO2/PM2.5/PM10 (WSS-03),
248
249 Wind Speed/Direction (WSS-02)
250
251
252 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
253
254 (% style="color:#037691" %)**Downlink:0x26 01**
255
256 [[image:1656049673488-415.png]]
257
258
259
260 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
261
262 (((
263 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
264 )))
265
266 (((
267 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
268 )))
269
270
271 (((
272 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
273 )))
274
275
276 (% style="color:#4472c4" %)** Uplink Payload**:
277
278 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
279 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
280
281 (% style="color:#4472c4" %)** Sensor Segment Define**:
282
283 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
284 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
285
286 (% style="color:#4472c4" %)**Sensor Type Table:**
287
288 [[image:image-20220624140352-2.png]]
289
290
291 Below is an example payload:  [[image:image-20220624140615-3.png]]
292
293
294 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
295
296 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
297
298 Uplink 1:  [[image:image-20220624140735-4.png]]
299
300 Uplink 2:  [[image:image-20220624140842-5.png]]
301
302
303 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
304
305 Uplink 1:  [[image:image-20220624141025-6.png]]
306
307 Uplink 2:  [[image:image-20220624141100-7.png]]
308
309
310
311
312 === 2.4.3 Decoder in TTN V3 ===
313
314 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
315
316
317 Download decoder for suitable platform from:
318
319 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
320
321 and put as below:
322
323 [[image:1656051152438-578.png]]
324
325
326
327 == 2.5 Show data on Application Server ==
328
329 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
330
331
332 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
333
334 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
335
336 [[image:1656051197172-131.png]]
337
338
339 **Add TagoIO:**
340
341 [[image:1656051223585-631.png]]
342
343
344 **Authorization:**
345
346 [[image:1656051248318-368.png]]
347
348
349 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
350
351 [[image:1656051277767-168.png]]
352
353
354
355 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
356
357 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
358
359 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
360 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
361
362
363 There are two kinds of commands to configure WSC1-L, they are:
364
365 * (% style="color:#4472c4" %)**General Commands**.
366
367 These commands are to configure:
368
369 * General system settings like: uplink interval.
370 * LoRaWAN protocol & radio related command.
371
372 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
373
374 [[http:~~/~~/wiki1.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
375
376 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
377
378
379 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
380
381 These commands only valid for WSC1-L, as below:
382
383
384 == 3.1 Set Transmit Interval Time ==
385
386 Feature: Change LoRaWAN End Node Transmit Interval.
387
388 (% style="color:#037691" %)**AT Command: AT+TDC**
389
390 |**Command Example**|**Function**|**Response**
391 |AT+TDC?|Show current transmit Interval|(((
392 30000
393
394 OK
395
396 the interval is 30000ms = 30s
397 )))
398 |AT+TDC=60000|Set Transmit Interval|(((
399 OK
400
401 Set transmit interval to 60000ms = 60 seconds
402 )))
403
404 (% style="color:#037691" %)**Downlink Command: 0x01**
405
406 Format: Command Code (0x01) followed by 3 bytes time value.
407
408 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
409
410 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
411 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
412
413 == 3.2 Set Emergency Mode ==
414
415 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
416
417
418 (% style="color:#037691" %)**AT Command:**
419
420 |**Command Example**|**Function**|**Response**
421 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
422 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
423
424 (% style="color:#037691" %)**Downlink Command:**
425
426 * 0xE101     Same as: AT+ALARMMOD=1
427 * 0xE100     Same as: AT+ALARMMOD=0
428
429 == 3.3 Add or Delete RS485 Sensor ==
430
431 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
432
433 (% style="color:#037691" %)**AT Command: **
434
435 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
436
437 * Type_Code range: A1 ~~ A4
438 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
439 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
440 * Read_Length: RS485 response frame length supposed to receive. Max can receive
441 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
442 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
443 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
444
445 Example:
446
447 User need to change external sensor use the type code as address code.
448
449 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
450
451 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
452 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
453 | | | | | | | |
454
455 The response frame of the sensor is as follows:
456
457 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
458 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
459 | | | | | | | |
460
461 Then the following parameters should be:
462
463 * Address_Code range: A1
464 * Query_Length: 8
465 * Query_Command: A103000000019CAA
466 * Read_Length: 8
467 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
468 * has_CRC: 1
469 * timeout: 1500 (Fill in the test according to the actual situation)
470
471 So the input command is:
472
473 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
474
475
476 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
477
478 |Type Code|Length (Bytes)|Measured Value
479 |A1|2|0x000A
480
481 Related commands:
482
483 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
484
485 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
486
487
488 (% style="color:#037691" %)**Downlink Command:  **
489
490 **delete custom sensor A1:**
491
492 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
493
494 **Remove all custom sensors**
495
496 * 0xE5FF  
497
498 == 3.4 RS485 Test Command ==
499
500 (% style="color:#037691" %)**AT Command:**
501
502 |**Command Example**|**Function**|**Response**
503 |AT+RSWRITE=xxxxxx|(((
504 Send command to 485 sensor
505
506 Range : no more than 10 bytes
507 )))|OK
508
509 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
510
511 AT+RSWRITE=0103000001840A
512
513
514 (% style="color:#037691" %)**Downlink Command:**
515
516 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
517
518 == 3.5 RS485 response timeout ==
519
520 Feature: Set or get extended time to receive 485 sensor data.
521
522 (% style="color:#037691" %)**AT Command:**
523
524 |**Command Example**|**Function**|**Response**
525 |AT+DTR=1000|(((
526 Set response timeout to:
527
528 Range : 0~~10000
529 )))|OK
530
531 (% style="color:#037691" %)**Downlink Command:**
532
533 Format: Command Code (0xE0) followed by 3 bytes time value.
534
535 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
536
537 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
538 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
539
540 == 3.6 Set Sensor Type ==
541
542 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
543
544 See [[definition>>||anchor="H"]] for the sensor type.
545
546
547 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
548 | |A4|A3|A2|A1| | |
549 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
550 | | |Solar Radiation|PAR|PM10|PM2.5|(((
551 Rain
552
553 Gauge
554 )))|(((
555 Air
556
557 Pressure
558 )))
559 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
560 |Humidity|Temperature|CO2|(((
561 Rain/Snow
562
563 Detect
564 )))|illuminance|(((
565 Wind
566
567 Direction
568 )))|Wind Speed|BAT
569
570 (% style="color:#037691" %)**AT Command:**
571
572 |**Command Example**|**Function**|**Response**
573 |AT+STYPE=80221|Set sensor types|OK
574
575 Eg: The setting command **AT+STYPE=802212** means:
576
577 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
578 |0|0|0|0|1|0|0|0
579 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
580 |0|0|0|0|0|0|1|0
581 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
582 |0|0|1|0|0|0|0|1
583
584 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
585
586
587 (% style="color:#037691" %)**Downlink Command:**
588
589 * 0xE400802212     Same as: AT+STYPE=80221
590
591 (% style="color:red" %)**Note:**
592
593 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
594
595
596
597
598
599 = 4. Power consumption and battery =
600
601 == 4.1 Total Power Consumption ==
602
603 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
604
605
606 == 4.2 Reduce power consumption ==
607
608 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
609
610
611
612 == 4.3 Battery ==
613
614 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
615
616
617 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
618
619
620
621 = 5. Main Process Unit WSC1-L =
622
623 == 5.1 Features ==
624
625 * Wall Attachable.
626 * LoRaWAN v1.0.3 Class A protocol.
627 * RS485 / Modbus protocol
628 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
629 * AT Commands to change parameters
630 * Remote configure parameters via LoRaWAN Downlink
631 * Firmware upgradable via program port
632 * Powered by external 12v battery
633 * Back up rechargeable 1000mAh battery
634 * IP Rating: IP65
635 * Support default sensors or 3rd party RS485 sensors
636
637 == 5.2 Power Consumption ==
638
639 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
640
641
642
643 == 5.3 Storage & Operation Temperature ==
644
645 -20°C to +60°C
646
647
648 == 5.4 Pin Mapping ==
649
650 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
651
652
653 == 5.5 Mechanical ==
654
655 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
656
657
658
659
660 == 5.6 Connect to RS485 Sensors ==
661
662 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
663
664
665 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
666
667
668 Hardware Design for the Converter Board please see:
669
670 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
671
672
673
674
675
676 = 6. Weather Sensors =
677
678 == 6.1 Rain Gauge ~-~- WSS-01 ==
679
680 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
681
682
683 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
684
685 shape to make sure it works smoothly and is easy to clean.
686
687
688 WSS-01 is designed to support the Dragino Weather station solution.
689
690 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
691
692 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
693
694
695 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
696
697 to screw up and adjust the bottom horizontally.
698
699
700 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
701
702
703
704 === 6.1.1 Feature ===
705
706 * RS485 Rain Gauge
707 * Small dimension, easy to install
708 * Vents under funnel, avoid leaf or other things to avoid rain flow.
709 * ABS enclosure.
710 * Horizontal adjustable.
711
712 === 6.1.2 Specification ===
713
714 * Resolution: 0.2mm
715 * Accuracy: ±3%
716 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
717 * Input Power: DC 5~~24v
718 * Interface: RS485
719 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
720 * Working Humidity: <100% (no dewing)
721 * Power Consumption: 4mA @ 12v.
722
723 === 6.1.3 Dimension ===
724
725 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
726
727
728 === 6.1.4 Pin Mapping ===
729
730 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
731
732
733
734
735 === 6.1.5 Installation Notice ===
736
737 Do not power on while connect the cables. Double check the wiring before power on.
738
739 Installation Photo as reference:
740
741
742 (% style="color:#4472c4" %)** Install on Ground:**
743
744 WSS-01 Rain Gauge include screws so can install in ground directly .
745
746
747 (% style="color:#4472c4" %)** Install on pole:**
748
749 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
750
751 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
752
753
754 WS-K2: Bracket Kit for Pole installation:
755
756 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
757
758 WSSC-K2 dimension document, please see:
759
760 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
761
762
763
764 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
765
766 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
767
768 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
769
770
771 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
772
773
774 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
775
776 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
777
778
779 === 6.2.1 Feature ===
780
781 * RS485 wind speed / direction sensor
782 * PC enclosure, resist corrosion
783
784 === 6.2.2 Specification ===
785
786 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
787 * Wind direction range: 0 ~~ 360°
788 * Start wind speed: ≤0.3m/s
789 * Accuracy: ±(0.3+0.03V)m/s , ±1°
790 * Input Power: DC 5~~24v
791 * Interface: RS485
792 * Working Temperature: -30℃~70℃
793 * Working Humidity: <100% (no dewing)
794 * Power Consumption: 13mA ~~ 12v.
795 * Cable Length: 2 meters
796
797 === 6.2.3 Dimension ===
798
799 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
800
801
802 === 6.2.4 Pin Mapping ===
803
804 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
805
806
807 === 6.2.4 Angle Mapping ===
808
809 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
810
811
812 === 6.2.5 Installation Notice ===
813
814 Do not power on while connect the cables. Double check the wiring before power on.
815
816
817 The sensor must be installed with below direction, towards North.
818
819
820 |(((
821 North
822 )))
823
824 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
825
826
827
828
829
830
831
832
833 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
834
835 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
836
837
838 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
839
840
841 WSS-03 is designed to support the Dragino Weather station solution.
842
843 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
844
845 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
846
847
848 === 6.3.1 Feature ===
849
850 * RS485 CO2, PM2.5, PM10 sensor
851 * NDIR to measure CO2 with Internal Temperature Compensation
852 * Laser Beam Scattering to PM2.5 and PM10
853
854 === 6.3.2 Specification ===
855
856 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
857 * CO2 resolution: 1ppm
858 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
859 * PM2.5/PM10 resolution: 1μg/m3
860 * Input Power: DC 7 ~~ 24v
861 * Preheat time: 3min
862 * Interface: RS485
863 * Working Temperature:
864 ** CO2: 0℃~50℃;
865 ** PM2.5/PM10: -30 ~~ 50℃
866 * Working Humidity:
867 ** PM2.5/PM10: 15~80%RH (no dewing)
868 ** CO2: 0~95%RH
869 * Power Consumption: 50mA@ 12v.
870
871 === 6.3.3 Dimension ===
872
873 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
874
875
876 === 6.3.4 Pin Mapping ===
877
878 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
879
880
881 === 6.3.5 Installation Notice ===
882
883 Do not power on while connect the cables. Double check the wiring before power on.
884
885 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
886
887 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
888
889
890
891
892
893
894 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
895
896 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
897
898
899 WSS-04 has auto heating feature, this ensures measurement more reliable.
900
901
902 WSS-04 is designed to support the Dragino Weather station solution.
903
904 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
905
906 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
907
908
909
910 === 6.4.1 Feature ===
911
912 * RS485 Rain/Snow detect sensor
913 * Surface heating to dry
914 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
915
916 === 6.4.2 Specification ===
917
918 * Detect if there is rain or snow
919 * Input Power: DC 12 ~~ 24v
920 * Interface: RS485
921 * Working Temperature: -30℃~70℃
922 * Working Humidity: 10~90%RH
923 * Power Consumption:
924 ** No heating: 12mA @ 12v,
925 ** heating: 94ma @ 12v.
926
927 === 6.4.3 Dimension ===
928
929 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
930
931
932 === 6.4.4 Pin Mapping ===
933
934 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
935
936
937 === 6.4.5 Installation Notice ===
938
939 Do not power on while connect the cables. Double check the wiring before power on.
940
941
942 Install with 15°degree.
943
944 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
945
946 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
947
948
949
950
951 === 6.4.6 Heating ===
952
953
954 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
955
956
957
958
959
960 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
961
962 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
963
964
965 WSS-05 is designed to support the Dragino Weather station solution.
966
967 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
968
969 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
970
971
972 === 6.5.1 Feature ===
973
974 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
975
976 === 6.5.2 Specification ===
977
978 * Input Power: DC 12 ~~ 24v
979 * Interface: RS485
980 * Temperature Sensor Spec:
981 ** Range: -30 ~~ 70℃
982 ** resolution 0.1℃
983 ** Accuracy: ±0.5℃
984 * Humidity Sensor Spec:
985 ** Range: 0 ~~ 100% RH
986 ** resolution 0.1 %RH
987 ** Accuracy: 3% RH
988 * Pressure Sensor Spec:
989 ** Range: 10~1100hPa
990 ** Resolution: 0.1hPa
991 ** Accuracy: ±0.1hPa
992 * Illuminate sensor:
993 ** Range: 0~2/20/200kLux
994 ** Resolution: 10 Lux
995 ** Accuracy: ±3%FS
996 * Working Temperature: -30℃~70℃
997 * Working Humidity: 10~90%RH
998 * Power Consumption: 4mA @ 12v
999
1000 === 6.5.3 Dimension ===
1001
1002 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1003
1004
1005 === 6.5.4 Pin Mapping ===
1006
1007 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1008
1009
1010 === 6.5.5 Installation Notice ===
1011
1012 Do not power on while connect the cables. Double check the wiring before power on.
1013
1014
1015
1016 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1017
1018
1019 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1020
1021
1022 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1023
1024 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1025
1026
1027 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1028
1029
1030 WSS-06 is designed to support the Dragino Weather station solution.
1031
1032
1033 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1034
1035 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1036
1037
1038
1039 === 6.6.1 Feature ===
1040
1041 * RS485 Total Solar Radiation sensor
1042 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1043 * Measure Reflected Radiation if sense area towards ground.
1044
1045 === 6.6.2 Specification ===
1046
1047 * Input Power: DC 5 ~~ 24v
1048 * Interface: RS485
1049 * Detect spectrum: 0.3~3μm(300~3000nm)
1050 * Measure strength range: 0~2000W/m2
1051 * Resolution: 0.1W/m2
1052 * Accuracy: ±3%
1053 * Yearly Stability: ≤±2%
1054 * Cosine response: ≤7% (@ Sun angle 10°)
1055 * Temperature Effect: ±2%(-10℃~40℃)
1056 * Working Temperature: -40℃~70℃
1057 * Working Humidity: 10~90%RH
1058 * Power Consumption: 4mA @ 12v
1059
1060 === 6.6.3 Dimension ===
1061
1062 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1063
1064
1065 === 6.6.4 Pin Mapping ===
1066
1067 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1068
1069
1070 === 6.6.5 Installation Notice ===
1071
1072 Do not power on while connect the cables. Double check the wiring before power on.
1073
1074 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1075
1076 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1077
1078
1079 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1080
1081 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1082
1083
1084 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1085
1086
1087
1088 WSS-07 is designed to support the Dragino Weather station solution.
1089
1090
1091 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1092
1093 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1094
1095
1096 === 6.7.1 Feature ===
1097
1098 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1099
1100
1101 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1102
1103
1104 === 6.7.2 Specification ===
1105
1106 * Input Power: DC 5 ~~ 24v
1107 * Interface: RS485
1108 * Response Spectrum: 400~700nm
1109 * Measure range: 0~2500μmol/m2•s
1110 * Resolution: 1μmol/m2•s
1111 * Accuracy: ±2%
1112 * Yearly Stability: ≤±2%
1113 * Working Temperature: -30℃~75℃
1114 * Working Humidity: 10~90%RH
1115 * Power Consumption: 3mA @ 12v
1116
1117 === 6.7.3 Dimension ===
1118
1119 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1120
1121
1122 === 6.7.4 Pin Mapping ===
1123
1124 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1125
1126
1127 === 6.7.5 Installation Notice ===
1128
1129 Do not power on while connect the cables. Double check the wiring before power on.
1130
1131
1132 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1133
1134 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1135
1136
1137 = 7. FAQ =
1138
1139 == 7.1 What else do I need to purchase to build Weather Station? ==
1140
1141 Below is the installation photo and structure:
1142
1143 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1144
1145
1146 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1147
1148
1149
1150
1151 == 7.2 How to upgrade firmware for WSC1-L? ==
1152
1153 Firmware Location & Change log:
1154
1155 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1156
1157
1158 Firmware Upgrade instruction:
1159
1160 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1161
1162
1163 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1164
1165 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1166
1167
1168
1169 == 7.4 Can I add my weather sensors? ==
1170
1171 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1172
1173
1174 = 8. Trouble Shooting =
1175
1176
1177
1178
1179
1180
1181 = 9. Order Info =
1182
1183
1184 == 9.1 Main Process Unit ==
1185
1186 Part Number: **WSC1-L-XX**
1187
1188 **XX**: The default frequency band
1189
1190 * **AS923**: LoRaWAN AS923 band
1191 * **AU915**: LoRaWAN AU915 band
1192 * **EU433**: LoRaWAN EU433 band
1193 * **EU868**: LoRaWAN EU868 band
1194 * **KR920**: LoRaWAN KR920 band
1195 * **US915**: LoRaWAN US915 band
1196 * **IN865**: LoRaWAN IN865 band
1197 * **CN470**: LoRaWAN CN470 band
1198
1199 == 9.2 Sensors ==
1200
1201 |**Sensor Model**|**Part Number**
1202 |**Rain Gauge**|WSS-01
1203 |**Rain Gauge installation Bracket for Pole**|WS-K2
1204 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1205 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1206 |**Rain/Snow Detect Sensor**|WSS-04
1207 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1208 |**Total Solar Radiation Sensor**|WSS-06
1209 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1210
1211 = 10. Support =
1212
1213 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1214 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1215
1216 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1217
1218
1219
1220
1221
1222 = 11. Appendix I: Field Installation Photo =
1223
1224
1225 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1226
1227
1228 **Storage Battery**: 12v,12AH li battery
1229
1230
1231 Wind Speed/Direction.
1232
1233 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1234
1235
1236 Total Solar Radiation sensor
1237
1238 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1239
1240
1241
1242 PAR Sensor
1243
1244 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1245
1246
1247 CO2/PM2.5/PM10 3 in 1 sensor
1248
1249 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1250
1251
1252 Rain / Snow Detect:
1253
1254 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1255
1256
1257 Rain Gauge.
1258
1259 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0