Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72 (% style="color:red" %)** Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84 == 2.2 How it works? ==
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102
103 == 2.3 Example to use for LoRaWAN network ==
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20220624115043-1.jpeg]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 **Add APP EUI in the application.**
125
126 [[image:1656042662694-311.png]]
127
128 [[image:1656042673910-429.png]]
129
130
131
132
133 **Choose Manually to add WSC1-L**
134
135 [[image:1656042695755-103.png]]
136
137
138
139 **Add APP KEY and DEV EUI**
140
141 [[image:1656042723199-746.png]]
142
143
144
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159
160
161 === 2.4.1 Uplink FPORT~=5, Device Status ===
162
163 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
164
165
166 (((
167 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
168 )))
169
170 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
171 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
172 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
173
174 [[image:1656043061044-343.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192
193 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
194
195 *0x01: EU868
196
197 *0x02: US915
198
199 *0x03: IN865
200
201 *0x04: AU915
202
203 *0x05: KZ865
204
205 *0x06: RU864
206
207 *0x07: AS923
208
209 *0x08: AS923-1
210
211 *0x09: AS923-2
212
213 *0x0a: AS923-3
214
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 shows the battery voltage for WSC1-L MCU.
226
227 Ex1: 0x0BD6/1000 = 3.03 V
228
229
230
231 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
232
233 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
234 |Byte3|Byte2|Byte1
235
236 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
237
238 [[image:image-20220624134713-1.png]]
239
240
241 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
242
243 External sensors detected by WSC1-L include :
244
245 custom sensor A1,
246
247 PAR sensor (WSS-07),
248
249 Total Solar Radiation sensor (WSS-06),
250
251 CO2/PM2.5/PM10 (WSS-03),
252
253 Wind Speed/Direction (WSS-02)
254
255
256 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
257
258 (% style="color:#037691" %)**Downlink:0x26 01**
259
260 [[image:1656049673488-415.png]]
261
262
263
264 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
265
266 (((
267 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
268 )))
269
270 (((
271 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
272 )))
273
274
275 (((
276 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
277 )))
278
279
280 (% style="color:#4472c4" %)** Uplink Payload**:
281
282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
283 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
284
285 (% style="color:#4472c4" %)** Sensor Segment Define**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
288 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
289
290 (% style="color:#4472c4" %)**Sensor Type Table:**
291
292 [[image:image-20220624140352-2.png]]
293
294
295 Below is an example payload:  [[image:image-20220624140615-3.png]]
296
297
298 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
299
300 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
301
302 Uplink 1:  [[image:image-20220624140735-4.png]]
303
304 Uplink 2:  [[image:image-20220624140842-5.png]]
305
306
307 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
308
309 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
310
311 Uplink 2: 0D 02 00 73
312
313
314
315
316 === 2.4.3 Decoder in TTN V3 ===
317
318 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
319
320
321 Download decoder for suitable platform from:
322
323 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
324
325 and put as below:
326
327 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
328
329
330
331 == 2.5 Show data on Application Server ==
332
333 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
334
335
336 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
337
338 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
339
340 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
341
342
343 Add TagoIO:
344
345 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
346
347 Authorization:
348
349 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
350
351
352 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
353
354 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
355
356
357
358 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
359
360 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
361
362 * AT Command Connection: See [[FAQ>>||anchor="H"]].
363 * LoRaWAN Downlink instruction for different platforms:
364
365 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
366
367
368 There are two kinds of commands to configure WSC1-L, they are:
369
370 * (% style="color:#4472c4" %)**General Commands**.
371
372 These commands are to configure:
373
374 * General system settings like: uplink interval.
375 * LoRaWAN protocol & radio related command.
376
377 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
378
379 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
380
381 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
382
383
384 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
385
386 These commands only valid for WSC1-L, as below:
387
388
389 == 3.1 Set Transmit Interval Time ==
390
391 Feature: Change LoRaWAN End Node Transmit Interval.
392
393 (% style="color:#037691" %)**AT Command: AT+TDC**
394
395 |**Command Example**|**Function**|**Response**
396 |AT+TDC?|Show current transmit Interval|(((
397 30000
398
399 OK
400
401 the interval is 30000ms = 30s
402 )))
403 |AT+TDC=60000|Set Transmit Interval|(((
404 OK
405
406 Set transmit interval to 60000ms = 60 seconds
407 )))
408
409 (% style="color:#037691" %)**Downlink Command: 0x01**
410
411 Format: Command Code (0x01) followed by 3 bytes time value.
412
413 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
414
415 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
416 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
417
418 == 3.2 Set Emergency Mode ==
419
420 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
421
422
423 (% style="color:#037691" %)**AT Command:**
424
425 |**Command Example**|**Function**|**Response**
426 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
427 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
428
429 (% style="color:#037691" %)**Downlink Command:**
430
431 * 0xE101     Same as: AT+ALARMMOD=1
432 * 0xE100     Same as: AT+ALARMMOD=0
433
434 == 3.3 Add or Delete RS485 Sensor ==
435
436 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
437
438 (% style="color:#037691" %)**AT Command: **
439
440 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
441
442 * Type_Code range: A1 ~~ A4
443 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
444 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
445 * Read_Length: RS485 response frame length supposed to receive. Max can receive
446 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
447 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
448 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
449
450 Example:
451
452 User need to change external sensor use the type code as address code.
453
454 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
455
456 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
457 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
458 | | | | | | | |
459
460 The response frame of the sensor is as follows:
461
462 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
463 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
464 | | | | | | | |
465
466 Then the following parameters should be:
467
468 * Address_Code range: A1
469 * Query_Length: 8
470 * Query_Command: A103000000019CAA
471 * Read_Length: 8
472 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
473 * has_CRC: 1
474 * timeout: 1500 (Fill in the test according to the actual situation)
475
476 So the input command is:
477
478 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
479
480
481 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
482
483 |Type Code|Length (Bytes)|Measured Value
484 |A1|2|0x000A
485
486 Related commands:
487
488 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
489
490 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
491
492
493 (% style="color:#037691" %)**Downlink Command:  **
494
495 **delete custom sensor A1:**
496
497 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
498
499 **Remove all custom sensors**
500
501 * 0xE5FF  
502
503 == 3.4 RS485 Test Command ==
504
505 (% style="color:#037691" %)**AT Command:**
506
507 |**Command Example**|**Function**|**Response**
508 |AT+RSWRITE=xxxxxx|(((
509 Send command to 485 sensor
510
511 Range : no more than 10 bytes
512 )))|OK
513
514 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
515
516 AT+RSWRITE=0103000001840A
517
518
519 (% style="color:#037691" %)**Downlink Command:**
520
521 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
522
523 == 3.5 RS485 response timeout ==
524
525 Feature: Set or get extended time to receive 485 sensor data.
526
527 (% style="color:#037691" %)**AT Command:**
528
529 |**Command Example**|**Function**|**Response**
530 |AT+DTR=1000|(((
531 Set response timeout to:
532
533 Range : 0~~10000
534 )))|OK
535
536 (% style="color:#037691" %)**Downlink Command:**
537
538 Format: Command Code (0xE0) followed by 3 bytes time value.
539
540 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
541
542 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
543 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
544
545 == 3.6 Set Sensor Type ==
546
547 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
548
549 See [[definition>>||anchor="H"]] for the sensor type.
550
551
552 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
553 | |A4|A3|A2|A1| | |
554 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
555 | | |Solar Radiation|PAR|PM10|PM2.5|(((
556 Rain
557
558 Gauge
559 )))|(((
560 Air
561
562 Pressure
563 )))
564 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
565 |Humidity|Temperature|CO2|(((
566 Rain/Snow
567
568 Detect
569 )))|illuminance|(((
570 Wind
571
572 Direction
573 )))|Wind Speed|BAT
574
575 (% style="color:#037691" %)**AT Command:**
576
577 |**Command Example**|**Function**|**Response**
578 |AT+STYPE=80221|Set sensor types|OK
579
580 Eg: The setting command **AT+STYPE=802212** means:
581
582 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
583 |0|0|0|0|1|0|0|0
584 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
585 |0|0|0|0|0|0|1|0
586 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
587 |0|0|1|0|0|0|0|1
588
589 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
590
591
592 (% style="color:#037691" %)**Downlink Command:**
593
594 * 0xE400802212     Same as: AT+STYPE=80221
595
596 (% style="color:red" %)**Note:**
597
598 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
599
600
601
602
603
604 = 4. Power consumption and battery =
605
606 == 4.1 Total Power Consumption ==
607
608 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
609
610
611 == 4.2 Reduce power consumption ==
612
613 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
614
615
616
617 == 4.3 Battery ==
618
619 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
620
621
622 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
623
624
625
626 = 5. Main Process Unit WSC1-L =
627
628 == 5.1 Features ==
629
630 * Wall Attachable.
631 * LoRaWAN v1.0.3 Class A protocol.
632 * RS485 / Modbus protocol
633 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
634 * AT Commands to change parameters
635 * Remote configure parameters via LoRaWAN Downlink
636 * Firmware upgradable via program port
637 * Powered by external 12v battery
638 * Back up rechargeable 1000mAh battery
639 * IP Rating: IP65
640 * Support default sensors or 3rd party RS485 sensors
641
642 == 5.2 Power Consumption ==
643
644 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
645
646
647
648 == 5.3 Storage & Operation Temperature ==
649
650 -20°C to +60°C
651
652
653 == 5.4 Pin Mapping ==
654
655 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
656
657
658 == 5.5 Mechanical ==
659
660 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
661
662
663
664
665 == 5.6 Connect to RS485 Sensors ==
666
667 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
668
669
670 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
671
672
673 Hardware Design for the Converter Board please see:
674
675 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
676
677
678
679
680
681 = 6. Weather Sensors =
682
683 == 6.1 Rain Gauge ~-~- WSS-01 ==
684
685 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
686
687
688 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
689
690 shape to make sure it works smoothly and is easy to clean.
691
692
693 WSS-01 is designed to support the Dragino Weather station solution.
694
695 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
696
697 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
698
699
700 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
701
702 to screw up and adjust the bottom horizontally.
703
704
705 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
706
707
708
709 === 6.1.1 Feature ===
710
711 * RS485 Rain Gauge
712 * Small dimension, easy to install
713 * Vents under funnel, avoid leaf or other things to avoid rain flow.
714 * ABS enclosure.
715 * Horizontal adjustable.
716
717 === 6.1.2 Specification ===
718
719 * Resolution: 0.2mm
720 * Accuracy: ±3%
721 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
722 * Input Power: DC 5~~24v
723 * Interface: RS485
724 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
725 * Working Humidity: <100% (no dewing)
726 * Power Consumption: 4mA @ 12v.
727
728 === 6.1.3 Dimension ===
729
730 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
731
732
733 === 6.1.4 Pin Mapping ===
734
735 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
736
737
738
739
740 === 6.1.5 Installation Notice ===
741
742 Do not power on while connect the cables. Double check the wiring before power on.
743
744 Installation Photo as reference:
745
746
747 (% style="color:#4472c4" %)** Install on Ground:**
748
749 WSS-01 Rain Gauge include screws so can install in ground directly .
750
751
752 (% style="color:#4472c4" %)** Install on pole:**
753
754 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
755
756 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
757
758
759 WS-K2: Bracket Kit for Pole installation:
760
761 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
762
763 WSSC-K2 dimension document, please see:
764
765 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
766
767
768
769 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
770
771 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
772
773 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
774
775
776 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
777
778
779 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
780
781 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
782
783
784 === 6.2.1 Feature ===
785
786 * RS485 wind speed / direction sensor
787 * PC enclosure, resist corrosion
788
789 === 6.2.2 Specification ===
790
791 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
792 * Wind direction range: 0 ~~ 360°
793 * Start wind speed: ≤0.3m/s
794 * Accuracy: ±(0.3+0.03V)m/s , ±1°
795 * Input Power: DC 5~~24v
796 * Interface: RS485
797 * Working Temperature: -30℃~70℃
798 * Working Humidity: <100% (no dewing)
799 * Power Consumption: 13mA ~~ 12v.
800 * Cable Length: 2 meters
801
802 === 6.2.3 Dimension ===
803
804 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
805
806
807 === 6.2.4 Pin Mapping ===
808
809 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
810
811
812 === 6.2.4 Angle Mapping ===
813
814 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
815
816
817 === 6.2.5 Installation Notice ===
818
819 Do not power on while connect the cables. Double check the wiring before power on.
820
821
822 The sensor must be installed with below direction, towards North.
823
824
825 |(((
826 North
827 )))
828
829 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
830
831
832
833
834
835
836
837
838 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
839
840 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
841
842
843 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
844
845
846 WSS-03 is designed to support the Dragino Weather station solution.
847
848 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
849
850 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
851
852
853 === 6.3.1 Feature ===
854
855 * RS485 CO2, PM2.5, PM10 sensor
856 * NDIR to measure CO2 with Internal Temperature Compensation
857 * Laser Beam Scattering to PM2.5 and PM10
858
859 === 6.3.2 Specification ===
860
861 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
862 * CO2 resolution: 1ppm
863 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
864 * PM2.5/PM10 resolution: 1μg/m3
865 * Input Power: DC 7 ~~ 24v
866 * Preheat time: 3min
867 * Interface: RS485
868 * Working Temperature:
869 ** CO2: 0℃~50℃;
870 ** PM2.5/PM10: -30 ~~ 50℃
871 * Working Humidity:
872 ** PM2.5/PM10: 15~80%RH (no dewing)
873 ** CO2: 0~95%RH
874 * Power Consumption: 50mA@ 12v.
875
876 === 6.3.3 Dimension ===
877
878 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
879
880
881 === 6.3.4 Pin Mapping ===
882
883 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
884
885
886 === 6.3.5 Installation Notice ===
887
888 Do not power on while connect the cables. Double check the wiring before power on.
889
890 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
891
892 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
893
894
895
896
897
898
899 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
900
901 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
902
903
904 WSS-04 has auto heating feature, this ensures measurement more reliable.
905
906
907 WSS-04 is designed to support the Dragino Weather station solution.
908
909 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
910
911 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
912
913
914
915 === 6.4.1 Feature ===
916
917 * RS485 Rain/Snow detect sensor
918 * Surface heating to dry
919 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
920
921 === 6.4.2 Specification ===
922
923 * Detect if there is rain or snow
924 * Input Power: DC 12 ~~ 24v
925 * Interface: RS485
926 * Working Temperature: -30℃~70℃
927 * Working Humidity: 10~90%RH
928 * Power Consumption:
929 ** No heating: 12mA @ 12v,
930 ** heating: 94ma @ 12v.
931
932 === 6.4.3 Dimension ===
933
934 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
935
936
937 === 6.4.4 Pin Mapping ===
938
939 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
940
941
942 === 6.4.5 Installation Notice ===
943
944 Do not power on while connect the cables. Double check the wiring before power on.
945
946
947 Install with 15°degree.
948
949 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
950
951 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
952
953
954
955
956 === 6.4.6 Heating ===
957
958
959 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
960
961
962
963
964
965 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
966
967 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
968
969
970 WSS-05 is designed to support the Dragino Weather station solution.
971
972 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
973
974 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
975
976
977 === 6.5.1 Feature ===
978
979 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
980
981 === 6.5.2 Specification ===
982
983 * Input Power: DC 12 ~~ 24v
984 * Interface: RS485
985 * Temperature Sensor Spec:
986 ** Range: -30 ~~ 70℃
987 ** resolution 0.1℃
988 ** Accuracy: ±0.5℃
989 * Humidity Sensor Spec:
990 ** Range: 0 ~~ 100% RH
991 ** resolution 0.1 %RH
992 ** Accuracy: 3% RH
993 * Pressure Sensor Spec:
994 ** Range: 10~1100hPa
995 ** Resolution: 0.1hPa
996 ** Accuracy: ±0.1hPa
997 * Illuminate sensor:
998 ** Range: 0~2/20/200kLux
999 ** Resolution: 10 Lux
1000 ** Accuracy: ±3%FS
1001 * Working Temperature: -30℃~70℃
1002 * Working Humidity: 10~90%RH
1003 * Power Consumption: 4mA @ 12v
1004
1005 === 6.5.3 Dimension ===
1006
1007 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1008
1009
1010 === 6.5.4 Pin Mapping ===
1011
1012 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1013
1014
1015 === 6.5.5 Installation Notice ===
1016
1017 Do not power on while connect the cables. Double check the wiring before power on.
1018
1019
1020
1021 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1022
1023
1024 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1025
1026
1027 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1028
1029 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1030
1031
1032 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1033
1034
1035 WSS-06 is designed to support the Dragino Weather station solution.
1036
1037
1038 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1039
1040 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1041
1042
1043
1044 === 6.6.1 Feature ===
1045
1046 * RS485 Total Solar Radiation sensor
1047 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1048 * Measure Reflected Radiation if sense area towards ground.
1049
1050 === 6.6.2 Specification ===
1051
1052 * Input Power: DC 5 ~~ 24v
1053 * Interface: RS485
1054 * Detect spectrum: 0.3~3μm(300~3000nm)
1055 * Measure strength range: 0~2000W/m2
1056 * Resolution: 0.1W/m2
1057 * Accuracy: ±3%
1058 * Yearly Stability: ≤±2%
1059 * Cosine response: ≤7% (@ Sun angle 10°)
1060 * Temperature Effect: ±2%(-10℃~40℃)
1061 * Working Temperature: -40℃~70℃
1062 * Working Humidity: 10~90%RH
1063 * Power Consumption: 4mA @ 12v
1064
1065 === 6.6.3 Dimension ===
1066
1067 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1068
1069
1070 === 6.6.4 Pin Mapping ===
1071
1072 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1073
1074
1075 === 6.6.5 Installation Notice ===
1076
1077 Do not power on while connect the cables. Double check the wiring before power on.
1078
1079 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1080
1081 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1082
1083
1084 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1085
1086 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1087
1088
1089 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1090
1091
1092
1093 WSS-07 is designed to support the Dragino Weather station solution.
1094
1095
1096 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1097
1098 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1099
1100
1101 === 6.7.1 Feature ===
1102
1103 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1104
1105
1106 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1107
1108
1109 === 6.7.2 Specification ===
1110
1111 * Input Power: DC 5 ~~ 24v
1112 * Interface: RS485
1113 * Response Spectrum: 400~700nm
1114 * Measure range: 0~2500μmol/m2•s
1115 * Resolution: 1μmol/m2•s
1116 * Accuracy: ±2%
1117 * Yearly Stability: ≤±2%
1118 * Working Temperature: -30℃~75℃
1119 * Working Humidity: 10~90%RH
1120 * Power Consumption: 3mA @ 12v
1121
1122 === 6.7.3 Dimension ===
1123
1124 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1125
1126
1127 === 6.7.4 Pin Mapping ===
1128
1129 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1130
1131
1132 === 6.7.5 Installation Notice ===
1133
1134 Do not power on while connect the cables. Double check the wiring before power on.
1135
1136
1137 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1138
1139 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1140
1141
1142 = 7. FAQ =
1143
1144 == 7.1 What else do I need to purchase to build Weather Station? ==
1145
1146 Below is the installation photo and structure:
1147
1148 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1149
1150
1151 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1152
1153
1154
1155
1156 == 7.2 How to upgrade firmware for WSC1-L? ==
1157
1158 Firmware Location & Change log:
1159
1160 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1161
1162
1163 Firmware Upgrade instruction:
1164
1165 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1166
1167
1168 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1169
1170 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1171
1172
1173
1174 == 7.4 Can I add my weather sensors? ==
1175
1176 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1177
1178
1179 = 8. Trouble Shooting =
1180
1181
1182
1183
1184
1185
1186 = 9. Order Info =
1187
1188
1189 == 9.1 Main Process Unit ==
1190
1191 Part Number: **WSC1-L-XX**
1192
1193 **XX**: The default frequency band
1194
1195 * **AS923**: LoRaWAN AS923 band
1196 * **AU915**: LoRaWAN AU915 band
1197 * **EU433**: LoRaWAN EU433 band
1198 * **EU868**: LoRaWAN EU868 band
1199 * **KR920**: LoRaWAN KR920 band
1200 * **US915**: LoRaWAN US915 band
1201 * **IN865**: LoRaWAN IN865 band
1202 * **CN470**: LoRaWAN CN470 band
1203
1204 == 9.2 Sensors ==
1205
1206 |**Sensor Model**|**Part Number**
1207 |**Rain Gauge**|WSS-01
1208 |**Rain Gauge installation Bracket for Pole**|WS-K2
1209 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1210 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1211 |**Rain/Snow Detect Sensor**|WSS-04
1212 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1213 |**Total Solar Radiation Sensor**|WSS-06
1214 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1215
1216 = 10. Support =
1217
1218 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1219 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1220
1221 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1222
1223
1224
1225
1226
1227 = 11. Appendix I: Field Installation Photo =
1228
1229
1230 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1231
1232
1233 **Storage Battery**: 12v,12AH li battery
1234
1235
1236 Wind Speed/Direction.
1237
1238 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1239
1240
1241 Total Solar Radiation sensor
1242
1243 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1244
1245
1246
1247 PAR Sensor
1248
1249 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1250
1251
1252 CO2/PM2.5/PM10 3 in 1 sensor
1253
1254 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1255
1256
1257 Rain / Snow Detect:
1258
1259 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1260
1261
1262 Rain Gauge.
1263
1264 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0