Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72
73 (% style="color:red" %)** Notice 2:**
74
75 Due to shipment and importation limitation, user is better to purchase below parts locally:
76
77 * Solar Panel
78 * Storage Battery
79 * MPPT Solar Recharger
80 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
81 * Cabinet.
82
83
84
85
86 == 2.2 How it works? ==
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
102
103
104
105
106 == 2.3 Example to use for LoRaWAN network ==
107
108 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110
111 [[image:1656042612899-422.png]]
112
113
114
115 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
116
117
118 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
119
120 Each WSC1-L is shipped with a sticker with the default device EUI as below:
121
122 [[image:image-20220624115043-1.jpeg]]
123
124
125 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
126
127 **Add APP EUI in the application.**
128
129 [[image:1656042662694-311.png]]
130
131 [[image:1656042673910-429.png]]
132
133
134
135
136 **Choose Manually to add WSC1-L**
137
138 [[image:1656042695755-103.png]]
139
140
141
142 **Add APP KEY and DEV EUI**
143
144 [[image:1656042723199-746.png]]
145
146
147
148 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
149
150
151 [[image:1656042745346-283.png]]
152
153
154
155 == 2.4 Uplink Payload ==
156
157 Uplink payloads include two types: Valid Sensor Value and other status / control command.
158
159 * Valid Sensor Value: Use FPORT=2
160 * Other control command: Use FPORT other than 2.
161
162
163
164
165 === 2.4.1 Uplink FPORT~=5, Device Status ===
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
175 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184
185 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
186
187 For WSC1-L, this value is 0x0D.
188
189
190
191 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
192
193 0x0100, Means: v1.0.0 version.
194
195
196
197 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
198
199 *0x01: EU868
200
201 *0x02: US915
202
203 *0x03: IN865
204
205 *0x04: AU915
206
207 *0x05: KZ865
208
209 *0x06: RU864
210
211 *0x07: AS923
212
213 *0x08: AS923-1
214
215 *0x09: AS923-2
216
217 *0x0a: AS923-3
218
219
220
221 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
222
223 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
224
225
226
227 ==== (% style="color:#037691" %)**BAT:**(%%) ====
228
229 shows the battery voltage for WSC1-L MCU.
230
231 Ex1: 0x0BD6/1000 = 3.03 V
232
233
234
235 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
236
237 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
238 |Byte3|Byte2|Byte1
239
240 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
241
242 [[image:image-20220624134713-1.png]]
243
244
245 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
246
247 External sensors detected by WSC1-L include :
248
249 custom sensor A1,
250
251 PAR sensor (WSS-07),
252
253 Total Solar Radiation sensor (WSS-06),
254
255 CO2/PM2.5/PM10 (WSS-03),
256
257 Wind Speed/Direction (WSS-02)
258
259
260 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
261
262 (% style="color:#037691" %)**Downlink:0x26 01**
263
264 [[image:1656049673488-415.png]]
265
266
267
268 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
269
270 (((
271 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
272 )))
273
274 (((
275 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
276 )))
277
278
279 (((
280 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
281 )))
282
283
284 (% style="color:#4472c4" %)** Uplink Payload**:
285
286 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
287 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
288
289
290 (% style="color:#4472c4" %)** Sensor Segment Define**:
291
292 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
293 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
294
295
296 **Sensor Type Table:**
297
298 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:1006px" %)
299 |=(% style="width: 167px;" %)**Sensor Type**|=(% style="width: 95px;" %)**Type Code**|=(% style="width: 185px;" %)**Range**|=(% style="width: 126px;" %)**Length ( Bytes)**|=(% style="width: 428px;" %)**Example**
300 |(% style="width:167px" %)**Wind Speed**|(% style="width:95px" %)0x01|(% style="width:185px" %)(((
301 Speed: 0~60m/s
302
303 Level: 0~17
304 )))|(% style="width:126px" %)0x03 |(% style="width:428px" %)(((
305 0x0024/10=3.6m/s
306
307 (0x02FE: No Sensor, 0x02FF: Value Error)
308
309 0x02=2
310
311 (0x14: No Sensor, 0x15: Value Error)
312 )))
313 |(% style="width:167px" %)**Wind Direction**|(% style="width:95px" %)0x02|(% style="width:185px" %)(((
314 Angel: 0~360°
315
316 Direction: 16 positions
317 )))|(% style="width:126px" %)0x03|(% style="width:428px" %)(((
318 0x029A/10=66.6°
319
320 (0x0EFE: No Sensor,0x0EFF: Value Error)
321
322 0X03=3(ENE)
323
324 (0x14: No Sensor,0x15: Value Error)
325 )))
326 |(% style="width:167px" %)**Illumination**|(% style="width:95px" %)0x03|(% style="width:185px" %)0~200000Lux|(% style="width:126px" %)0x02|(% style="width:428px" %)(((
327 0x04D2 *10=12340Lux
328
329 (0x4EFE: No Sensor,0x4EFF: Value Error)
330 )))
331 |(% style="width:167px" %)**Rain / Snow**|(% style="width:95px" %)0x04|(% style="width:185px" %)00: No, 01 Yes.|(% style="width:126px" %)0x01|(% style="width:428px" %)(((
332 0x00 (00) No Rain or snow detected
333
334 (0x02: No Sensor,0x03: Value Error)
335 )))
336 |(% style="width:167px" %)**CO2**|(% style="width:95px" %)0x05|(% style="width:185px" %)0~5000ppm|(% style="width:126px" %)0x02|(% style="width:428px" %)(((
337 0x0378=888ppm
338
339 (0x14FE: No Sensor,0x14FF: Value Error)
340 )))
341 |(% style="width:167px" %)**Temperature**|(% style="width:95px" %)0x06|(% style="width:185px" %)-30℃~70℃|(% style="width:126px" %)0x02|(% style="width:428px" %)(((
342 0xFFDD/10=-3.5℃
343
344 (0x02FE: No Sensor,0x02FF: Value Error)
345 )))
346 |(% style="width:167px" %)**Humidity**|(% style="width:95px" %)0x07|(% style="width:185px" %)0~100%RH|(% style="width:126px" %)0x02|(% style="width:428px" %)0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
347 |(% style="width:167px" %)**Pressure**|(% style="width:95px" %)0x08|(% style="width:185px" %)10~1100hPa|(% style="width:126px" %)0x02|(% style="width:428px" %)(((
348 0x2748/10=1005.6hPa
349
350 (0x00: No Sensor,0x01: Value Error)
351 )))
352 |(% style="width:167px" %)**Rain Gauge**|(% style="width:95px" %)0x09|(% style="width:185px" %)0mm/min~100mm/min|(% style="width:126px" %)0x02|(% style="width:428px" %)(((
353 0x0000/10=0mm /min
354
355 (0x03FE: No Sensor,0x03FF: Value Error)
356 )))
357 |(% style="width:167px" %)**PM2.5**|(% style="width:95px" %)0x0A|(% style="width:185px" %)0~1000μg/m^^3^^|(% style="width:126px" %)0x02|(% style="width:428px" %)(((
358 0x0023=35μg/m^^3 ^^
359
360 (0x03FE: No Sensor,0x03FF: Value Error)
361 )))
362 |(% style="width:167px" %)**PM10**|(% style="width:95px" %)0x0B|(% style="width:185px" %)0~1000μg/m^^3^^|(% style="width:126px" %)0x02|(% style="width:428px" %)(((
363 0x002D=45μg/m^^3 ^^
364
365 (0x03FE: No Sensor,0x03FF: Value Error)
366 )))
367 |(% style="width:167px" %)**PAR**|(% style="width:95px" %)0x0C|(% style="width:185px" %)0~2500μmol/m^^2^^•s|(% style="width:126px" %)0x02|(% style="width:428px" %)(((
368 0x00B3=179μmol/m^^2^^•s
369
370 (0x09FE: No Sensor,0x9FF: Value Error)
371 )))
372 |(% style="width:167px" %)(((
373 **Total Solar Radiation**
374 )))|(% style="width:95px" %)0x0D|(% style="width:185px" %)0~2000W/m^^2^^|(% style="width:126px" %)0x02|(% style="width:428px" %)(((
375 0x0073/10=11.5W/m^^2^^
376
377 (0x4EFE: No Sensor,0x4EFF: Value Error)
378 )))
379
380 Below is an example payload:
381
382 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
383
384
385 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
386
387 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
388
389 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
390
391
392 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
393
394 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
395
396 Uplink 2: 0D 02 00 73
397
398
399
400
401 === 2.4.3 Decoder in TTN V3 ===
402
403 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
404
405
406 Download decoder for suitable platform from:
407
408 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
409
410 and put as below:
411
412 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
413
414
415
416 == 2.5 Show data on Application Server ==
417
418 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
419
420
421 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
422
423 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
424
425 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
426
427
428 Add TagoIO:
429
430 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
431
432 Authorization:
433
434 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
435
436
437 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
438
439 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
440
441
442
443 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
444
445 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
446
447 * AT Command Connection: See [[FAQ>>||anchor="H"]].
448 * LoRaWAN Downlink instruction for different platforms:
449
450 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
451
452
453 There are two kinds of commands to configure WSC1-L, they are:
454
455 * (% style="color:#4472c4" %)**General Commands**.
456
457 These commands are to configure:
458
459 * General system settings like: uplink interval.
460 * LoRaWAN protocol & radio related command.
461
462 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
463
464 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
465
466 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
467
468
469 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
470
471 These commands only valid for WSC1-L, as below:
472
473
474 == 3.1 Set Transmit Interval Time ==
475
476 Feature: Change LoRaWAN End Node Transmit Interval.
477
478 (% style="color:#037691" %)**AT Command: AT+TDC**
479
480 |**Command Example**|**Function**|**Response**
481 |AT+TDC?|Show current transmit Interval|(((
482 30000
483
484 OK
485
486 the interval is 30000ms = 30s
487 )))
488 |AT+TDC=60000|Set Transmit Interval|(((
489 OK
490
491 Set transmit interval to 60000ms = 60 seconds
492 )))
493
494 (% style="color:#037691" %)**Downlink Command: 0x01**
495
496 Format: Command Code (0x01) followed by 3 bytes time value.
497
498 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
499
500 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
501 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
502
503 == 3.2 Set Emergency Mode ==
504
505 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
506
507
508 (% style="color:#037691" %)**AT Command:**
509
510 |**Command Example**|**Function**|**Response**
511 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
512 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
513
514 (% style="color:#037691" %)**Downlink Command:**
515
516 * 0xE101     Same as: AT+ALARMMOD=1
517 * 0xE100     Same as: AT+ALARMMOD=0
518
519 == 3.3 Add or Delete RS485 Sensor ==
520
521 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
522
523 (% style="color:#037691" %)**AT Command: **
524
525 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
526
527 * Type_Code range: A1 ~~ A4
528 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
529 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
530 * Read_Length: RS485 response frame length supposed to receive. Max can receive
531 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
532 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
533 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
534
535 Example:
536
537 User need to change external sensor use the type code as address code.
538
539 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
540
541 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
542 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
543 | | | | | | | |
544
545 The response frame of the sensor is as follows:
546
547 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
548 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
549 | | | | | | | |
550
551 Then the following parameters should be:
552
553 * Address_Code range: A1
554 * Query_Length: 8
555 * Query_Command: A103000000019CAA
556 * Read_Length: 8
557 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
558 * has_CRC: 1
559 * timeout: 1500 (Fill in the test according to the actual situation)
560
561 So the input command is:
562
563 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
564
565
566 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
567
568 |Type Code|Length (Bytes)|Measured Value
569 |A1|2|0x000A
570
571 Related commands:
572
573 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
574
575 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
576
577
578 (% style="color:#037691" %)**Downlink Command:  **
579
580 **delete custom sensor A1:**
581
582 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
583
584 **Remove all custom sensors**
585
586 * 0xE5FF  
587
588 == 3.4 RS485 Test Command ==
589
590 (% style="color:#037691" %)**AT Command:**
591
592 |**Command Example**|**Function**|**Response**
593 |AT+RSWRITE=xxxxxx|(((
594 Send command to 485 sensor
595
596 Range : no more than 10 bytes
597 )))|OK
598
599 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
600
601 AT+RSWRITE=0103000001840A
602
603
604 (% style="color:#037691" %)**Downlink Command:**
605
606 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
607
608 == 3.5 RS485 response timeout ==
609
610 Feature: Set or get extended time to receive 485 sensor data.
611
612 (% style="color:#037691" %)**AT Command:**
613
614 |**Command Example**|**Function**|**Response**
615 |AT+DTR=1000|(((
616 Set response timeout to:
617
618 Range : 0~~10000
619 )))|OK
620
621 (% style="color:#037691" %)**Downlink Command:**
622
623 Format: Command Code (0xE0) followed by 3 bytes time value.
624
625 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
626
627 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
628 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
629
630 == 3.6 Set Sensor Type ==
631
632 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
633
634 See [[definition>>||anchor="H"]] for the sensor type.
635
636
637 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
638 | |A4|A3|A2|A1| | |
639 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
640 | | |Solar Radiation|PAR|PM10|PM2.5|(((
641 Rain
642
643 Gauge
644 )))|(((
645 Air
646
647 Pressure
648 )))
649 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
650 |Humidity|Temperature|CO2|(((
651 Rain/Snow
652
653 Detect
654 )))|illuminance|(((
655 Wind
656
657 Direction
658 )))|Wind Speed|BAT
659
660 (% style="color:#037691" %)**AT Command:**
661
662 |**Command Example**|**Function**|**Response**
663 |AT+STYPE=80221|Set sensor types|OK
664
665 Eg: The setting command **AT+STYPE=802212** means:
666
667 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
668 |0|0|0|0|1|0|0|0
669 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
670 |0|0|0|0|0|0|1|0
671 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
672 |0|0|1|0|0|0|0|1
673
674 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
675
676
677 (% style="color:#037691" %)**Downlink Command:**
678
679 * 0xE400802212     Same as: AT+STYPE=80221
680
681 (% style="color:red" %)**Note:**
682
683 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
684
685
686
687
688
689 = 4. Power consumption and battery =
690
691 == 4.1 Total Power Consumption ==
692
693 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
694
695
696 == 4.2 Reduce power consumption ==
697
698 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
699
700
701
702 == 4.3 Battery ==
703
704 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
705
706
707 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
708
709
710
711 = 5. Main Process Unit WSC1-L =
712
713 == 5.1 Features ==
714
715 * Wall Attachable.
716 * LoRaWAN v1.0.3 Class A protocol.
717 * RS485 / Modbus protocol
718 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
719 * AT Commands to change parameters
720 * Remote configure parameters via LoRaWAN Downlink
721 * Firmware upgradable via program port
722 * Powered by external 12v battery
723 * Back up rechargeable 1000mAh battery
724 * IP Rating: IP65
725 * Support default sensors or 3rd party RS485 sensors
726
727 == 5.2 Power Consumption ==
728
729 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
730
731
732
733 == 5.3 Storage & Operation Temperature ==
734
735 -20°C to +60°C
736
737
738 == 5.4 Pin Mapping ==
739
740 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
741
742
743 == 5.5 Mechanical ==
744
745 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
746
747
748
749
750 == 5.6 Connect to RS485 Sensors ==
751
752 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
753
754
755 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
756
757
758 Hardware Design for the Converter Board please see:
759
760 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
761
762
763
764
765
766 = 6. Weather Sensors =
767
768 == 6.1 Rain Gauge ~-~- WSS-01 ==
769
770 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
771
772
773 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
774
775 shape to make sure it works smoothly and is easy to clean.
776
777
778 WSS-01 is designed to support the Dragino Weather station solution.
779
780 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
781
782 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
783
784
785 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
786
787 to screw up and adjust the bottom horizontally.
788
789
790 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
791
792
793
794 === 6.1.1 Feature ===
795
796 * RS485 Rain Gauge
797 * Small dimension, easy to install
798 * Vents under funnel, avoid leaf or other things to avoid rain flow.
799 * ABS enclosure.
800 * Horizontal adjustable.
801
802 === 6.1.2 Specification ===
803
804 * Resolution: 0.2mm
805 * Accuracy: ±3%
806 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
807 * Input Power: DC 5~~24v
808 * Interface: RS485
809 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
810 * Working Humidity: <100% (no dewing)
811 * Power Consumption: 4mA @ 12v.
812
813 === 6.1.3 Dimension ===
814
815 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
816
817
818 === 6.1.4 Pin Mapping ===
819
820 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
821
822
823
824
825 === 6.1.5 Installation Notice ===
826
827 Do not power on while connect the cables. Double check the wiring before power on.
828
829 Installation Photo as reference:
830
831
832 (% style="color:#4472c4" %)** Install on Ground:**
833
834 WSS-01 Rain Gauge include screws so can install in ground directly .
835
836
837 (% style="color:#4472c4" %)** Install on pole:**
838
839 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
840
841 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
842
843
844 WS-K2: Bracket Kit for Pole installation:
845
846 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
847
848 WSSC-K2 dimension document, please see:
849
850 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
851
852
853
854 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
855
856 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
857
858 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
859
860
861 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
862
863
864 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
865
866 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
867
868
869 === 6.2.1 Feature ===
870
871 * RS485 wind speed / direction sensor
872 * PC enclosure, resist corrosion
873
874 === 6.2.2 Specification ===
875
876 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
877 * Wind direction range: 0 ~~ 360°
878 * Start wind speed: ≤0.3m/s
879 * Accuracy: ±(0.3+0.03V)m/s , ±1°
880 * Input Power: DC 5~~24v
881 * Interface: RS485
882 * Working Temperature: -30℃~70℃
883 * Working Humidity: <100% (no dewing)
884 * Power Consumption: 13mA ~~ 12v.
885 * Cable Length: 2 meters
886
887 === 6.2.3 Dimension ===
888
889 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
890
891
892 === 6.2.4 Pin Mapping ===
893
894 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
895
896
897 === 6.2.4 Angle Mapping ===
898
899 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
900
901
902 === 6.2.5 Installation Notice ===
903
904 Do not power on while connect the cables. Double check the wiring before power on.
905
906
907 The sensor must be installed with below direction, towards North.
908
909
910 |(((
911 North
912 )))
913
914 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
915
916
917
918
919
920
921
922
923 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
924
925 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
926
927
928 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
929
930
931 WSS-03 is designed to support the Dragino Weather station solution.
932
933 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
934
935 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
936
937
938 === 6.3.1 Feature ===
939
940 * RS485 CO2, PM2.5, PM10 sensor
941 * NDIR to measure CO2 with Internal Temperature Compensation
942 * Laser Beam Scattering to PM2.5 and PM10
943
944 === 6.3.2 Specification ===
945
946 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
947 * CO2 resolution: 1ppm
948 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
949 * PM2.5/PM10 resolution: 1μg/m3
950 * Input Power: DC 7 ~~ 24v
951 * Preheat time: 3min
952 * Interface: RS485
953 * Working Temperature:
954 ** CO2: 0℃~50℃;
955 ** PM2.5/PM10: -30 ~~ 50℃
956 * Working Humidity:
957 ** PM2.5/PM10: 15~80%RH (no dewing)
958 ** CO2: 0~95%RH
959 * Power Consumption: 50mA@ 12v.
960
961 === 6.3.3 Dimension ===
962
963 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
964
965
966 === 6.3.4 Pin Mapping ===
967
968 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
969
970
971 === 6.3.5 Installation Notice ===
972
973 Do not power on while connect the cables. Double check the wiring before power on.
974
975 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
976
977 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
978
979
980
981
982
983
984 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
985
986 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
987
988
989 WSS-04 has auto heating feature, this ensures measurement more reliable.
990
991
992 WSS-04 is designed to support the Dragino Weather station solution.
993
994 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
995
996 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
997
998
999
1000 === 6.4.1 Feature ===
1001
1002 * RS485 Rain/Snow detect sensor
1003 * Surface heating to dry
1004 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1005
1006 === 6.4.2 Specification ===
1007
1008 * Detect if there is rain or snow
1009 * Input Power: DC 12 ~~ 24v
1010 * Interface: RS485
1011 * Working Temperature: -30℃~70℃
1012 * Working Humidity: 10~90%RH
1013 * Power Consumption:
1014 ** No heating: 12mA @ 12v,
1015 ** heating: 94ma @ 12v.
1016
1017 === 6.4.3 Dimension ===
1018
1019 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1020
1021
1022 === 6.4.4 Pin Mapping ===
1023
1024 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1025
1026
1027 === 6.4.5 Installation Notice ===
1028
1029 Do not power on while connect the cables. Double check the wiring before power on.
1030
1031
1032 Install with 15°degree.
1033
1034 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1035
1036 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1037
1038
1039
1040
1041 === 6.4.6 Heating ===
1042
1043
1044 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1045
1046
1047
1048
1049
1050 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1051
1052 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1053
1054
1055 WSS-05 is designed to support the Dragino Weather station solution.
1056
1057 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1058
1059 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1060
1061
1062 === 6.5.1 Feature ===
1063
1064 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1065
1066 === 6.5.2 Specification ===
1067
1068 * Input Power: DC 12 ~~ 24v
1069 * Interface: RS485
1070 * Temperature Sensor Spec:
1071 ** Range: -30 ~~ 70℃
1072 ** resolution 0.1℃
1073 ** Accuracy: ±0.5℃
1074 * Humidity Sensor Spec:
1075 ** Range: 0 ~~ 100% RH
1076 ** resolution 0.1 %RH
1077 ** Accuracy: 3% RH
1078 * Pressure Sensor Spec:
1079 ** Range: 10~1100hPa
1080 ** Resolution: 0.1hPa
1081 ** Accuracy: ±0.1hPa
1082 * Illuminate sensor:
1083 ** Range: 0~2/20/200kLux
1084 ** Resolution: 10 Lux
1085 ** Accuracy: ±3%FS
1086 * Working Temperature: -30℃~70℃
1087 * Working Humidity: 10~90%RH
1088 * Power Consumption: 4mA @ 12v
1089
1090 === 6.5.3 Dimension ===
1091
1092 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1093
1094
1095 === 6.5.4 Pin Mapping ===
1096
1097 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1098
1099
1100 === 6.5.5 Installation Notice ===
1101
1102 Do not power on while connect the cables. Double check the wiring before power on.
1103
1104
1105
1106 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1107
1108
1109 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1110
1111
1112 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1113
1114 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1115
1116
1117 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1118
1119
1120 WSS-06 is designed to support the Dragino Weather station solution.
1121
1122
1123 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1124
1125 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1126
1127
1128
1129 === 6.6.1 Feature ===
1130
1131 * RS485 Total Solar Radiation sensor
1132 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1133 * Measure Reflected Radiation if sense area towards ground.
1134
1135 === 6.6.2 Specification ===
1136
1137 * Input Power: DC 5 ~~ 24v
1138 * Interface: RS485
1139 * Detect spectrum: 0.3~3μm(300~3000nm)
1140 * Measure strength range: 0~2000W/m2
1141 * Resolution: 0.1W/m2
1142 * Accuracy: ±3%
1143 * Yearly Stability: ≤±2%
1144 * Cosine response: ≤7% (@ Sun angle 10°)
1145 * Temperature Effect: ±2%(-10℃~40℃)
1146 * Working Temperature: -40℃~70℃
1147 * Working Humidity: 10~90%RH
1148 * Power Consumption: 4mA @ 12v
1149
1150 === 6.6.3 Dimension ===
1151
1152 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1153
1154
1155 === 6.6.4 Pin Mapping ===
1156
1157 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1158
1159
1160 === 6.6.5 Installation Notice ===
1161
1162 Do not power on while connect the cables. Double check the wiring before power on.
1163
1164 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1165
1166 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1167
1168
1169 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1170
1171 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1172
1173
1174 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1175
1176
1177
1178 WSS-07 is designed to support the Dragino Weather station solution.
1179
1180
1181 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1182
1183 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1184
1185
1186 === 6.7.1 Feature ===
1187
1188 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1189
1190
1191 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1192
1193
1194 === 6.7.2 Specification ===
1195
1196 * Input Power: DC 5 ~~ 24v
1197 * Interface: RS485
1198 * Response Spectrum: 400~700nm
1199 * Measure range: 0~2500μmol/m2•s
1200 * Resolution: 1μmol/m2•s
1201 * Accuracy: ±2%
1202 * Yearly Stability: ≤±2%
1203 * Working Temperature: -30℃~75℃
1204 * Working Humidity: 10~90%RH
1205 * Power Consumption: 3mA @ 12v
1206
1207 === 6.7.3 Dimension ===
1208
1209 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1210
1211
1212 === 6.7.4 Pin Mapping ===
1213
1214 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1215
1216
1217 === 6.7.5 Installation Notice ===
1218
1219 Do not power on while connect the cables. Double check the wiring before power on.
1220
1221
1222 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1223
1224 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1225
1226
1227 = 7. FAQ =
1228
1229 == 7.1 What else do I need to purchase to build Weather Station? ==
1230
1231 Below is the installation photo and structure:
1232
1233 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1234
1235
1236 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1237
1238
1239
1240
1241 == 7.2 How to upgrade firmware for WSC1-L? ==
1242
1243 Firmware Location & Change log:
1244
1245 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1246
1247
1248 Firmware Upgrade instruction:
1249
1250 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1251
1252
1253 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1254
1255 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1256
1257
1258
1259 == 7.4 Can I add my weather sensors? ==
1260
1261 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1262
1263
1264 = 8. Trouble Shooting =
1265
1266
1267
1268
1269
1270
1271 = 9. Order Info =
1272
1273
1274 == 9.1 Main Process Unit ==
1275
1276 Part Number: **WSC1-L-XX**
1277
1278 **XX**: The default frequency band
1279
1280 * **AS923**: LoRaWAN AS923 band
1281 * **AU915**: LoRaWAN AU915 band
1282 * **EU433**: LoRaWAN EU433 band
1283 * **EU868**: LoRaWAN EU868 band
1284 * **KR920**: LoRaWAN KR920 band
1285 * **US915**: LoRaWAN US915 band
1286 * **IN865**: LoRaWAN IN865 band
1287 * **CN470**: LoRaWAN CN470 band
1288
1289 == 9.2 Sensors ==
1290
1291 |**Sensor Model**|**Part Number**
1292 |**Rain Gauge**|WSS-01
1293 |**Rain Gauge installation Bracket for Pole**|WS-K2
1294 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1295 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1296 |**Rain/Snow Detect Sensor**|WSS-04
1297 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1298 |**Total Solar Radiation Sensor**|WSS-06
1299 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1300
1301 = 10. Support =
1302
1303 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1304 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1305
1306 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1307
1308
1309
1310
1311
1312 = 11. Appendix I: Field Installation Photo =
1313
1314
1315 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1316
1317
1318 **Storage Battery**: 12v,12AH li battery
1319
1320
1321 Wind Speed/Direction.
1322
1323 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1324
1325
1326 Total Solar Radiation sensor
1327
1328 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1329
1330
1331
1332 PAR Sensor
1333
1334 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1335
1336
1337 CO2/PM2.5/PM10 3 in 1 sensor
1338
1339 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1340
1341
1342 Rain / Snow Detect:
1343
1344 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1345
1346
1347 Rain Gauge.
1348
1349 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0