Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72
73
74 (% style="color:red" %)** Notice 2:**
75
76 Due to shipment and importation limitation, user is better to purchase below parts locally:
77
78 * Solar Panel
79 * Storage Battery
80 * MPPT Solar Recharger
81 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
82 * Cabinet.
83
84
85
86
87
88 == 2.2 How it works? ==
89
90 (((
91 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
92 )))
93
94
95 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
104
105
106
107
108
109 == 2.3 Example to use for LoRaWAN network ==
110
111 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
112
113
114 [[image:1656042612899-422.png]]
115
116
117
118 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
119
120
121 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
122
123 Each WSC1-L is shipped with a sticker with the default device EUI as below:
124
125 [[image:image-20220624115043-1.jpeg]]
126
127
128 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
175
176 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
177 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
178 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
179
180 [[image:1656043061044-343.png]]
181
182
183 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
184
185
186
187 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
188
189 For WSC1-L, this value is 0x0D.
190
191
192
193 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
194
195 0x0100, Means: v1.0.0 version.
196
197
198
199 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
200
201 *0x01: EU868
202
203 *0x02: US915
204
205 *0x03: IN865
206
207 *0x04: AU915
208
209 *0x05: KZ865
210
211 *0x06: RU864
212
213 *0x07: AS923
214
215 *0x08: AS923-1
216
217 *0x09: AS923-2
218
219 *0x0a: AS923-3
220
221
222
223 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
224
225 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
226
227
228
229 ==== (% style="color:#037691" %)**BAT:**(%%) ====
230
231 shows the battery voltage for WSC1-L MCU.
232
233 Ex1: 0x0BD6/1000 = 3.03 V
234
235
236
237 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
238
239 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
240 |Byte3|Byte2|Byte1
241
242 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
243
244 [[image:image-20220624134713-1.png]]
245
246
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270
271 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
272
273 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
274
275 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
276
277
278 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
279
280 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
281
282 (% style="color:#4472c4" %)** Uplink Payload**:
283
284 |Type Code|Length (Bytes)|Measured Value
285
286 (% style="color:#4472c4" %)** Sensor Segment Define**:
287
288
289
290 Sensor Type Table:
291
292 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
293 |**Wind Speed**|0x01|(((
294 Speed: 0~60m/s
295
296 Level: 0~17
297 )))|0x03 |(((
298 0x0024/10=3.6m/s
299
300 (0x02FE: No Sensor, 0x02FF: Value Error)
301
302 0x02=2
303
304 (0x14: No Sensor, 0x15: Value Error)
305 )))
306 |**Wind Direction**|0x02|(((
307 Angel: 0~360°
308
309 Direction: 16 positions
310 )))|0x03|(((
311 0x029A/10=66.6°
312
313 (0x0EFE: No Sensor,0x0EFF: Value Error)
314
315 0X03=3(ENE)
316
317 (0x14: No Sensor,0x15: Value Error)
318 )))
319 |**Illumination**|0x03|0~200000Lux|0x02|(((
320 0x04D2 *10=12340Lux
321
322 (0x4EFE: No Sensor,0x4EFF: Value Error)
323 )))
324 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
325 0x00 (00) No Rain or snow detected
326
327 (0x02: No Sensor,0x03: Value Error)
328 )))
329 |**CO2**|0x05|0~5000ppm|0x02|(((
330 0x0378=888ppm
331
332 (0x14FE: No Sensor,0x14FF: Value Error)
333 )))
334 |**Temperature**|0x06|-30℃~70℃|0x02|(((
335 0xFFDD/10=-3.5℃
336
337 (0x02FE: No Sensor,0x02FF: Value Error)
338 )))
339 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
340 |**Pressure**|0x08|10~1100hPa|0x02|(((
341 0x2748/10=1005.6hPa
342
343 (0x00: No Sensor,0x01: Value Error)
344 )))
345 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
346 0x0000/10=0mm /min
347
348 (0x03FE: No Sensor,0x03FF: Value Error)
349 )))
350 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
351 0x0023=35μg/m^^3 ^^
352
353 (0x03FE: No Sensor,0x03FF: Value Error)
354 )))
355 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
356 0x002D=45μg/m^^3 ^^
357
358 (0x03FE: No Sensor,0x03FF: Value Error)
359 )))
360 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
361 0x00B3=179μmol/m^^2^^•s
362
363 (0x09FE: No Sensor,0x9FF: Value Error)
364 )))
365 |(((
366 **Total Solar**
367
368 **Radiation**
369 )))|0x0D|0~2000W/m^^2^^|0x02|(((
370 0x0073/10=11.5W/m^^2^^
371
372 (0x4EFE: No Sensor,0x4EFF: Value Error)
373 )))
374
375 Below is an example payload:
376
377 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
378
379
380 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
381
382 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
383
384 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
385
386
387 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
388
389 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
390
391 Uplink 2: 0D 02 00 73
392
393
394
395
396 === 2.4.3 Decoder in TTN V3 ===
397
398 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
399
400
401 Download decoder for suitable platform from:
402
403 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
404
405 and put as below:
406
407 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
408
409
410
411 == 2.5 Show data on Application Server ==
412
413 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
414
415
416 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
417
418 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
419
420 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
421
422
423 Add TagoIO:
424
425 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
426
427 Authorization:
428
429 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
430
431
432 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
433
434 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
435
436
437
438 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
439
440 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
441
442 * AT Command Connection: See [[FAQ>>||anchor="H"]].
443 * LoRaWAN Downlink instruction for different platforms:
444
445 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
446
447
448 There are two kinds of commands to configure WSC1-L, they are:
449
450 * (% style="color:#4472c4" %)**General Commands**.
451
452 These commands are to configure:
453
454 * General system settings like: uplink interval.
455 * LoRaWAN protocol & radio related command.
456
457 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
458
459 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
460
461 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
462
463
464 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
465
466 These commands only valid for WSC1-L, as below:
467
468
469 == 3.1 Set Transmit Interval Time ==
470
471 Feature: Change LoRaWAN End Node Transmit Interval.
472
473 (% style="color:#037691" %)**AT Command: AT+TDC**
474
475 |**Command Example**|**Function**|**Response**
476 |AT+TDC?|Show current transmit Interval|(((
477 30000
478
479 OK
480
481 the interval is 30000ms = 30s
482 )))
483 |AT+TDC=60000|Set Transmit Interval|(((
484 OK
485
486 Set transmit interval to 60000ms = 60 seconds
487 )))
488
489 (% style="color:#037691" %)**Downlink Command: 0x01**
490
491 Format: Command Code (0x01) followed by 3 bytes time value.
492
493 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
494
495 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
496 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
497
498 == 3.2 Set Emergency Mode ==
499
500 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
501
502
503 (% style="color:#037691" %)**AT Command:**
504
505 |**Command Example**|**Function**|**Response**
506 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
507 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
508
509 (% style="color:#037691" %)**Downlink Command:**
510
511 * 0xE101     Same as: AT+ALARMMOD=1
512 * 0xE100     Same as: AT+ALARMMOD=0
513
514 == 3.3 Add or Delete RS485 Sensor ==
515
516 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
517
518 (% style="color:#037691" %)**AT Command: **
519
520 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
521
522 * Type_Code range: A1 ~~ A4
523 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
524 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
525 * Read_Length: RS485 response frame length supposed to receive. Max can receive
526 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
527 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
528 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
529
530 Example:
531
532 User need to change external sensor use the type code as address code.
533
534 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
535
536 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
537 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
538 | | | | | | | |
539
540 The response frame of the sensor is as follows:
541
542 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
543 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
544 | | | | | | | |
545
546 Then the following parameters should be:
547
548 * Address_Code range: A1
549 * Query_Length: 8
550 * Query_Command: A103000000019CAA
551 * Read_Length: 8
552 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
553 * has_CRC: 1
554 * timeout: 1500 (Fill in the test according to the actual situation)
555
556 So the input command is:
557
558 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
559
560
561 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
562
563 |Type Code|Length (Bytes)|Measured Value
564 |A1|2|0x000A
565
566 Related commands:
567
568 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
569
570 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
571
572
573 (% style="color:#037691" %)**Downlink Command:  **
574
575 **delete custom sensor A1:**
576
577 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
578
579 **Remove all custom sensors**
580
581 * 0xE5FF  
582
583 == 3.4 RS485 Test Command ==
584
585 (% style="color:#037691" %)**AT Command:**
586
587 |**Command Example**|**Function**|**Response**
588 |AT+RSWRITE=xxxxxx|(((
589 Send command to 485 sensor
590
591 Range : no more than 10 bytes
592 )))|OK
593
594 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
595
596 AT+RSWRITE=0103000001840A
597
598
599 (% style="color:#037691" %)**Downlink Command:**
600
601 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
602
603 == 3.5 RS485 response timeout ==
604
605 Feature: Set or get extended time to receive 485 sensor data.
606
607 (% style="color:#037691" %)**AT Command:**
608
609 |**Command Example**|**Function**|**Response**
610 |AT+DTR=1000|(((
611 Set response timeout to:
612
613 Range : 0~~10000
614 )))|OK
615
616 (% style="color:#037691" %)**Downlink Command:**
617
618 Format: Command Code (0xE0) followed by 3 bytes time value.
619
620 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
621
622 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
623 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
624
625 == 3.6 Set Sensor Type ==
626
627 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
628
629 See [[definition>>||anchor="H"]] for the sensor type.
630
631
632 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
633 | |A4|A3|A2|A1| | |
634 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
635 | | |Solar Radiation|PAR|PM10|PM2.5|(((
636 Rain
637
638 Gauge
639 )))|(((
640 Air
641
642 Pressure
643 )))
644 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
645 |Humidity|Temperature|CO2|(((
646 Rain/Snow
647
648 Detect
649 )))|illuminance|(((
650 Wind
651
652 Direction
653 )))|Wind Speed|BAT
654
655 (% style="color:#037691" %)**AT Command:**
656
657 |**Command Example**|**Function**|**Response**
658 |AT+STYPE=80221|Set sensor types|OK
659
660 Eg: The setting command **AT+STYPE=802212** means:
661
662 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
663 |0|0|0|0|1|0|0|0
664 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
665 |0|0|0|0|0|0|1|0
666 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
667 |0|0|1|0|0|0|0|1
668
669 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
670
671
672 (% style="color:#037691" %)**Downlink Command:**
673
674 * 0xE400802212     Same as: AT+STYPE=80221
675
676 (% style="color:red" %)**Note:**
677
678 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
679
680
681
682
683
684 = 4. Power consumption and battery =
685
686 == 4.1 Total Power Consumption ==
687
688 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
689
690
691 == 4.2 Reduce power consumption ==
692
693 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
694
695
696
697 == 4.3 Battery ==
698
699 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
700
701
702 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
703
704
705
706 = 5. Main Process Unit WSC1-L =
707
708 == 5.1 Features ==
709
710 * Wall Attachable.
711 * LoRaWAN v1.0.3 Class A protocol.
712 * RS485 / Modbus protocol
713 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
714 * AT Commands to change parameters
715 * Remote configure parameters via LoRaWAN Downlink
716 * Firmware upgradable via program port
717 * Powered by external 12v battery
718 * Back up rechargeable 1000mAh battery
719 * IP Rating: IP65
720 * Support default sensors or 3rd party RS485 sensors
721
722 == 5.2 Power Consumption ==
723
724 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
725
726
727
728 == 5.3 Storage & Operation Temperature ==
729
730 -20°C to +60°C
731
732
733 == 5.4 Pin Mapping ==
734
735 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
736
737
738 == 5.5 Mechanical ==
739
740 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
741
742
743
744
745 == 5.6 Connect to RS485 Sensors ==
746
747 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
748
749
750 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
751
752
753 Hardware Design for the Converter Board please see:
754
755 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
756
757
758
759
760
761 = 6. Weather Sensors =
762
763 == 6.1 Rain Gauge ~-~- WSS-01 ==
764
765 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
766
767
768 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
769
770 shape to make sure it works smoothly and is easy to clean.
771
772
773 WSS-01 is designed to support the Dragino Weather station solution.
774
775 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
776
777 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
778
779
780 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
781
782 to screw up and adjust the bottom horizontally.
783
784
785 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
786
787
788
789 === 6.1.1 Feature ===
790
791 * RS485 Rain Gauge
792 * Small dimension, easy to install
793 * Vents under funnel, avoid leaf or other things to avoid rain flow.
794 * ABS enclosure.
795 * Horizontal adjustable.
796
797 === 6.1.2 Specification ===
798
799 * Resolution: 0.2mm
800 * Accuracy: ±3%
801 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
802 * Input Power: DC 5~~24v
803 * Interface: RS485
804 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
805 * Working Humidity: <100% (no dewing)
806 * Power Consumption: 4mA @ 12v.
807
808 === 6.1.3 Dimension ===
809
810 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
811
812
813 === 6.1.4 Pin Mapping ===
814
815 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
816
817
818
819
820 === 6.1.5 Installation Notice ===
821
822 Do not power on while connect the cables. Double check the wiring before power on.
823
824 Installation Photo as reference:
825
826
827 (% style="color:#4472c4" %)** Install on Ground:**
828
829 WSS-01 Rain Gauge include screws so can install in ground directly .
830
831
832 (% style="color:#4472c4" %)** Install on pole:**
833
834 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
835
836 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
837
838
839 WS-K2: Bracket Kit for Pole installation:
840
841 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
842
843 WSSC-K2 dimension document, please see:
844
845 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
846
847
848
849 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
850
851 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
852
853 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
854
855
856 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
857
858
859 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
860
861 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
862
863
864 === 6.2.1 Feature ===
865
866 * RS485 wind speed / direction sensor
867 * PC enclosure, resist corrosion
868
869 === 6.2.2 Specification ===
870
871 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
872 * Wind direction range: 0 ~~ 360°
873 * Start wind speed: ≤0.3m/s
874 * Accuracy: ±(0.3+0.03V)m/s , ±1°
875 * Input Power: DC 5~~24v
876 * Interface: RS485
877 * Working Temperature: -30℃~70℃
878 * Working Humidity: <100% (no dewing)
879 * Power Consumption: 13mA ~~ 12v.
880 * Cable Length: 2 meters
881
882 === 6.2.3 Dimension ===
883
884 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
885
886
887 === 6.2.4 Pin Mapping ===
888
889 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
890
891
892 === 6.2.4 Angle Mapping ===
893
894 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
895
896
897 === 6.2.5 Installation Notice ===
898
899 Do not power on while connect the cables. Double check the wiring before power on.
900
901
902 The sensor must be installed with below direction, towards North.
903
904
905 |(((
906 North
907 )))
908
909 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
910
911
912
913
914
915
916
917
918 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
919
920 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
921
922
923 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
924
925
926 WSS-03 is designed to support the Dragino Weather station solution.
927
928 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
929
930 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
931
932
933 === 6.3.1 Feature ===
934
935 * RS485 CO2, PM2.5, PM10 sensor
936 * NDIR to measure CO2 with Internal Temperature Compensation
937 * Laser Beam Scattering to PM2.5 and PM10
938
939 === 6.3.2 Specification ===
940
941 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
942 * CO2 resolution: 1ppm
943 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
944 * PM2.5/PM10 resolution: 1μg/m3
945 * Input Power: DC 7 ~~ 24v
946 * Preheat time: 3min
947 * Interface: RS485
948 * Working Temperature:
949 ** CO2: 0℃~50℃;
950 ** PM2.5/PM10: -30 ~~ 50℃
951 * Working Humidity:
952 ** PM2.5/PM10: 15~80%RH (no dewing)
953 ** CO2: 0~95%RH
954 * Power Consumption: 50mA@ 12v.
955
956 === 6.3.3 Dimension ===
957
958 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
959
960
961 === 6.3.4 Pin Mapping ===
962
963 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
964
965
966 === 6.3.5 Installation Notice ===
967
968 Do not power on while connect the cables. Double check the wiring before power on.
969
970 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
971
972 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
973
974
975
976
977
978
979 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
980
981 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
982
983
984 WSS-04 has auto heating feature, this ensures measurement more reliable.
985
986
987 WSS-04 is designed to support the Dragino Weather station solution.
988
989 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
990
991 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
992
993
994
995 === 6.4.1 Feature ===
996
997 * RS485 Rain/Snow detect sensor
998 * Surface heating to dry
999 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1000
1001 === 6.4.2 Specification ===
1002
1003 * Detect if there is rain or snow
1004 * Input Power: DC 12 ~~ 24v
1005 * Interface: RS485
1006 * Working Temperature: -30℃~70℃
1007 * Working Humidity: 10~90%RH
1008 * Power Consumption:
1009 ** No heating: 12mA @ 12v,
1010 ** heating: 94ma @ 12v.
1011
1012 === 6.4.3 Dimension ===
1013
1014 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1015
1016
1017 === 6.4.4 Pin Mapping ===
1018
1019 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1020
1021
1022 === 6.4.5 Installation Notice ===
1023
1024 Do not power on while connect the cables. Double check the wiring before power on.
1025
1026
1027 Install with 15°degree.
1028
1029 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1030
1031 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1032
1033
1034
1035
1036 === 6.4.6 Heating ===
1037
1038
1039 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1040
1041
1042
1043
1044
1045 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1046
1047 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1048
1049
1050 WSS-05 is designed to support the Dragino Weather station solution.
1051
1052 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1053
1054 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1055
1056
1057 === 6.5.1 Feature ===
1058
1059 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1060
1061 === 6.5.2 Specification ===
1062
1063 * Input Power: DC 12 ~~ 24v
1064 * Interface: RS485
1065 * Temperature Sensor Spec:
1066 ** Range: -30 ~~ 70℃
1067 ** resolution 0.1℃
1068 ** Accuracy: ±0.5℃
1069 * Humidity Sensor Spec:
1070 ** Range: 0 ~~ 100% RH
1071 ** resolution 0.1 %RH
1072 ** Accuracy: 3% RH
1073 * Pressure Sensor Spec:
1074 ** Range: 10~1100hPa
1075 ** Resolution: 0.1hPa
1076 ** Accuracy: ±0.1hPa
1077 * Illuminate sensor:
1078 ** Range: 0~2/20/200kLux
1079 ** Resolution: 10 Lux
1080 ** Accuracy: ±3%FS
1081 * Working Temperature: -30℃~70℃
1082 * Working Humidity: 10~90%RH
1083 * Power Consumption: 4mA @ 12v
1084
1085 === 6.5.3 Dimension ===
1086
1087 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1088
1089
1090 === 6.5.4 Pin Mapping ===
1091
1092 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1093
1094
1095 === 6.5.5 Installation Notice ===
1096
1097 Do not power on while connect the cables. Double check the wiring before power on.
1098
1099
1100
1101 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1102
1103
1104 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1105
1106
1107 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1108
1109 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1110
1111
1112 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1113
1114
1115 WSS-06 is designed to support the Dragino Weather station solution.
1116
1117
1118 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1119
1120 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1121
1122
1123
1124 === 6.6.1 Feature ===
1125
1126 * RS485 Total Solar Radiation sensor
1127 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1128 * Measure Reflected Radiation if sense area towards ground.
1129
1130 === 6.6.2 Specification ===
1131
1132 * Input Power: DC 5 ~~ 24v
1133 * Interface: RS485
1134 * Detect spectrum: 0.3~3μm(300~3000nm)
1135 * Measure strength range: 0~2000W/m2
1136 * Resolution: 0.1W/m2
1137 * Accuracy: ±3%
1138 * Yearly Stability: ≤±2%
1139 * Cosine response: ≤7% (@ Sun angle 10°)
1140 * Temperature Effect: ±2%(-10℃~40℃)
1141 * Working Temperature: -40℃~70℃
1142 * Working Humidity: 10~90%RH
1143 * Power Consumption: 4mA @ 12v
1144
1145 === 6.6.3 Dimension ===
1146
1147 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1148
1149
1150 === 6.6.4 Pin Mapping ===
1151
1152 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1153
1154
1155 === 6.6.5 Installation Notice ===
1156
1157 Do not power on while connect the cables. Double check the wiring before power on.
1158
1159 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1160
1161 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1162
1163
1164 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1165
1166 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1167
1168
1169 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1170
1171
1172
1173 WSS-07 is designed to support the Dragino Weather station solution.
1174
1175
1176 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1177
1178 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1179
1180
1181 === 6.7.1 Feature ===
1182
1183 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1184
1185
1186 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1187
1188
1189 === 6.7.2 Specification ===
1190
1191 * Input Power: DC 5 ~~ 24v
1192 * Interface: RS485
1193 * Response Spectrum: 400~700nm
1194 * Measure range: 0~2500μmol/m2•s
1195 * Resolution: 1μmol/m2•s
1196 * Accuracy: ±2%
1197 * Yearly Stability: ≤±2%
1198 * Working Temperature: -30℃~75℃
1199 * Working Humidity: 10~90%RH
1200 * Power Consumption: 3mA @ 12v
1201
1202 === 6.7.3 Dimension ===
1203
1204 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1205
1206
1207 === 6.7.4 Pin Mapping ===
1208
1209 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1210
1211
1212 === 6.7.5 Installation Notice ===
1213
1214 Do not power on while connect the cables. Double check the wiring before power on.
1215
1216
1217 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1218
1219 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1220
1221
1222 = 7. FAQ =
1223
1224 == 7.1 What else do I need to purchase to build Weather Station? ==
1225
1226 Below is the installation photo and structure:
1227
1228 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1229
1230
1231 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1232
1233
1234
1235
1236 == 7.2 How to upgrade firmware for WSC1-L? ==
1237
1238 Firmware Location & Change log:
1239
1240 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1241
1242
1243 Firmware Upgrade instruction:
1244
1245 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1246
1247
1248 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1249
1250 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1251
1252
1253
1254 == 7.4 Can I add my weather sensors? ==
1255
1256 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1257
1258
1259 = 8. Trouble Shooting =
1260
1261
1262
1263
1264
1265
1266 = 9. Order Info =
1267
1268
1269 == 9.1 Main Process Unit ==
1270
1271 Part Number: **WSC1-L-XX**
1272
1273 **XX**: The default frequency band
1274
1275 * **AS923**: LoRaWAN AS923 band
1276 * **AU915**: LoRaWAN AU915 band
1277 * **EU433**: LoRaWAN EU433 band
1278 * **EU868**: LoRaWAN EU868 band
1279 * **KR920**: LoRaWAN KR920 band
1280 * **US915**: LoRaWAN US915 band
1281 * **IN865**: LoRaWAN IN865 band
1282 * **CN470**: LoRaWAN CN470 band
1283
1284 == 9.2 Sensors ==
1285
1286 |**Sensor Model**|**Part Number**
1287 |**Rain Gauge**|WSS-01
1288 |**Rain Gauge installation Bracket for Pole**|WS-K2
1289 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1290 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1291 |**Rain/Snow Detect Sensor**|WSS-04
1292 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1293 |**Total Solar Radiation Sensor**|WSS-06
1294 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1295
1296 = 10. Support =
1297
1298 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1299 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1300
1301 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1302
1303
1304
1305
1306
1307 = 11. Appendix I: Field Installation Photo =
1308
1309
1310 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1311
1312
1313 **Storage Battery**: 12v,12AH li battery
1314
1315
1316 Wind Speed/Direction.
1317
1318 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1319
1320
1321 Total Solar Radiation sensor
1322
1323 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1324
1325
1326
1327 PAR Sensor
1328
1329 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1330
1331
1332 CO2/PM2.5/PM10 3 in 1 sensor
1333
1334 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1335
1336
1337 Rain / Snow Detect:
1338
1339 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1340
1341
1342 Rain Gauge.
1343
1344 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0