Version 16.2 by Xiaoling on 2022/06/24 13:47

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72
73
74 (% style="color:red" %)** Notice 2:**
75
76 Due to shipment and importation limitation, user is better to purchase below parts locally:
77
78 * Solar Panel
79 * Storage Battery
80 * MPPT Solar Recharger
81 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
82 * Cabinet.
83
84
85
86
87
88 == 2.2 How it works? ==
89
90 (((
91 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
92 )))
93
94
95 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
104
105
106
107
108
109 == 2.3 Example to use for LoRaWAN network ==
110
111 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
112
113
114 [[image:1656042612899-422.png]]
115
116
117
118 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
119
120
121 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
122
123 Each WSC1-L is shipped with a sticker with the default device EUI as below:
124
125 [[image:image-20220624115043-1.jpeg]]
126
127
128 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
175
176 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
177 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
178 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
179
180 [[image:1656043061044-343.png]]
181
182
183 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
184
185
186
187 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
188
189 For WSC1-L, this value is 0x0D.
190
191
192
193 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
194
195 0x0100, Means: v1.0.0 version.
196
197
198
199 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
200
201 *0x01: EU868
202
203 *0x02: US915
204
205 *0x03: IN865
206
207 *0x04: AU915
208
209 *0x05: KZ865
210
211 *0x06: RU864
212
213 *0x07: AS923
214
215 *0x08: AS923-1
216
217 *0x09: AS923-2
218
219 *0x0a: AS923-3
220
221
222
223 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
224
225 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
226
227
228
229 ==== (% style="color:#037691" %)**BAT:**(%%) ====
230
231 shows the battery voltage for WSC1-L MCU.
232
233 Ex1: 0x0BD6/1000 = 3.03 V
234
235
236
237 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
238
239 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
240 |Byte3|Byte2|Byte1
241
242 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
243
244 [[image:image-20220624134713-1.png]]
245
246
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270
271
272 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
273
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
275
276 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
277
278
279 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
280
281 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
282
283 (% style="color:#4472c4" %)** Uplink Payload**:
284
285 |Type Code|Length (Bytes)|Measured Value
286
287 (% style="color:#4472c4" %)** Sensor Segment Define**:
288
289
290
291 Sensor Type Table:
292
293 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
294 |**Wind Speed**|0x01|(((
295 Speed: 0~60m/s
296
297 Level: 0~17
298 )))|0x03 |(((
299 0x0024/10=3.6m/s
300
301 (0x02FE: No Sensor, 0x02FF: Value Error)
302
303 0x02=2
304
305 (0x14: No Sensor, 0x15: Value Error)
306 )))
307 |**Wind Direction**|0x02|(((
308 Angel: 0~360°
309
310 Direction: 16 positions
311 )))|0x03|(((
312 0x029A/10=66.6°
313
314 (0x0EFE: No Sensor,0x0EFF: Value Error)
315
316 0X03=3(ENE)
317
318 (0x14: No Sensor,0x15: Value Error)
319 )))
320 |**Illumination**|0x03|0~200000Lux|0x02|(((
321 0x04D2 *10=12340Lux
322
323 (0x4EFE: No Sensor,0x4EFF: Value Error)
324 )))
325 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
326 0x00 (00) No Rain or snow detected
327
328 (0x02: No Sensor,0x03: Value Error)
329 )))
330 |**CO2**|0x05|0~5000ppm|0x02|(((
331 0x0378=888ppm
332
333 (0x14FE: No Sensor,0x14FF: Value Error)
334 )))
335 |**Temperature**|0x06|-30℃~70℃|0x02|(((
336 0xFFDD/10=-3.5℃
337
338 (0x02FE: No Sensor,0x02FF: Value Error)
339 )))
340 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
341 |**Pressure**|0x08|10~1100hPa|0x02|(((
342 0x2748/10=1005.6hPa
343
344 (0x00: No Sensor,0x01: Value Error)
345 )))
346 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
347 0x0000/10=0mm /min
348
349 (0x03FE: No Sensor,0x03FF: Value Error)
350 )))
351 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
352 0x0023=35μg/m^^3 ^^
353
354 (0x03FE: No Sensor,0x03FF: Value Error)
355 )))
356 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
357 0x002D=45μg/m^^3 ^^
358
359 (0x03FE: No Sensor,0x03FF: Value Error)
360 )))
361 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
362 0x00B3=179μmol/m^^2^^•s
363
364 (0x09FE: No Sensor,0x9FF: Value Error)
365 )))
366 |(((
367 **Total Solar**
368
369 **Radiation**
370 )))|0x0D|0~2000W/m^^2^^|0x02|(((
371 0x0073/10=11.5W/m^^2^^
372
373 (0x4EFE: No Sensor,0x4EFF: Value Error)
374 )))
375
376 Below is an example payload:
377
378 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
379
380
381 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
382
383 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
384
385 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
386
387
388 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
389
390 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
391
392 Uplink 2: 0D 02 00 73
393
394
395
396
397 === 2.4.3 Decoder in TTN V3 ===
398
399 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
400
401
402 Download decoder for suitable platform from:
403
404 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
405
406 and put as below:
407
408 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
409
410
411
412 == 2.5 Show data on Application Server ==
413
414 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
415
416
417 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
418
419 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
420
421 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
422
423
424 Add TagoIO:
425
426 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
427
428 Authorization:
429
430 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
431
432
433 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
434
435 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
436
437
438
439 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
440
441 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
442
443 * AT Command Connection: See [[FAQ>>||anchor="H"]].
444 * LoRaWAN Downlink instruction for different platforms:
445
446 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
447
448
449 There are two kinds of commands to configure WSC1-L, they are:
450
451 * (% style="color:#4472c4" %)**General Commands**.
452
453 These commands are to configure:
454
455 * General system settings like: uplink interval.
456 * LoRaWAN protocol & radio related command.
457
458 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
459
460 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
461
462 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
463
464
465 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
466
467 These commands only valid for WSC1-L, as below:
468
469
470 == 3.1 Set Transmit Interval Time ==
471
472 Feature: Change LoRaWAN End Node Transmit Interval.
473
474 (% style="color:#037691" %)**AT Command: AT+TDC**
475
476 |**Command Example**|**Function**|**Response**
477 |AT+TDC?|Show current transmit Interval|(((
478 30000
479
480 OK
481
482 the interval is 30000ms = 30s
483 )))
484 |AT+TDC=60000|Set Transmit Interval|(((
485 OK
486
487 Set transmit interval to 60000ms = 60 seconds
488 )))
489
490 (% style="color:#037691" %)**Downlink Command: 0x01**
491
492 Format: Command Code (0x01) followed by 3 bytes time value.
493
494 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
495
496 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
497 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
498
499 == 3.2 Set Emergency Mode ==
500
501 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
502
503
504 (% style="color:#037691" %)**AT Command:**
505
506 |**Command Example**|**Function**|**Response**
507 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
508 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
509
510 (% style="color:#037691" %)**Downlink Command:**
511
512 * 0xE101     Same as: AT+ALARMMOD=1
513 * 0xE100     Same as: AT+ALARMMOD=0
514
515 == 3.3 Add or Delete RS485 Sensor ==
516
517 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
518
519 (% style="color:#037691" %)**AT Command: **
520
521 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
522
523 * Type_Code range: A1 ~~ A4
524 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
525 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
526 * Read_Length: RS485 response frame length supposed to receive. Max can receive
527 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
528 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
529 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
530
531 Example:
532
533 User need to change external sensor use the type code as address code.
534
535 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
536
537 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
538 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
539 | | | | | | | |
540
541 The response frame of the sensor is as follows:
542
543 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
544 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
545 | | | | | | | |
546
547 Then the following parameters should be:
548
549 * Address_Code range: A1
550 * Query_Length: 8
551 * Query_Command: A103000000019CAA
552 * Read_Length: 8
553 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
554 * has_CRC: 1
555 * timeout: 1500 (Fill in the test according to the actual situation)
556
557 So the input command is:
558
559 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
560
561
562 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
563
564 |Type Code|Length (Bytes)|Measured Value
565 |A1|2|0x000A
566
567 Related commands:
568
569 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
570
571 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
572
573
574 (% style="color:#037691" %)**Downlink Command:  **
575
576 **delete custom sensor A1:**
577
578 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
579
580 **Remove all custom sensors**
581
582 * 0xE5FF  
583
584 == 3.4 RS485 Test Command ==
585
586 (% style="color:#037691" %)**AT Command:**
587
588 |**Command Example**|**Function**|**Response**
589 |AT+RSWRITE=xxxxxx|(((
590 Send command to 485 sensor
591
592 Range : no more than 10 bytes
593 )))|OK
594
595 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
596
597 AT+RSWRITE=0103000001840A
598
599
600 (% style="color:#037691" %)**Downlink Command:**
601
602 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
603
604 == 3.5 RS485 response timeout ==
605
606 Feature: Set or get extended time to receive 485 sensor data.
607
608 (% style="color:#037691" %)**AT Command:**
609
610 |**Command Example**|**Function**|**Response**
611 |AT+DTR=1000|(((
612 Set response timeout to:
613
614 Range : 0~~10000
615 )))|OK
616
617 (% style="color:#037691" %)**Downlink Command:**
618
619 Format: Command Code (0xE0) followed by 3 bytes time value.
620
621 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
622
623 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
624 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
625
626 == 3.6 Set Sensor Type ==
627
628 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
629
630 See [[definition>>||anchor="H"]] for the sensor type.
631
632
633 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
634 | |A4|A3|A2|A1| | |
635 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
636 | | |Solar Radiation|PAR|PM10|PM2.5|(((
637 Rain
638
639 Gauge
640 )))|(((
641 Air
642
643 Pressure
644 )))
645 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
646 |Humidity|Temperature|CO2|(((
647 Rain/Snow
648
649 Detect
650 )))|illuminance|(((
651 Wind
652
653 Direction
654 )))|Wind Speed|BAT
655
656 (% style="color:#037691" %)**AT Command:**
657
658 |**Command Example**|**Function**|**Response**
659 |AT+STYPE=80221|Set sensor types|OK
660
661 Eg: The setting command **AT+STYPE=802212** means:
662
663 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
664 |0|0|0|0|1|0|0|0
665 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
666 |0|0|0|0|0|0|1|0
667 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
668 |0|0|1|0|0|0|0|1
669
670 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
671
672
673 (% style="color:#037691" %)**Downlink Command:**
674
675 * 0xE400802212     Same as: AT+STYPE=80221
676
677 (% style="color:red" %)**Note:**
678
679 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
680
681
682
683
684
685 = 4. Power consumption and battery =
686
687 == 4.1 Total Power Consumption ==
688
689 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
690
691
692 == 4.2 Reduce power consumption ==
693
694 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
695
696
697
698 == 4.3 Battery ==
699
700 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
701
702
703 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
704
705
706
707 = 5. Main Process Unit WSC1-L =
708
709 == 5.1 Features ==
710
711 * Wall Attachable.
712 * LoRaWAN v1.0.3 Class A protocol.
713 * RS485 / Modbus protocol
714 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
715 * AT Commands to change parameters
716 * Remote configure parameters via LoRaWAN Downlink
717 * Firmware upgradable via program port
718 * Powered by external 12v battery
719 * Back up rechargeable 1000mAh battery
720 * IP Rating: IP65
721 * Support default sensors or 3rd party RS485 sensors
722
723 == 5.2 Power Consumption ==
724
725 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
726
727
728
729 == 5.3 Storage & Operation Temperature ==
730
731 -20°C to +60°C
732
733
734 == 5.4 Pin Mapping ==
735
736 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
737
738
739 == 5.5 Mechanical ==
740
741 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
742
743
744
745
746 == 5.6 Connect to RS485 Sensors ==
747
748 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
749
750
751 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
752
753
754 Hardware Design for the Converter Board please see:
755
756 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
757
758
759
760
761
762 = 6. Weather Sensors =
763
764 == 6.1 Rain Gauge ~-~- WSS-01 ==
765
766 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
767
768
769 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
770
771 shape to make sure it works smoothly and is easy to clean.
772
773
774 WSS-01 is designed to support the Dragino Weather station solution.
775
776 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
777
778 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
779
780
781 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
782
783 to screw up and adjust the bottom horizontally.
784
785
786 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
787
788
789
790 === 6.1.1 Feature ===
791
792 * RS485 Rain Gauge
793 * Small dimension, easy to install
794 * Vents under funnel, avoid leaf or other things to avoid rain flow.
795 * ABS enclosure.
796 * Horizontal adjustable.
797
798 === 6.1.2 Specification ===
799
800 * Resolution: 0.2mm
801 * Accuracy: ±3%
802 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
803 * Input Power: DC 5~~24v
804 * Interface: RS485
805 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
806 * Working Humidity: <100% (no dewing)
807 * Power Consumption: 4mA @ 12v.
808
809 === 6.1.3 Dimension ===
810
811 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
812
813
814 === 6.1.4 Pin Mapping ===
815
816 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
817
818
819
820
821 === 6.1.5 Installation Notice ===
822
823 Do not power on while connect the cables. Double check the wiring before power on.
824
825 Installation Photo as reference:
826
827
828 (% style="color:#4472c4" %)** Install on Ground:**
829
830 WSS-01 Rain Gauge include screws so can install in ground directly .
831
832
833 (% style="color:#4472c4" %)** Install on pole:**
834
835 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
836
837 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
838
839
840 WS-K2: Bracket Kit for Pole installation:
841
842 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
843
844 WSSC-K2 dimension document, please see:
845
846 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
847
848
849
850 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
851
852 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
853
854 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
855
856
857 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
858
859
860 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
861
862 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
863
864
865 === 6.2.1 Feature ===
866
867 * RS485 wind speed / direction sensor
868 * PC enclosure, resist corrosion
869
870 === 6.2.2 Specification ===
871
872 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
873 * Wind direction range: 0 ~~ 360°
874 * Start wind speed: ≤0.3m/s
875 * Accuracy: ±(0.3+0.03V)m/s , ±1°
876 * Input Power: DC 5~~24v
877 * Interface: RS485
878 * Working Temperature: -30℃~70℃
879 * Working Humidity: <100% (no dewing)
880 * Power Consumption: 13mA ~~ 12v.
881 * Cable Length: 2 meters
882
883 === 6.2.3 Dimension ===
884
885 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
886
887
888 === 6.2.4 Pin Mapping ===
889
890 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
891
892
893 === 6.2.4 Angle Mapping ===
894
895 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
896
897
898 === 6.2.5 Installation Notice ===
899
900 Do not power on while connect the cables. Double check the wiring before power on.
901
902
903 The sensor must be installed with below direction, towards North.
904
905
906 |(((
907 North
908 )))
909
910 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
911
912
913
914
915
916
917
918
919 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
920
921 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
922
923
924 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
925
926
927 WSS-03 is designed to support the Dragino Weather station solution.
928
929 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
930
931 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
932
933
934 === 6.3.1 Feature ===
935
936 * RS485 CO2, PM2.5, PM10 sensor
937 * NDIR to measure CO2 with Internal Temperature Compensation
938 * Laser Beam Scattering to PM2.5 and PM10
939
940 === 6.3.2 Specification ===
941
942 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
943 * CO2 resolution: 1ppm
944 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
945 * PM2.5/PM10 resolution: 1μg/m3
946 * Input Power: DC 7 ~~ 24v
947 * Preheat time: 3min
948 * Interface: RS485
949 * Working Temperature:
950 ** CO2: 0℃~50℃;
951 ** PM2.5/PM10: -30 ~~ 50℃
952 * Working Humidity:
953 ** PM2.5/PM10: 15~80%RH (no dewing)
954 ** CO2: 0~95%RH
955 * Power Consumption: 50mA@ 12v.
956
957 === 6.3.3 Dimension ===
958
959 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
960
961
962 === 6.3.4 Pin Mapping ===
963
964 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
965
966
967 === 6.3.5 Installation Notice ===
968
969 Do not power on while connect the cables. Double check the wiring before power on.
970
971 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
972
973 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
974
975
976
977
978
979
980 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
981
982 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
983
984
985 WSS-04 has auto heating feature, this ensures measurement more reliable.
986
987
988 WSS-04 is designed to support the Dragino Weather station solution.
989
990 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
991
992 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
993
994
995
996 === 6.4.1 Feature ===
997
998 * RS485 Rain/Snow detect sensor
999 * Surface heating to dry
1000 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1001
1002 === 6.4.2 Specification ===
1003
1004 * Detect if there is rain or snow
1005 * Input Power: DC 12 ~~ 24v
1006 * Interface: RS485
1007 * Working Temperature: -30℃~70℃
1008 * Working Humidity: 10~90%RH
1009 * Power Consumption:
1010 ** No heating: 12mA @ 12v,
1011 ** heating: 94ma @ 12v.
1012
1013 === 6.4.3 Dimension ===
1014
1015 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1016
1017
1018 === 6.4.4 Pin Mapping ===
1019
1020 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1021
1022
1023 === 6.4.5 Installation Notice ===
1024
1025 Do not power on while connect the cables. Double check the wiring before power on.
1026
1027
1028 Install with 15°degree.
1029
1030 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1031
1032 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1033
1034
1035
1036
1037 === 6.4.6 Heating ===
1038
1039
1040 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1041
1042
1043
1044
1045
1046 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1047
1048 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1049
1050
1051 WSS-05 is designed to support the Dragino Weather station solution.
1052
1053 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1054
1055 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1056
1057
1058 === 6.5.1 Feature ===
1059
1060 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1061
1062 === 6.5.2 Specification ===
1063
1064 * Input Power: DC 12 ~~ 24v
1065 * Interface: RS485
1066 * Temperature Sensor Spec:
1067 ** Range: -30 ~~ 70℃
1068 ** resolution 0.1℃
1069 ** Accuracy: ±0.5℃
1070 * Humidity Sensor Spec:
1071 ** Range: 0 ~~ 100% RH
1072 ** resolution 0.1 %RH
1073 ** Accuracy: 3% RH
1074 * Pressure Sensor Spec:
1075 ** Range: 10~1100hPa
1076 ** Resolution: 0.1hPa
1077 ** Accuracy: ±0.1hPa
1078 * Illuminate sensor:
1079 ** Range: 0~2/20/200kLux
1080 ** Resolution: 10 Lux
1081 ** Accuracy: ±3%FS
1082 * Working Temperature: -30℃~70℃
1083 * Working Humidity: 10~90%RH
1084 * Power Consumption: 4mA @ 12v
1085
1086 === 6.5.3 Dimension ===
1087
1088 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1089
1090
1091 === 6.5.4 Pin Mapping ===
1092
1093 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1094
1095
1096 === 6.5.5 Installation Notice ===
1097
1098 Do not power on while connect the cables. Double check the wiring before power on.
1099
1100
1101
1102 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1103
1104
1105 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1106
1107
1108 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1109
1110 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1111
1112
1113 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1114
1115
1116 WSS-06 is designed to support the Dragino Weather station solution.
1117
1118
1119 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1120
1121 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1122
1123
1124
1125 === 6.6.1 Feature ===
1126
1127 * RS485 Total Solar Radiation sensor
1128 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1129 * Measure Reflected Radiation if sense area towards ground.
1130
1131 === 6.6.2 Specification ===
1132
1133 * Input Power: DC 5 ~~ 24v
1134 * Interface: RS485
1135 * Detect spectrum: 0.3~3μm(300~3000nm)
1136 * Measure strength range: 0~2000W/m2
1137 * Resolution: 0.1W/m2
1138 * Accuracy: ±3%
1139 * Yearly Stability: ≤±2%
1140 * Cosine response: ≤7% (@ Sun angle 10°)
1141 * Temperature Effect: ±2%(-10℃~40℃)
1142 * Working Temperature: -40℃~70℃
1143 * Working Humidity: 10~90%RH
1144 * Power Consumption: 4mA @ 12v
1145
1146 === 6.6.3 Dimension ===
1147
1148 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1149
1150
1151 === 6.6.4 Pin Mapping ===
1152
1153 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1154
1155
1156 === 6.6.5 Installation Notice ===
1157
1158 Do not power on while connect the cables. Double check the wiring before power on.
1159
1160 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1161
1162 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1163
1164
1165 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1166
1167 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1168
1169
1170 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1171
1172
1173
1174 WSS-07 is designed to support the Dragino Weather station solution.
1175
1176
1177 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1178
1179 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1180
1181
1182 === 6.7.1 Feature ===
1183
1184 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1185
1186
1187 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1188
1189
1190 === 6.7.2 Specification ===
1191
1192 * Input Power: DC 5 ~~ 24v
1193 * Interface: RS485
1194 * Response Spectrum: 400~700nm
1195 * Measure range: 0~2500μmol/m2•s
1196 * Resolution: 1μmol/m2•s
1197 * Accuracy: ±2%
1198 * Yearly Stability: ≤±2%
1199 * Working Temperature: -30℃~75℃
1200 * Working Humidity: 10~90%RH
1201 * Power Consumption: 3mA @ 12v
1202
1203 === 6.7.3 Dimension ===
1204
1205 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1206
1207
1208 === 6.7.4 Pin Mapping ===
1209
1210 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1211
1212
1213 === 6.7.5 Installation Notice ===
1214
1215 Do not power on while connect the cables. Double check the wiring before power on.
1216
1217
1218 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1219
1220 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1221
1222
1223 = 7. FAQ =
1224
1225 == 7.1 What else do I need to purchase to build Weather Station? ==
1226
1227 Below is the installation photo and structure:
1228
1229 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1230
1231
1232 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1233
1234
1235
1236
1237 == 7.2 How to upgrade firmware for WSC1-L? ==
1238
1239 Firmware Location & Change log:
1240
1241 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1242
1243
1244 Firmware Upgrade instruction:
1245
1246 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1247
1248
1249 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1250
1251 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1252
1253
1254
1255 == 7.4 Can I add my weather sensors? ==
1256
1257 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1258
1259
1260 = 8. Trouble Shooting =
1261
1262
1263
1264
1265
1266
1267 = 9. Order Info =
1268
1269
1270 == 9.1 Main Process Unit ==
1271
1272 Part Number: **WSC1-L-XX**
1273
1274 **XX**: The default frequency band
1275
1276 * **AS923**: LoRaWAN AS923 band
1277 * **AU915**: LoRaWAN AU915 band
1278 * **EU433**: LoRaWAN EU433 band
1279 * **EU868**: LoRaWAN EU868 band
1280 * **KR920**: LoRaWAN KR920 band
1281 * **US915**: LoRaWAN US915 band
1282 * **IN865**: LoRaWAN IN865 band
1283 * **CN470**: LoRaWAN CN470 band
1284
1285 == 9.2 Sensors ==
1286
1287 |**Sensor Model**|**Part Number**
1288 |**Rain Gauge**|WSS-01
1289 |**Rain Gauge installation Bracket for Pole**|WS-K2
1290 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1291 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1292 |**Rain/Snow Detect Sensor**|WSS-04
1293 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1294 |**Total Solar Radiation Sensor**|WSS-06
1295 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1296
1297 = 10. Support =
1298
1299 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1300 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1301
1302 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1303
1304
1305
1306
1307
1308 = 11. Appendix I: Field Installation Photo =
1309
1310
1311 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1312
1313
1314 **Storage Battery**: 12v,12AH li battery
1315
1316
1317 Wind Speed/Direction.
1318
1319 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1320
1321
1322 Total Solar Radiation sensor
1323
1324 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1325
1326
1327
1328 PAR Sensor
1329
1330 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1331
1332
1333 CO2/PM2.5/PM10 3 in 1 sensor
1334
1335 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1336
1337
1338 Rain / Snow Detect:
1339
1340 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1341
1342
1343 Rain Gauge.
1344
1345 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]