Version 14.9 by Xiaoling on 2022/06/24 13:44

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72
73
74 (% style="color:red" %)** Notice 2:**
75
76 Due to shipment and importation limitation, user is better to purchase below parts locally:
77
78 * Solar Panel
79 * Storage Battery
80 * MPPT Solar Recharger
81 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
82 * Cabinet.
83
84
85
86
87
88 == 2.2 How it works? ==
89
90 (((
91 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
92 )))
93
94
95 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
104
105
106
107
108
109 == 2.3 Example to use for LoRaWAN network ==
110
111 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
112
113
114 [[image:1656042612899-422.png]]
115
116
117
118 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
119
120
121 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
122
123 Each WSC1-L is shipped with a sticker with the default device EUI as below:
124
125 [[image:image-20220624115043-1.jpeg]]
126
127
128 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165 === 2.4.1 Uplink FPORT~=5, Device Status ===
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
171
172 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
173 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
174 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
175
176 [[image:1656043061044-343.png]]
177
178
179 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
180
181
182
183 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
184
185 For WSC1-L, this value is 0x0D.
186
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194
195 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
196
197 *0x01: EU868
198
199 *0x02: US915
200
201 *0x03: IN865
202
203 *0x04: AU915
204
205 *0x05: KZ865
206
207 *0x06: RU864
208
209 *0x07: AS923
210
211 *0x08: AS923-1
212
213 *0x09: AS923-2
214
215 *0x0a: AS923-3
216
217
218
219 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
220
221 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
222
223
224
225 ==== (% style="color:#037691" %)**BAT:**(%%) ====
226
227 shows the battery voltage for WSC1-L MCU.
228
229 Ex1: 0x0BD6/1000 = 3.03 V
230
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 |Byte3|Byte2|Byte1
236
237 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
238
239
240 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
241 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
242 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
243 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
244 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
245 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
246
247 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
248
249 External sensors detected by WSC1-L include :
250
251 custom sensor A1,
252
253 PAR sensor (WSS-07),
254
255 Total Solar Radiation sensor (WSS-06),
256
257 CO2/PM2.5/PM10 (WSS-03),
258
259 Wind Speed/Direction (WSS-02)
260
261
262
263
264 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
265
266 (% style="color:#037691" %)**Downlink:0x26 01**
267
268 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
269
270
271
272
273 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
274
275 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
276
277 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
278
279
280 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
281
282 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
283
284 (% style="color:#4472c4" %)** Uplink Payload**:
285
286 |Type Code|Length (Bytes)|Measured Value
287
288 (% style="color:#4472c4" %)** Sensor Segment Define**:
289
290
291
292 Sensor Type Table:
293
294 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
295 |**Wind Speed**|0x01|(((
296 Speed: 0~60m/s
297
298 Level: 0~17
299 )))|0x03 |(((
300 0x0024/10=3.6m/s
301
302 (0x02FE: No Sensor, 0x02FF: Value Error)
303
304 0x02=2
305
306 (0x14: No Sensor, 0x15: Value Error)
307 )))
308 |**Wind Direction**|0x02|(((
309 Angel: 0~360°
310
311 Direction: 16 positions
312 )))|0x03|(((
313 0x029A/10=66.6°
314
315 (0x0EFE: No Sensor,0x0EFF: Value Error)
316
317 0X03=3(ENE)
318
319 (0x14: No Sensor,0x15: Value Error)
320 )))
321 |**Illumination**|0x03|0~200000Lux|0x02|(((
322 0x04D2 *10=12340Lux
323
324 (0x4EFE: No Sensor,0x4EFF: Value Error)
325 )))
326 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
327 0x00 (00) No Rain or snow detected
328
329 (0x02: No Sensor,0x03: Value Error)
330 )))
331 |**CO2**|0x05|0~5000ppm|0x02|(((
332 0x0378=888ppm
333
334 (0x14FE: No Sensor,0x14FF: Value Error)
335 )))
336 |**Temperature**|0x06|-30℃~70℃|0x02|(((
337 0xFFDD/10=-3.5℃
338
339 (0x02FE: No Sensor,0x02FF: Value Error)
340 )))
341 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
342 |**Pressure**|0x08|10~1100hPa|0x02|(((
343 0x2748/10=1005.6hPa
344
345 (0x00: No Sensor,0x01: Value Error)
346 )))
347 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
348 0x0000/10=0mm /min
349
350 (0x03FE: No Sensor,0x03FF: Value Error)
351 )))
352 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
353 0x0023=35μg/m^^3 ^^
354
355 (0x03FE: No Sensor,0x03FF: Value Error)
356 )))
357 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
358 0x002D=45μg/m^^3 ^^
359
360 (0x03FE: No Sensor,0x03FF: Value Error)
361 )))
362 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
363 0x00B3=179μmol/m^^2^^•s
364
365 (0x09FE: No Sensor,0x9FF: Value Error)
366 )))
367 |(((
368 **Total Solar**
369
370 **Radiation**
371 )))|0x0D|0~2000W/m^^2^^|0x02|(((
372 0x0073/10=11.5W/m^^2^^
373
374 (0x4EFE: No Sensor,0x4EFF: Value Error)
375 )))
376
377 Below is an example payload:
378
379 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
380
381
382 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
383
384 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
385
386 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
387
388
389 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
390
391 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
392
393 Uplink 2: 0D 02 00 73
394
395
396
397
398 === 2.4.3 Decoder in TTN V3 ===
399
400 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
401
402
403 Download decoder for suitable platform from:
404
405 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
406
407 and put as below:
408
409 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
410
411
412
413 == 2.5 Show data on Application Server ==
414
415 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
416
417
418 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
419
420 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
421
422 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
423
424
425 Add TagoIO:
426
427 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
428
429 Authorization:
430
431 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
432
433
434 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
435
436 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
437
438
439
440 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
441
442 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
443
444 * AT Command Connection: See [[FAQ>>||anchor="H"]].
445 * LoRaWAN Downlink instruction for different platforms:
446
447 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
448
449
450 There are two kinds of commands to configure WSC1-L, they are:
451
452 * (% style="color:#4472c4" %)**General Commands**.
453
454 These commands are to configure:
455
456 * General system settings like: uplink interval.
457 * LoRaWAN protocol & radio related command.
458
459 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
460
461 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
462
463 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
464
465
466 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
467
468 These commands only valid for WSC1-L, as below:
469
470
471 == 3.1 Set Transmit Interval Time ==
472
473 Feature: Change LoRaWAN End Node Transmit Interval.
474
475 (% style="color:#037691" %)**AT Command: AT+TDC**
476
477 |**Command Example**|**Function**|**Response**
478 |AT+TDC?|Show current transmit Interval|(((
479 30000
480
481 OK
482
483 the interval is 30000ms = 30s
484 )))
485 |AT+TDC=60000|Set Transmit Interval|(((
486 OK
487
488 Set transmit interval to 60000ms = 60 seconds
489 )))
490
491 (% style="color:#037691" %)**Downlink Command: 0x01**
492
493 Format: Command Code (0x01) followed by 3 bytes time value.
494
495 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
496
497 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
498 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
499
500 == 3.2 Set Emergency Mode ==
501
502 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
503
504
505 (% style="color:#037691" %)**AT Command:**
506
507 |**Command Example**|**Function**|**Response**
508 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
509 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
510
511 (% style="color:#037691" %)**Downlink Command:**
512
513 * 0xE101     Same as: AT+ALARMMOD=1
514 * 0xE100     Same as: AT+ALARMMOD=0
515
516 == 3.3 Add or Delete RS485 Sensor ==
517
518 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
519
520 (% style="color:#037691" %)**AT Command: **
521
522 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
523
524 * Type_Code range: A1 ~~ A4
525 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
526 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
527 * Read_Length: RS485 response frame length supposed to receive. Max can receive
528 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
529 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
530 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
531
532 Example:
533
534 User need to change external sensor use the type code as address code.
535
536 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
537
538 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
539 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
540 | | | | | | | |
541
542 The response frame of the sensor is as follows:
543
544 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
545 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
546 | | | | | | | |
547
548 Then the following parameters should be:
549
550 * Address_Code range: A1
551 * Query_Length: 8
552 * Query_Command: A103000000019CAA
553 * Read_Length: 8
554 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
555 * has_CRC: 1
556 * timeout: 1500 (Fill in the test according to the actual situation)
557
558 So the input command is:
559
560 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
561
562
563 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
564
565 |Type Code|Length (Bytes)|Measured Value
566 |A1|2|0x000A
567
568 Related commands:
569
570 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
571
572 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
573
574
575 (% style="color:#037691" %)**Downlink Command:  **
576
577 **delete custom sensor A1:**
578
579 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
580
581 **Remove all custom sensors**
582
583 * 0xE5FF  
584
585 == 3.4 RS485 Test Command ==
586
587 (% style="color:#037691" %)**AT Command:**
588
589 |**Command Example**|**Function**|**Response**
590 |AT+RSWRITE=xxxxxx|(((
591 Send command to 485 sensor
592
593 Range : no more than 10 bytes
594 )))|OK
595
596 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
597
598 AT+RSWRITE=0103000001840A
599
600
601 (% style="color:#037691" %)**Downlink Command:**
602
603 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
604
605 == 3.5 RS485 response timeout ==
606
607 Feature: Set or get extended time to receive 485 sensor data.
608
609 (% style="color:#037691" %)**AT Command:**
610
611 |**Command Example**|**Function**|**Response**
612 |AT+DTR=1000|(((
613 Set response timeout to:
614
615 Range : 0~~10000
616 )))|OK
617
618 (% style="color:#037691" %)**Downlink Command:**
619
620 Format: Command Code (0xE0) followed by 3 bytes time value.
621
622 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
623
624 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
625 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
626
627 == 3.6 Set Sensor Type ==
628
629 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
630
631 See [[definition>>||anchor="H"]] for the sensor type.
632
633
634 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
635 | |A4|A3|A2|A1| | |
636 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
637 | | |Solar Radiation|PAR|PM10|PM2.5|(((
638 Rain
639
640 Gauge
641 )))|(((
642 Air
643
644 Pressure
645 )))
646 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
647 |Humidity|Temperature|CO2|(((
648 Rain/Snow
649
650 Detect
651 )))|illuminance|(((
652 Wind
653
654 Direction
655 )))|Wind Speed|BAT
656
657 (% style="color:#037691" %)**AT Command:**
658
659 |**Command Example**|**Function**|**Response**
660 |AT+STYPE=80221|Set sensor types|OK
661
662 Eg: The setting command **AT+STYPE=802212** means:
663
664 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
665 |0|0|0|0|1|0|0|0
666 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
667 |0|0|0|0|0|0|1|0
668 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
669 |0|0|1|0|0|0|0|1
670
671 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
672
673
674 (% style="color:#037691" %)**Downlink Command:**
675
676 * 0xE400802212     Same as: AT+STYPE=80221
677
678 (% style="color:red" %)**Note:**
679
680 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
681
682
683
684
685
686 = 4. Power consumption and battery =
687
688 == 4.1 Total Power Consumption ==
689
690 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
691
692
693 == 4.2 Reduce power consumption ==
694
695 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
696
697
698
699 == 4.3 Battery ==
700
701 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
702
703
704 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
705
706
707
708 = 5. Main Process Unit WSC1-L =
709
710 == 5.1 Features ==
711
712 * Wall Attachable.
713 * LoRaWAN v1.0.3 Class A protocol.
714 * RS485 / Modbus protocol
715 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
716 * AT Commands to change parameters
717 * Remote configure parameters via LoRaWAN Downlink
718 * Firmware upgradable via program port
719 * Powered by external 12v battery
720 * Back up rechargeable 1000mAh battery
721 * IP Rating: IP65
722 * Support default sensors or 3rd party RS485 sensors
723
724 == 5.2 Power Consumption ==
725
726 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
727
728
729
730 == 5.3 Storage & Operation Temperature ==
731
732 -20°C to +60°C
733
734
735 == 5.4 Pin Mapping ==
736
737 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
738
739
740 == 5.5 Mechanical ==
741
742 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
743
744
745
746
747 == 5.6 Connect to RS485 Sensors ==
748
749 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
750
751
752 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
753
754
755 Hardware Design for the Converter Board please see:
756
757 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
758
759
760
761
762
763 = 6. Weather Sensors =
764
765 == 6.1 Rain Gauge ~-~- WSS-01 ==
766
767 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
768
769
770 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
771
772 shape to make sure it works smoothly and is easy to clean.
773
774
775 WSS-01 is designed to support the Dragino Weather station solution.
776
777 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
778
779 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
780
781
782 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
783
784 to screw up and adjust the bottom horizontally.
785
786
787 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
788
789
790
791 === 6.1.1 Feature ===
792
793 * RS485 Rain Gauge
794 * Small dimension, easy to install
795 * Vents under funnel, avoid leaf or other things to avoid rain flow.
796 * ABS enclosure.
797 * Horizontal adjustable.
798
799 === 6.1.2 Specification ===
800
801 * Resolution: 0.2mm
802 * Accuracy: ±3%
803 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
804 * Input Power: DC 5~~24v
805 * Interface: RS485
806 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
807 * Working Humidity: <100% (no dewing)
808 * Power Consumption: 4mA @ 12v.
809
810 === 6.1.3 Dimension ===
811
812 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
813
814
815 === 6.1.4 Pin Mapping ===
816
817 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
818
819
820
821
822 === 6.1.5 Installation Notice ===
823
824 Do not power on while connect the cables. Double check the wiring before power on.
825
826 Installation Photo as reference:
827
828
829 (% style="color:#4472c4" %)** Install on Ground:**
830
831 WSS-01 Rain Gauge include screws so can install in ground directly .
832
833
834 (% style="color:#4472c4" %)** Install on pole:**
835
836 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
837
838 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
839
840
841 WS-K2: Bracket Kit for Pole installation:
842
843 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
844
845 WSSC-K2 dimension document, please see:
846
847 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
848
849
850
851 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
852
853 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
854
855 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
856
857
858 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
859
860
861 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
862
863 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
864
865
866 === 6.2.1 Feature ===
867
868 * RS485 wind speed / direction sensor
869 * PC enclosure, resist corrosion
870
871 === 6.2.2 Specification ===
872
873 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
874 * Wind direction range: 0 ~~ 360°
875 * Start wind speed: ≤0.3m/s
876 * Accuracy: ±(0.3+0.03V)m/s , ±1°
877 * Input Power: DC 5~~24v
878 * Interface: RS485
879 * Working Temperature: -30℃~70℃
880 * Working Humidity: <100% (no dewing)
881 * Power Consumption: 13mA ~~ 12v.
882 * Cable Length: 2 meters
883
884 === 6.2.3 Dimension ===
885
886 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
887
888
889 === 6.2.4 Pin Mapping ===
890
891 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
892
893
894 === 6.2.4 Angle Mapping ===
895
896 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
897
898
899 === 6.2.5 Installation Notice ===
900
901 Do not power on while connect the cables. Double check the wiring before power on.
902
903
904 The sensor must be installed with below direction, towards North.
905
906
907 |(((
908 North
909 )))
910
911 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
912
913
914
915
916
917
918
919
920 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
921
922 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
923
924
925 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
926
927
928 WSS-03 is designed to support the Dragino Weather station solution.
929
930 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
931
932 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
933
934
935 === 6.3.1 Feature ===
936
937 * RS485 CO2, PM2.5, PM10 sensor
938 * NDIR to measure CO2 with Internal Temperature Compensation
939 * Laser Beam Scattering to PM2.5 and PM10
940
941 === 6.3.2 Specification ===
942
943 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
944 * CO2 resolution: 1ppm
945 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
946 * PM2.5/PM10 resolution: 1μg/m3
947 * Input Power: DC 7 ~~ 24v
948 * Preheat time: 3min
949 * Interface: RS485
950 * Working Temperature:
951 ** CO2: 0℃~50℃;
952 ** PM2.5/PM10: -30 ~~ 50℃
953 * Working Humidity:
954 ** PM2.5/PM10: 15~80%RH (no dewing)
955 ** CO2: 0~95%RH
956 * Power Consumption: 50mA@ 12v.
957
958 === 6.3.3 Dimension ===
959
960 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
961
962
963 === 6.3.4 Pin Mapping ===
964
965 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
966
967
968 === 6.3.5 Installation Notice ===
969
970 Do not power on while connect the cables. Double check the wiring before power on.
971
972 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
973
974 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
975
976
977
978
979
980
981 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
982
983 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
984
985
986 WSS-04 has auto heating feature, this ensures measurement more reliable.
987
988
989 WSS-04 is designed to support the Dragino Weather station solution.
990
991 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
992
993 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
994
995
996
997 === 6.4.1 Feature ===
998
999 * RS485 Rain/Snow detect sensor
1000 * Surface heating to dry
1001 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1002
1003 === 6.4.2 Specification ===
1004
1005 * Detect if there is rain or snow
1006 * Input Power: DC 12 ~~ 24v
1007 * Interface: RS485
1008 * Working Temperature: -30℃~70℃
1009 * Working Humidity: 10~90%RH
1010 * Power Consumption:
1011 ** No heating: 12mA @ 12v,
1012 ** heating: 94ma @ 12v.
1013
1014 === 6.4.3 Dimension ===
1015
1016 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1017
1018
1019 === 6.4.4 Pin Mapping ===
1020
1021 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1022
1023
1024 === 6.4.5 Installation Notice ===
1025
1026 Do not power on while connect the cables. Double check the wiring before power on.
1027
1028
1029 Install with 15°degree.
1030
1031 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1032
1033 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1034
1035
1036
1037
1038 === 6.4.6 Heating ===
1039
1040
1041 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1042
1043
1044
1045
1046
1047 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1048
1049 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1050
1051
1052 WSS-05 is designed to support the Dragino Weather station solution.
1053
1054 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1055
1056 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1057
1058
1059 === 6.5.1 Feature ===
1060
1061 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1062
1063 === 6.5.2 Specification ===
1064
1065 * Input Power: DC 12 ~~ 24v
1066 * Interface: RS485
1067 * Temperature Sensor Spec:
1068 ** Range: -30 ~~ 70℃
1069 ** resolution 0.1℃
1070 ** Accuracy: ±0.5℃
1071 * Humidity Sensor Spec:
1072 ** Range: 0 ~~ 100% RH
1073 ** resolution 0.1 %RH
1074 ** Accuracy: 3% RH
1075 * Pressure Sensor Spec:
1076 ** Range: 10~1100hPa
1077 ** Resolution: 0.1hPa
1078 ** Accuracy: ±0.1hPa
1079 * Illuminate sensor:
1080 ** Range: 0~2/20/200kLux
1081 ** Resolution: 10 Lux
1082 ** Accuracy: ±3%FS
1083 * Working Temperature: -30℃~70℃
1084 * Working Humidity: 10~90%RH
1085 * Power Consumption: 4mA @ 12v
1086
1087 === 6.5.3 Dimension ===
1088
1089 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1090
1091
1092 === 6.5.4 Pin Mapping ===
1093
1094 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1095
1096
1097 === 6.5.5 Installation Notice ===
1098
1099 Do not power on while connect the cables. Double check the wiring before power on.
1100
1101
1102
1103 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1104
1105
1106 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1107
1108
1109 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1110
1111 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1112
1113
1114 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1115
1116
1117 WSS-06 is designed to support the Dragino Weather station solution.
1118
1119
1120 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1121
1122 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1123
1124
1125
1126 === 6.6.1 Feature ===
1127
1128 * RS485 Total Solar Radiation sensor
1129 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1130 * Measure Reflected Radiation if sense area towards ground.
1131
1132 === 6.6.2 Specification ===
1133
1134 * Input Power: DC 5 ~~ 24v
1135 * Interface: RS485
1136 * Detect spectrum: 0.3~3μm(300~3000nm)
1137 * Measure strength range: 0~2000W/m2
1138 * Resolution: 0.1W/m2
1139 * Accuracy: ±3%
1140 * Yearly Stability: ≤±2%
1141 * Cosine response: ≤7% (@ Sun angle 10°)
1142 * Temperature Effect: ±2%(-10℃~40℃)
1143 * Working Temperature: -40℃~70℃
1144 * Working Humidity: 10~90%RH
1145 * Power Consumption: 4mA @ 12v
1146
1147 === 6.6.3 Dimension ===
1148
1149 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1150
1151
1152 === 6.6.4 Pin Mapping ===
1153
1154 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1155
1156
1157 === 6.6.5 Installation Notice ===
1158
1159 Do not power on while connect the cables. Double check the wiring before power on.
1160
1161 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1162
1163 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1164
1165
1166 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1167
1168 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1169
1170
1171 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1172
1173
1174
1175 WSS-07 is designed to support the Dragino Weather station solution.
1176
1177
1178 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1179
1180 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1181
1182
1183 === 6.7.1 Feature ===
1184
1185 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1186
1187
1188 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1189
1190
1191 === 6.7.2 Specification ===
1192
1193 * Input Power: DC 5 ~~ 24v
1194 * Interface: RS485
1195 * Response Spectrum: 400~700nm
1196 * Measure range: 0~2500μmol/m2•s
1197 * Resolution: 1μmol/m2•s
1198 * Accuracy: ±2%
1199 * Yearly Stability: ≤±2%
1200 * Working Temperature: -30℃~75℃
1201 * Working Humidity: 10~90%RH
1202 * Power Consumption: 3mA @ 12v
1203
1204 === 6.7.3 Dimension ===
1205
1206 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1207
1208
1209 === 6.7.4 Pin Mapping ===
1210
1211 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1212
1213
1214 === 6.7.5 Installation Notice ===
1215
1216 Do not power on while connect the cables. Double check the wiring before power on.
1217
1218
1219 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1220
1221 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1222
1223
1224 = 7. FAQ =
1225
1226 == 7.1 What else do I need to purchase to build Weather Station? ==
1227
1228 Below is the installation photo and structure:
1229
1230 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1231
1232
1233 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1234
1235
1236
1237
1238 == 7.2 How to upgrade firmware for WSC1-L? ==
1239
1240 Firmware Location & Change log:
1241
1242 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1243
1244
1245 Firmware Upgrade instruction:
1246
1247 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1248
1249
1250 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1251
1252 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1253
1254
1255
1256 == 7.4 Can I add my weather sensors? ==
1257
1258 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1259
1260
1261 = 8. Trouble Shooting =
1262
1263
1264
1265
1266
1267
1268 = 9. Order Info =
1269
1270
1271 == 9.1 Main Process Unit ==
1272
1273 Part Number: **WSC1-L-XX**
1274
1275 **XX**: The default frequency band
1276
1277 * **AS923**: LoRaWAN AS923 band
1278 * **AU915**: LoRaWAN AU915 band
1279 * **EU433**: LoRaWAN EU433 band
1280 * **EU868**: LoRaWAN EU868 band
1281 * **KR920**: LoRaWAN KR920 band
1282 * **US915**: LoRaWAN US915 band
1283 * **IN865**: LoRaWAN IN865 band
1284 * **CN470**: LoRaWAN CN470 band
1285
1286 == 9.2 Sensors ==
1287
1288 |**Sensor Model**|**Part Number**
1289 |**Rain Gauge**|WSS-01
1290 |**Rain Gauge installation Bracket for Pole**|WS-K2
1291 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1292 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1293 |**Rain/Snow Detect Sensor**|WSS-04
1294 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1295 |**Total Solar Radiation Sensor**|WSS-06
1296 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1297
1298 = 10. Support =
1299
1300 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1301 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1302
1303 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1304
1305
1306
1307
1308
1309 = 11. Appendix I: Field Installation Photo =
1310
1311
1312 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1313
1314
1315 **Storage Battery**: 12v,12AH li battery
1316
1317
1318 Wind Speed/Direction.
1319
1320 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1321
1322
1323 Total Solar Radiation sensor
1324
1325 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1326
1327
1328
1329 PAR Sensor
1330
1331 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1332
1333
1334 CO2/PM2.5/PM10 3 in 1 sensor
1335
1336 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1337
1338
1339 Rain / Snow Detect:
1340
1341 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1342
1343
1344 Rain Gauge.
1345
1346 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]