Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72
73
74 (% style="color:red" %)** Notice 2:**
75
76 Due to shipment and importation limitation, user is better to purchase below parts locally:
77
78 * Solar Panel
79 * Storage Battery
80 * MPPT Solar Recharger
81 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
82 * Cabinet.
83
84
85
86
87
88 == 2.2 How it works? ==
89
90 (((
91 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
92 )))
93
94
95 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20220624115043-1.jpeg]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 **Add APP EUI in the application.**
127
128 [[image:1656042662694-311.png]]
129
130 [[image:1656042673910-429.png]]
131
132
133
134
135 **Choose Manually to add WSC1-L**
136
137 [[image:1656042695755-103.png]]
138
139
140
141 **Add APP KEY and DEV EUI**
142
143 [[image:1656042723199-746.png]]
144
145
146
147 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
148
149
150 [[image:1656042745346-283.png]]
151
152
153
154 == 2.4 Uplink Payload ==
155
156 Uplink payloads include two types: Valid Sensor Value and other status / control command.
157
158 * Valid Sensor Value: Use FPORT=2
159 * Other control command: Use FPORT other than 2.
160
161 === 2.4.1 Uplink FPORT~=5, Device Status ===
162
163 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
164
165
166 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
167
168 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
169 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
170 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
171
172 [[image:1656043061044-343.png]]
173
174
175 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
176
177
178
179 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
180
181 For WSC1-L, this value is 0x0D.
182
183
184
185 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
186
187 0x0100, Means: v1.0.0 version.
188
189
190
191 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
192
193 *0x01: EU868
194
195 *0x02: US915
196
197 *0x03: IN865
198
199 *0x04: AU915
200
201 *0x05: KZ865
202
203 *0x06: RU864
204
205 *0x07: AS923
206
207 *0x08: AS923-1
208
209 *0x09: AS923-2
210
211 *0x0a: AS923-3
212
213
214
215 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
216
217 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
218
219
220
221 ==== (% style="color:#037691" %)**BAT:**(%%) ====
222
223 shows the battery voltage for WSC1-L MCU.
224
225 Ex1: 0x0BD6/1000 = 3.03 V
226
227
228
229 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
230
231 |Byte3|Byte2|Byte1
232
233 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
234
235
236 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
237 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
238 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
239 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
240 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
241 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
242
243 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
244
245 External sensors detected by WSC1-L include :
246
247 custom sensor A1,
248
249 PAR sensor (WSS-07),
250
251 Total Solar Radiation sensor (WSS-06),
252
253 CO2/PM2.5/PM10 (WSS-03),
254
255 Wind Speed/Direction (WSS-02)
256
257
258
259
260 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
261
262 (% style="color:#037691" %)**Downlink:0x26 01**
263
264 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
265
266
267
268
269 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
270
271 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
272
273 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
274
275
276 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
277
278 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
279
280 (% style="color:#4472c4" %)** Uplink Payload**:
281
282 |Type Code|Length (Bytes)|Measured Value
283
284 (% style="color:#4472c4" %)** Sensor Segment Define**:
285
286
287
288 Sensor Type Table:
289
290 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
291 |**Wind Speed**|0x01|(((
292 Speed: 0~60m/s
293
294 Level: 0~17
295 )))|0x03 |(((
296 0x0024/10=3.6m/s
297
298 (0x02FE: No Sensor, 0x02FF: Value Error)
299
300 0x02=2
301
302 (0x14: No Sensor, 0x15: Value Error)
303 )))
304 |**Wind Direction**|0x02|(((
305 Angel: 0~360°
306
307 Direction: 16 positions
308 )))|0x03|(((
309 0x029A/10=66.6°
310
311 (0x0EFE: No Sensor,0x0EFF: Value Error)
312
313 0X03=3(ENE)
314
315 (0x14: No Sensor,0x15: Value Error)
316 )))
317 |**Illumination**|0x03|0~200000Lux|0x02|(((
318 0x04D2 *10=12340Lux
319
320 (0x4EFE: No Sensor,0x4EFF: Value Error)
321 )))
322 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
323 0x00 (00) No Rain or snow detected
324
325 (0x02: No Sensor,0x03: Value Error)
326 )))
327 |**CO2**|0x05|0~5000ppm|0x02|(((
328 0x0378=888ppm
329
330 (0x14FE: No Sensor,0x14FF: Value Error)
331 )))
332 |**Temperature**|0x06|-30℃~70℃|0x02|(((
333 0xFFDD/10=-3.5℃
334
335 (0x02FE: No Sensor,0x02FF: Value Error)
336 )))
337 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
338 |**Pressure**|0x08|10~1100hPa|0x02|(((
339 0x2748/10=1005.6hPa
340
341 (0x00: No Sensor,0x01: Value Error)
342 )))
343 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
344 0x0000/10=0mm /min
345
346 (0x03FE: No Sensor,0x03FF: Value Error)
347 )))
348 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
349 0x0023=35μg/m^^3 ^^
350
351 (0x03FE: No Sensor,0x03FF: Value Error)
352 )))
353 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
354 0x002D=45μg/m^^3 ^^
355
356 (0x03FE: No Sensor,0x03FF: Value Error)
357 )))
358 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
359 0x00B3=179μmol/m^^2^^•s
360
361 (0x09FE: No Sensor,0x9FF: Value Error)
362 )))
363 |(((
364 **Total Solar**
365
366 **Radiation**
367 )))|0x0D|0~2000W/m^^2^^|0x02|(((
368 0x0073/10=11.5W/m^^2^^
369
370 (0x4EFE: No Sensor,0x4EFF: Value Error)
371 )))
372
373 Below is an example payload:
374
375 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
376
377
378 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
379
380 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
381
382 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
383
384
385 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
386
387 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
388
389 Uplink 2: 0D 02 00 73
390
391
392
393
394 === 2.4.3 Decoder in TTN V3 ===
395
396 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
397
398
399 Download decoder for suitable platform from:
400
401 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
402
403 and put as below:
404
405 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
406
407
408
409 == 2.5 Show data on Application Server ==
410
411 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
412
413
414 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
415
416 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
417
418 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
419
420
421 Add TagoIO:
422
423 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
424
425 Authorization:
426
427 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
428
429
430 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
431
432 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
433
434
435
436 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
437
438 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
439
440 * AT Command Connection: See [[FAQ>>||anchor="H"]].
441 * LoRaWAN Downlink instruction for different platforms:
442
443 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
444
445
446 There are two kinds of commands to configure WSC1-L, they are:
447
448 * (% style="color:#4472c4" %)**General Commands**.
449
450 These commands are to configure:
451
452 * General system settings like: uplink interval.
453 * LoRaWAN protocol & radio related command.
454
455 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
456
457 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
458
459 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
460
461
462 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
463
464 These commands only valid for WSC1-L, as below:
465
466
467 == 3.1 Set Transmit Interval Time ==
468
469 Feature: Change LoRaWAN End Node Transmit Interval.
470
471 (% style="color:#037691" %)**AT Command: AT+TDC**
472
473 |**Command Example**|**Function**|**Response**
474 |AT+TDC?|Show current transmit Interval|(((
475 30000
476
477 OK
478
479 the interval is 30000ms = 30s
480 )))
481 |AT+TDC=60000|Set Transmit Interval|(((
482 OK
483
484 Set transmit interval to 60000ms = 60 seconds
485 )))
486
487 (% style="color:#037691" %)**Downlink Command: 0x01**
488
489 Format: Command Code (0x01) followed by 3 bytes time value.
490
491 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
492
493 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
494 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
495
496 == 3.2 Set Emergency Mode ==
497
498 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
499
500
501 (% style="color:#037691" %)**AT Command:**
502
503 |**Command Example**|**Function**|**Response**
504 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
505 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
506
507 (% style="color:#037691" %)**Downlink Command:**
508
509 * 0xE101     Same as: AT+ALARMMOD=1
510 * 0xE100     Same as: AT+ALARMMOD=0
511
512 == 3.3 Add or Delete RS485 Sensor ==
513
514 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
515
516 (% style="color:#037691" %)**AT Command: **
517
518 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
519
520 * Type_Code range: A1 ~~ A4
521 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
522 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
523 * Read_Length: RS485 response frame length supposed to receive. Max can receive
524 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
525 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
526 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
527
528 Example:
529
530 User need to change external sensor use the type code as address code.
531
532 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
533
534 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
535 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
536 | | | | | | | |
537
538 The response frame of the sensor is as follows:
539
540 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
541 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
542 | | | | | | | |
543
544 Then the following parameters should be:
545
546 * Address_Code range: A1
547 * Query_Length: 8
548 * Query_Command: A103000000019CAA
549 * Read_Length: 8
550 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
551 * has_CRC: 1
552 * timeout: 1500 (Fill in the test according to the actual situation)
553
554 So the input command is:
555
556 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
557
558
559 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
560
561 |Type Code|Length (Bytes)|Measured Value
562 |A1|2|0x000A
563
564 Related commands:
565
566 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
567
568 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
569
570
571 (% style="color:#037691" %)**Downlink Command:  **
572
573 **delete custom sensor A1:**
574
575 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
576
577 **Remove all custom sensors**
578
579 * 0xE5FF  
580
581 == 3.4 RS485 Test Command ==
582
583 (% style="color:#037691" %)**AT Command:**
584
585 |**Command Example**|**Function**|**Response**
586 |AT+RSWRITE=xxxxxx|(((
587 Send command to 485 sensor
588
589 Range : no more than 10 bytes
590 )))|OK
591
592 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
593
594 AT+RSWRITE=0103000001840A
595
596
597 (% style="color:#037691" %)**Downlink Command:**
598
599 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
600
601 == 3.5 RS485 response timeout ==
602
603 Feature: Set or get extended time to receive 485 sensor data.
604
605 (% style="color:#037691" %)**AT Command:**
606
607 |**Command Example**|**Function**|**Response**
608 |AT+DTR=1000|(((
609 Set response timeout to:
610
611 Range : 0~~10000
612 )))|OK
613
614 (% style="color:#037691" %)**Downlink Command:**
615
616 Format: Command Code (0xE0) followed by 3 bytes time value.
617
618 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
619
620 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
621 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
622
623 == 3.6 Set Sensor Type ==
624
625 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
626
627 See [[definition>>||anchor="H"]] for the sensor type.
628
629
630 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
631 | |A4|A3|A2|A1| | |
632 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
633 | | |Solar Radiation|PAR|PM10|PM2.5|(((
634 Rain
635
636 Gauge
637 )))|(((
638 Air
639
640 Pressure
641 )))
642 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
643 |Humidity|Temperature|CO2|(((
644 Rain/Snow
645
646 Detect
647 )))|illuminance|(((
648 Wind
649
650 Direction
651 )))|Wind Speed|BAT
652
653 (% style="color:#037691" %)**AT Command:**
654
655 |**Command Example**|**Function**|**Response**
656 |AT+STYPE=80221|Set sensor types|OK
657
658 Eg: The setting command **AT+STYPE=802212** means:
659
660 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
661 |0|0|0|0|1|0|0|0
662 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
663 |0|0|0|0|0|0|1|0
664 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
665 |0|0|1|0|0|0|0|1
666
667 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
668
669
670 (% style="color:#037691" %)**Downlink Command:**
671
672 * 0xE400802212     Same as: AT+STYPE=80221
673
674 (% style="color:red" %)**Note:**
675
676 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
677
678
679
680
681
682 = 4. Power consumption and battery =
683
684 == 4.1 Total Power Consumption ==
685
686 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
687
688
689 == 4.2 Reduce power consumption ==
690
691 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
692
693
694
695 == 4.3 Battery ==
696
697 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
698
699
700 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
701
702
703
704 = 5. Main Process Unit WSC1-L =
705
706 == 5.1 Features ==
707
708 * Wall Attachable.
709 * LoRaWAN v1.0.3 Class A protocol.
710 * RS485 / Modbus protocol
711 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
712 * AT Commands to change parameters
713 * Remote configure parameters via LoRaWAN Downlink
714 * Firmware upgradable via program port
715 * Powered by external 12v battery
716 * Back up rechargeable 1000mAh battery
717 * IP Rating: IP65
718 * Support default sensors or 3rd party RS485 sensors
719
720 == 5.2 Power Consumption ==
721
722 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
723
724
725
726 == 5.3 Storage & Operation Temperature ==
727
728 -20°C to +60°C
729
730
731 == 5.4 Pin Mapping ==
732
733 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
734
735
736 == 5.5 Mechanical ==
737
738 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
739
740
741
742
743 == 5.6 Connect to RS485 Sensors ==
744
745 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
746
747
748 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
749
750
751 Hardware Design for the Converter Board please see:
752
753 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
754
755
756
757
758
759 = 6. Weather Sensors =
760
761 == 6.1 Rain Gauge ~-~- WSS-01 ==
762
763 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
764
765
766 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
767
768 shape to make sure it works smoothly and is easy to clean.
769
770
771 WSS-01 is designed to support the Dragino Weather station solution.
772
773 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
774
775 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
776
777
778 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
779
780 to screw up and adjust the bottom horizontally.
781
782
783 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
784
785
786
787 === 6.1.1 Feature ===
788
789 * RS485 Rain Gauge
790 * Small dimension, easy to install
791 * Vents under funnel, avoid leaf or other things to avoid rain flow.
792 * ABS enclosure.
793 * Horizontal adjustable.
794
795 === 6.1.2 Specification ===
796
797 * Resolution: 0.2mm
798 * Accuracy: ±3%
799 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
800 * Input Power: DC 5~~24v
801 * Interface: RS485
802 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
803 * Working Humidity: <100% (no dewing)
804 * Power Consumption: 4mA @ 12v.
805
806 === 6.1.3 Dimension ===
807
808 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
809
810
811 === 6.1.4 Pin Mapping ===
812
813 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
814
815
816
817
818 === 6.1.5 Installation Notice ===
819
820 Do not power on while connect the cables. Double check the wiring before power on.
821
822 Installation Photo as reference:
823
824
825 (% style="color:#4472c4" %)** Install on Ground:**
826
827 WSS-01 Rain Gauge include screws so can install in ground directly .
828
829
830 (% style="color:#4472c4" %)** Install on pole:**
831
832 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
833
834 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
835
836
837 WS-K2: Bracket Kit for Pole installation:
838
839 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
840
841 WSSC-K2 dimension document, please see:
842
843 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
844
845
846
847 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
848
849 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
850
851 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
852
853
854 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
855
856
857 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
858
859 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
860
861
862 === 6.2.1 Feature ===
863
864 * RS485 wind speed / direction sensor
865 * PC enclosure, resist corrosion
866
867 === 6.2.2 Specification ===
868
869 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
870 * Wind direction range: 0 ~~ 360°
871 * Start wind speed: ≤0.3m/s
872 * Accuracy: ±(0.3+0.03V)m/s , ±1°
873 * Input Power: DC 5~~24v
874 * Interface: RS485
875 * Working Temperature: -30℃~70℃
876 * Working Humidity: <100% (no dewing)
877 * Power Consumption: 13mA ~~ 12v.
878 * Cable Length: 2 meters
879
880 === 6.2.3 Dimension ===
881
882 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
883
884
885 === 6.2.4 Pin Mapping ===
886
887 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
888
889
890 === 6.2.4 Angle Mapping ===
891
892 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
893
894
895 === 6.2.5 Installation Notice ===
896
897 Do not power on while connect the cables. Double check the wiring before power on.
898
899
900 The sensor must be installed with below direction, towards North.
901
902
903 |(((
904 North
905 )))
906
907 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
908
909
910
911
912
913
914
915
916 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
917
918 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
919
920
921 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
922
923
924 WSS-03 is designed to support the Dragino Weather station solution.
925
926 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
927
928 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
929
930
931 === 6.3.1 Feature ===
932
933 * RS485 CO2, PM2.5, PM10 sensor
934 * NDIR to measure CO2 with Internal Temperature Compensation
935 * Laser Beam Scattering to PM2.5 and PM10
936
937 === 6.3.2 Specification ===
938
939 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
940 * CO2 resolution: 1ppm
941 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
942 * PM2.5/PM10 resolution: 1μg/m3
943 * Input Power: DC 7 ~~ 24v
944 * Preheat time: 3min
945 * Interface: RS485
946 * Working Temperature:
947 ** CO2: 0℃~50℃;
948 ** PM2.5/PM10: -30 ~~ 50℃
949 * Working Humidity:
950 ** PM2.5/PM10: 15~80%RH (no dewing)
951 ** CO2: 0~95%RH
952 * Power Consumption: 50mA@ 12v.
953
954 === 6.3.3 Dimension ===
955
956 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
957
958
959 === 6.3.4 Pin Mapping ===
960
961 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
962
963
964 === 6.3.5 Installation Notice ===
965
966 Do not power on while connect the cables. Double check the wiring before power on.
967
968 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
969
970 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
971
972
973
974
975
976
977 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
978
979 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
980
981
982 WSS-04 has auto heating feature, this ensures measurement more reliable.
983
984
985 WSS-04 is designed to support the Dragino Weather station solution.
986
987 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
988
989 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
990
991
992
993 === 6.4.1 Feature ===
994
995 * RS485 Rain/Snow detect sensor
996 * Surface heating to dry
997 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
998
999 === 6.4.2 Specification ===
1000
1001 * Detect if there is rain or snow
1002 * Input Power: DC 12 ~~ 24v
1003 * Interface: RS485
1004 * Working Temperature: -30℃~70℃
1005 * Working Humidity: 10~90%RH
1006 * Power Consumption:
1007 ** No heating: 12mA @ 12v,
1008 ** heating: 94ma @ 12v.
1009
1010 === 6.4.3 Dimension ===
1011
1012 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1013
1014
1015 === 6.4.4 Pin Mapping ===
1016
1017 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1018
1019
1020 === 6.4.5 Installation Notice ===
1021
1022 Do not power on while connect the cables. Double check the wiring before power on.
1023
1024
1025 Install with 15°degree.
1026
1027 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1028
1029 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1030
1031
1032
1033
1034 === 6.4.6 Heating ===
1035
1036
1037 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1038
1039
1040
1041
1042
1043 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1044
1045 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1046
1047
1048 WSS-05 is designed to support the Dragino Weather station solution.
1049
1050 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1051
1052 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1053
1054
1055 === 6.5.1 Feature ===
1056
1057 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1058
1059 === 6.5.2 Specification ===
1060
1061 * Input Power: DC 12 ~~ 24v
1062 * Interface: RS485
1063 * Temperature Sensor Spec:
1064 ** Range: -30 ~~ 70℃
1065 ** resolution 0.1℃
1066 ** Accuracy: ±0.5℃
1067 * Humidity Sensor Spec:
1068 ** Range: 0 ~~ 100% RH
1069 ** resolution 0.1 %RH
1070 ** Accuracy: 3% RH
1071 * Pressure Sensor Spec:
1072 ** Range: 10~1100hPa
1073 ** Resolution: 0.1hPa
1074 ** Accuracy: ±0.1hPa
1075 * Illuminate sensor:
1076 ** Range: 0~2/20/200kLux
1077 ** Resolution: 10 Lux
1078 ** Accuracy: ±3%FS
1079 * Working Temperature: -30℃~70℃
1080 * Working Humidity: 10~90%RH
1081 * Power Consumption: 4mA @ 12v
1082
1083 === 6.5.3 Dimension ===
1084
1085 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1086
1087
1088 === 6.5.4 Pin Mapping ===
1089
1090 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1091
1092
1093 === 6.5.5 Installation Notice ===
1094
1095 Do not power on while connect the cables. Double check the wiring before power on.
1096
1097
1098
1099 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1100
1101
1102 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1103
1104
1105 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1106
1107 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1108
1109
1110 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1111
1112
1113 WSS-06 is designed to support the Dragino Weather station solution.
1114
1115
1116 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1117
1118 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1119
1120
1121
1122 === 6.6.1 Feature ===
1123
1124 * RS485 Total Solar Radiation sensor
1125 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1126 * Measure Reflected Radiation if sense area towards ground.
1127
1128 === 6.6.2 Specification ===
1129
1130 * Input Power: DC 5 ~~ 24v
1131 * Interface: RS485
1132 * Detect spectrum: 0.3~3μm(300~3000nm)
1133 * Measure strength range: 0~2000W/m2
1134 * Resolution: 0.1W/m2
1135 * Accuracy: ±3%
1136 * Yearly Stability: ≤±2%
1137 * Cosine response: ≤7% (@ Sun angle 10°)
1138 * Temperature Effect: ±2%(-10℃~40℃)
1139 * Working Temperature: -40℃~70℃
1140 * Working Humidity: 10~90%RH
1141 * Power Consumption: 4mA @ 12v
1142
1143 === 6.6.3 Dimension ===
1144
1145 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1146
1147
1148 === 6.6.4 Pin Mapping ===
1149
1150 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1151
1152
1153 === 6.6.5 Installation Notice ===
1154
1155 Do not power on while connect the cables. Double check the wiring before power on.
1156
1157 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1158
1159 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1160
1161
1162 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1163
1164 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1165
1166
1167 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1168
1169
1170
1171 WSS-07 is designed to support the Dragino Weather station solution.
1172
1173
1174 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1175
1176 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1177
1178
1179 === 6.7.1 Feature ===
1180
1181 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1182
1183
1184 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1185
1186
1187 === 6.7.2 Specification ===
1188
1189 * Input Power: DC 5 ~~ 24v
1190 * Interface: RS485
1191 * Response Spectrum: 400~700nm
1192 * Measure range: 0~2500μmol/m2•s
1193 * Resolution: 1μmol/m2•s
1194 * Accuracy: ±2%
1195 * Yearly Stability: ≤±2%
1196 * Working Temperature: -30℃~75℃
1197 * Working Humidity: 10~90%RH
1198 * Power Consumption: 3mA @ 12v
1199
1200 === 6.7.3 Dimension ===
1201
1202 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1203
1204
1205 === 6.7.4 Pin Mapping ===
1206
1207 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1208
1209
1210 === 6.7.5 Installation Notice ===
1211
1212 Do not power on while connect the cables. Double check the wiring before power on.
1213
1214
1215 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1216
1217 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1218
1219
1220 = 7. FAQ =
1221
1222 == 7.1 What else do I need to purchase to build Weather Station? ==
1223
1224 Below is the installation photo and structure:
1225
1226 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1227
1228
1229 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1230
1231
1232
1233
1234 == 7.2 How to upgrade firmware for WSC1-L? ==
1235
1236 Firmware Location & Change log:
1237
1238 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1239
1240
1241 Firmware Upgrade instruction:
1242
1243 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1244
1245
1246 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1247
1248 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1249
1250
1251
1252 == 7.4 Can I add my weather sensors? ==
1253
1254 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1255
1256
1257 = 8. Trouble Shooting =
1258
1259
1260
1261
1262
1263
1264 = 9. Order Info =
1265
1266
1267 == 9.1 Main Process Unit ==
1268
1269 Part Number: **WSC1-L-XX**
1270
1271 **XX**: The default frequency band
1272
1273 * **AS923**: LoRaWAN AS923 band
1274 * **AU915**: LoRaWAN AU915 band
1275 * **EU433**: LoRaWAN EU433 band
1276 * **EU868**: LoRaWAN EU868 band
1277 * **KR920**: LoRaWAN KR920 band
1278 * **US915**: LoRaWAN US915 band
1279 * **IN865**: LoRaWAN IN865 band
1280 * **CN470**: LoRaWAN CN470 band
1281
1282 == 9.2 Sensors ==
1283
1284 |**Sensor Model**|**Part Number**
1285 |**Rain Gauge**|WSS-01
1286 |**Rain Gauge installation Bracket for Pole**|WS-K2
1287 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1288 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1289 |**Rain/Snow Detect Sensor**|WSS-04
1290 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1291 |**Total Solar Radiation Sensor**|WSS-06
1292 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1293
1294 = 10. Support =
1295
1296 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1297 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1298
1299 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1300
1301
1302
1303
1304
1305 = 11. Appendix I: Field Installation Photo =
1306
1307
1308 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1309
1310
1311 **Storage Battery**: 12v,12AH li battery
1312
1313
1314 Wind Speed/Direction.
1315
1316 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1317
1318
1319 Total Solar Radiation sensor
1320
1321 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1322
1323
1324
1325 PAR Sensor
1326
1327 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1328
1329
1330 CO2/PM2.5/PM10 3 in 1 sensor
1331
1332 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1333
1334
1335 Rain / Snow Detect:
1336
1337 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1338
1339
1340 Rain Gauge.
1341
1342 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0