Version 14.7 by Xiaoling on 2022/06/24 13:44

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72
73
74 (% style="color:red" %)** Notice 2:**
75
76 Due to shipment and importation limitation, user is better to purchase below parts locally:
77
78 * Solar Panel
79 * Storage Battery
80 * MPPT Solar Recharger
81 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
82 * Cabinet.
83
84
85
86
87
88 == 2.2 How it works? ==
89
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91
92
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
102
103 == 2.3 Example to use for LoRaWAN network ==
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20220624115043-1.jpeg]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 **Add APP EUI in the application.**
125
126 [[image:1656042662694-311.png]]
127
128 [[image:1656042673910-429.png]]
129
130
131
132
133 **Choose Manually to add WSC1-L**
134
135 [[image:1656042695755-103.png]]
136
137
138
139 **Add APP KEY and DEV EUI**
140
141 [[image:1656042723199-746.png]]
142
143
144
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159 === 2.4.1 Uplink FPORT~=5, Device Status ===
160
161 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
162
163
164 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
165
166 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
167 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
168 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
169
170 [[image:1656043061044-343.png]]
171
172
173 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
174
175
176
177 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
178
179 For WSC1-L, this value is 0x0D.
180
181
182
183 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
184
185 0x0100, Means: v1.0.0 version.
186
187
188
189 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
190
191 *0x01: EU868
192
193 *0x02: US915
194
195 *0x03: IN865
196
197 *0x04: AU915
198
199 *0x05: KZ865
200
201 *0x06: RU864
202
203 *0x07: AS923
204
205 *0x08: AS923-1
206
207 *0x09: AS923-2
208
209 *0x0a: AS923-3
210
211
212
213 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
214
215 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
216
217
218
219 ==== (% style="color:#037691" %)**BAT:**(%%) ====
220
221 shows the battery voltage for WSC1-L MCU.
222
223 Ex1: 0x0BD6/1000 = 3.03 V
224
225
226
227 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
228
229 |Byte3|Byte2|Byte1
230
231 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
232
233
234 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
235 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
236 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
237 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
238 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
239 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
240
241 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
242
243 External sensors detected by WSC1-L include :
244
245 custom sensor A1,
246
247 PAR sensor (WSS-07),
248
249 Total Solar Radiation sensor (WSS-06),
250
251 CO2/PM2.5/PM10 (WSS-03),
252
253 Wind Speed/Direction (WSS-02)
254
255
256
257
258 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
259
260 (% style="color:#037691" %)**Downlink:0x26 01**
261
262 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
263
264
265
266
267 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
268
269 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
270
271 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
272
273
274 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
275
276 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
277
278 (% style="color:#4472c4" %)** Uplink Payload**:
279
280 |Type Code|Length (Bytes)|Measured Value
281
282 (% style="color:#4472c4" %)** Sensor Segment Define**:
283
284
285
286 Sensor Type Table:
287
288 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
289 |**Wind Speed**|0x01|(((
290 Speed: 0~60m/s
291
292 Level: 0~17
293 )))|0x03 |(((
294 0x0024/10=3.6m/s
295
296 (0x02FE: No Sensor, 0x02FF: Value Error)
297
298 0x02=2
299
300 (0x14: No Sensor, 0x15: Value Error)
301 )))
302 |**Wind Direction**|0x02|(((
303 Angel: 0~360°
304
305 Direction: 16 positions
306 )))|0x03|(((
307 0x029A/10=66.6°
308
309 (0x0EFE: No Sensor,0x0EFF: Value Error)
310
311 0X03=3(ENE)
312
313 (0x14: No Sensor,0x15: Value Error)
314 )))
315 |**Illumination**|0x03|0~200000Lux|0x02|(((
316 0x04D2 *10=12340Lux
317
318 (0x4EFE: No Sensor,0x4EFF: Value Error)
319 )))
320 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
321 0x00 (00) No Rain or snow detected
322
323 (0x02: No Sensor,0x03: Value Error)
324 )))
325 |**CO2**|0x05|0~5000ppm|0x02|(((
326 0x0378=888ppm
327
328 (0x14FE: No Sensor,0x14FF: Value Error)
329 )))
330 |**Temperature**|0x06|-30℃~70℃|0x02|(((
331 0xFFDD/10=-3.5℃
332
333 (0x02FE: No Sensor,0x02FF: Value Error)
334 )))
335 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
336 |**Pressure**|0x08|10~1100hPa|0x02|(((
337 0x2748/10=1005.6hPa
338
339 (0x00: No Sensor,0x01: Value Error)
340 )))
341 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
342 0x0000/10=0mm /min
343
344 (0x03FE: No Sensor,0x03FF: Value Error)
345 )))
346 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
347 0x0023=35μg/m^^3 ^^
348
349 (0x03FE: No Sensor,0x03FF: Value Error)
350 )))
351 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
352 0x002D=45μg/m^^3 ^^
353
354 (0x03FE: No Sensor,0x03FF: Value Error)
355 )))
356 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
357 0x00B3=179μmol/m^^2^^•s
358
359 (0x09FE: No Sensor,0x9FF: Value Error)
360 )))
361 |(((
362 **Total Solar**
363
364 **Radiation**
365 )))|0x0D|0~2000W/m^^2^^|0x02|(((
366 0x0073/10=11.5W/m^^2^^
367
368 (0x4EFE: No Sensor,0x4EFF: Value Error)
369 )))
370
371 Below is an example payload:
372
373 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
374
375
376 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
377
378 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
379
380 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
381
382
383 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
384
385 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
386
387 Uplink 2: 0D 02 00 73
388
389
390
391
392 === 2.4.3 Decoder in TTN V3 ===
393
394 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
395
396
397 Download decoder for suitable platform from:
398
399 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
400
401 and put as below:
402
403 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
404
405
406
407 == 2.5 Show data on Application Server ==
408
409 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
410
411
412 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
413
414 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
415
416 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
417
418
419 Add TagoIO:
420
421 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
422
423 Authorization:
424
425 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
426
427
428 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
429
430 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
431
432
433
434 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
435
436 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
437
438 * AT Command Connection: See [[FAQ>>||anchor="H"]].
439 * LoRaWAN Downlink instruction for different platforms:
440
441 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
442
443
444 There are two kinds of commands to configure WSC1-L, they are:
445
446 * (% style="color:#4472c4" %)**General Commands**.
447
448 These commands are to configure:
449
450 * General system settings like: uplink interval.
451 * LoRaWAN protocol & radio related command.
452
453 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
454
455 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
456
457 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
458
459
460 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
461
462 These commands only valid for WSC1-L, as below:
463
464
465 == 3.1 Set Transmit Interval Time ==
466
467 Feature: Change LoRaWAN End Node Transmit Interval.
468
469 (% style="color:#037691" %)**AT Command: AT+TDC**
470
471 |**Command Example**|**Function**|**Response**
472 |AT+TDC?|Show current transmit Interval|(((
473 30000
474
475 OK
476
477 the interval is 30000ms = 30s
478 )))
479 |AT+TDC=60000|Set Transmit Interval|(((
480 OK
481
482 Set transmit interval to 60000ms = 60 seconds
483 )))
484
485 (% style="color:#037691" %)**Downlink Command: 0x01**
486
487 Format: Command Code (0x01) followed by 3 bytes time value.
488
489 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
490
491 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
492 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
493
494 == 3.2 Set Emergency Mode ==
495
496 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
497
498
499 (% style="color:#037691" %)**AT Command:**
500
501 |**Command Example**|**Function**|**Response**
502 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
503 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
504
505 (% style="color:#037691" %)**Downlink Command:**
506
507 * 0xE101     Same as: AT+ALARMMOD=1
508 * 0xE100     Same as: AT+ALARMMOD=0
509
510 == 3.3 Add or Delete RS485 Sensor ==
511
512 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
513
514 (% style="color:#037691" %)**AT Command: **
515
516 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
517
518 * Type_Code range: A1 ~~ A4
519 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
520 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
521 * Read_Length: RS485 response frame length supposed to receive. Max can receive
522 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
523 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
524 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
525
526 Example:
527
528 User need to change external sensor use the type code as address code.
529
530 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
531
532 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
533 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
534 | | | | | | | |
535
536 The response frame of the sensor is as follows:
537
538 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
539 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
540 | | | | | | | |
541
542 Then the following parameters should be:
543
544 * Address_Code range: A1
545 * Query_Length: 8
546 * Query_Command: A103000000019CAA
547 * Read_Length: 8
548 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
549 * has_CRC: 1
550 * timeout: 1500 (Fill in the test according to the actual situation)
551
552 So the input command is:
553
554 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
555
556
557 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
558
559 |Type Code|Length (Bytes)|Measured Value
560 |A1|2|0x000A
561
562 Related commands:
563
564 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
565
566 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
567
568
569 (% style="color:#037691" %)**Downlink Command:  **
570
571 **delete custom sensor A1:**
572
573 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
574
575 **Remove all custom sensors**
576
577 * 0xE5FF  
578
579 == 3.4 RS485 Test Command ==
580
581 (% style="color:#037691" %)**AT Command:**
582
583 |**Command Example**|**Function**|**Response**
584 |AT+RSWRITE=xxxxxx|(((
585 Send command to 485 sensor
586
587 Range : no more than 10 bytes
588 )))|OK
589
590 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
591
592 AT+RSWRITE=0103000001840A
593
594
595 (% style="color:#037691" %)**Downlink Command:**
596
597 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
598
599 == 3.5 RS485 response timeout ==
600
601 Feature: Set or get extended time to receive 485 sensor data.
602
603 (% style="color:#037691" %)**AT Command:**
604
605 |**Command Example**|**Function**|**Response**
606 |AT+DTR=1000|(((
607 Set response timeout to:
608
609 Range : 0~~10000
610 )))|OK
611
612 (% style="color:#037691" %)**Downlink Command:**
613
614 Format: Command Code (0xE0) followed by 3 bytes time value.
615
616 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
617
618 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
619 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
620
621 == 3.6 Set Sensor Type ==
622
623 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
624
625 See [[definition>>||anchor="H"]] for the sensor type.
626
627
628 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
629 | |A4|A3|A2|A1| | |
630 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
631 | | |Solar Radiation|PAR|PM10|PM2.5|(((
632 Rain
633
634 Gauge
635 )))|(((
636 Air
637
638 Pressure
639 )))
640 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
641 |Humidity|Temperature|CO2|(((
642 Rain/Snow
643
644 Detect
645 )))|illuminance|(((
646 Wind
647
648 Direction
649 )))|Wind Speed|BAT
650
651 (% style="color:#037691" %)**AT Command:**
652
653 |**Command Example**|**Function**|**Response**
654 |AT+STYPE=80221|Set sensor types|OK
655
656 Eg: The setting command **AT+STYPE=802212** means:
657
658 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
659 |0|0|0|0|1|0|0|0
660 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
661 |0|0|0|0|0|0|1|0
662 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
663 |0|0|1|0|0|0|0|1
664
665 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
666
667
668 (% style="color:#037691" %)**Downlink Command:**
669
670 * 0xE400802212     Same as: AT+STYPE=80221
671
672 (% style="color:red" %)**Note:**
673
674 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
675
676
677
678
679
680 = 4. Power consumption and battery =
681
682 == 4.1 Total Power Consumption ==
683
684 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
685
686
687 == 4.2 Reduce power consumption ==
688
689 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
690
691
692
693 == 4.3 Battery ==
694
695 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
696
697
698 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
699
700
701
702 = 5. Main Process Unit WSC1-L =
703
704 == 5.1 Features ==
705
706 * Wall Attachable.
707 * LoRaWAN v1.0.3 Class A protocol.
708 * RS485 / Modbus protocol
709 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
710 * AT Commands to change parameters
711 * Remote configure parameters via LoRaWAN Downlink
712 * Firmware upgradable via program port
713 * Powered by external 12v battery
714 * Back up rechargeable 1000mAh battery
715 * IP Rating: IP65
716 * Support default sensors or 3rd party RS485 sensors
717
718 == 5.2 Power Consumption ==
719
720 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
721
722
723
724 == 5.3 Storage & Operation Temperature ==
725
726 -20°C to +60°C
727
728
729 == 5.4 Pin Mapping ==
730
731 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
732
733
734 == 5.5 Mechanical ==
735
736 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
737
738
739
740
741 == 5.6 Connect to RS485 Sensors ==
742
743 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
744
745
746 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
747
748
749 Hardware Design for the Converter Board please see:
750
751 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
752
753
754
755
756
757 = 6. Weather Sensors =
758
759 == 6.1 Rain Gauge ~-~- WSS-01 ==
760
761 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
762
763
764 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
765
766 shape to make sure it works smoothly and is easy to clean.
767
768
769 WSS-01 is designed to support the Dragino Weather station solution.
770
771 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
772
773 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
774
775
776 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
777
778 to screw up and adjust the bottom horizontally.
779
780
781 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
782
783
784
785 === 6.1.1 Feature ===
786
787 * RS485 Rain Gauge
788 * Small dimension, easy to install
789 * Vents under funnel, avoid leaf or other things to avoid rain flow.
790 * ABS enclosure.
791 * Horizontal adjustable.
792
793 === 6.1.2 Specification ===
794
795 * Resolution: 0.2mm
796 * Accuracy: ±3%
797 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
798 * Input Power: DC 5~~24v
799 * Interface: RS485
800 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
801 * Working Humidity: <100% (no dewing)
802 * Power Consumption: 4mA @ 12v.
803
804 === 6.1.3 Dimension ===
805
806 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
807
808
809 === 6.1.4 Pin Mapping ===
810
811 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
812
813
814
815
816 === 6.1.5 Installation Notice ===
817
818 Do not power on while connect the cables. Double check the wiring before power on.
819
820 Installation Photo as reference:
821
822
823 (% style="color:#4472c4" %)** Install on Ground:**
824
825 WSS-01 Rain Gauge include screws so can install in ground directly .
826
827
828 (% style="color:#4472c4" %)** Install on pole:**
829
830 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
831
832 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
833
834
835 WS-K2: Bracket Kit for Pole installation:
836
837 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
838
839 WSSC-K2 dimension document, please see:
840
841 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
842
843
844
845 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
846
847 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
848
849 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
850
851
852 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
853
854
855 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
856
857 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
858
859
860 === 6.2.1 Feature ===
861
862 * RS485 wind speed / direction sensor
863 * PC enclosure, resist corrosion
864
865 === 6.2.2 Specification ===
866
867 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
868 * Wind direction range: 0 ~~ 360°
869 * Start wind speed: ≤0.3m/s
870 * Accuracy: ±(0.3+0.03V)m/s , ±1°
871 * Input Power: DC 5~~24v
872 * Interface: RS485
873 * Working Temperature: -30℃~70℃
874 * Working Humidity: <100% (no dewing)
875 * Power Consumption: 13mA ~~ 12v.
876 * Cable Length: 2 meters
877
878 === 6.2.3 Dimension ===
879
880 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
881
882
883 === 6.2.4 Pin Mapping ===
884
885 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
886
887
888 === 6.2.4 Angle Mapping ===
889
890 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
891
892
893 === 6.2.5 Installation Notice ===
894
895 Do not power on while connect the cables. Double check the wiring before power on.
896
897
898 The sensor must be installed with below direction, towards North.
899
900
901 |(((
902 North
903 )))
904
905 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
906
907
908
909
910
911
912
913
914 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
915
916 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
917
918
919 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
920
921
922 WSS-03 is designed to support the Dragino Weather station solution.
923
924 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
925
926 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
927
928
929 === 6.3.1 Feature ===
930
931 * RS485 CO2, PM2.5, PM10 sensor
932 * NDIR to measure CO2 with Internal Temperature Compensation
933 * Laser Beam Scattering to PM2.5 and PM10
934
935 === 6.3.2 Specification ===
936
937 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
938 * CO2 resolution: 1ppm
939 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
940 * PM2.5/PM10 resolution: 1μg/m3
941 * Input Power: DC 7 ~~ 24v
942 * Preheat time: 3min
943 * Interface: RS485
944 * Working Temperature:
945 ** CO2: 0℃~50℃;
946 ** PM2.5/PM10: -30 ~~ 50℃
947 * Working Humidity:
948 ** PM2.5/PM10: 15~80%RH (no dewing)
949 ** CO2: 0~95%RH
950 * Power Consumption: 50mA@ 12v.
951
952 === 6.3.3 Dimension ===
953
954 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
955
956
957 === 6.3.4 Pin Mapping ===
958
959 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
960
961
962 === 6.3.5 Installation Notice ===
963
964 Do not power on while connect the cables. Double check the wiring before power on.
965
966 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
967
968 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
969
970
971
972
973
974
975 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
976
977 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
978
979
980 WSS-04 has auto heating feature, this ensures measurement more reliable.
981
982
983 WSS-04 is designed to support the Dragino Weather station solution.
984
985 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
986
987 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
988
989
990
991 === 6.4.1 Feature ===
992
993 * RS485 Rain/Snow detect sensor
994 * Surface heating to dry
995 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
996
997 === 6.4.2 Specification ===
998
999 * Detect if there is rain or snow
1000 * Input Power: DC 12 ~~ 24v
1001 * Interface: RS485
1002 * Working Temperature: -30℃~70℃
1003 * Working Humidity: 10~90%RH
1004 * Power Consumption:
1005 ** No heating: 12mA @ 12v,
1006 ** heating: 94ma @ 12v.
1007
1008 === 6.4.3 Dimension ===
1009
1010 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1011
1012
1013 === 6.4.4 Pin Mapping ===
1014
1015 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1016
1017
1018 === 6.4.5 Installation Notice ===
1019
1020 Do not power on while connect the cables. Double check the wiring before power on.
1021
1022
1023 Install with 15°degree.
1024
1025 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1026
1027 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1028
1029
1030
1031
1032 === 6.4.6 Heating ===
1033
1034
1035 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1036
1037
1038
1039
1040
1041 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1042
1043 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1044
1045
1046 WSS-05 is designed to support the Dragino Weather station solution.
1047
1048 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1049
1050 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1051
1052
1053 === 6.5.1 Feature ===
1054
1055 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1056
1057 === 6.5.2 Specification ===
1058
1059 * Input Power: DC 12 ~~ 24v
1060 * Interface: RS485
1061 * Temperature Sensor Spec:
1062 ** Range: -30 ~~ 70℃
1063 ** resolution 0.1℃
1064 ** Accuracy: ±0.5℃
1065 * Humidity Sensor Spec:
1066 ** Range: 0 ~~ 100% RH
1067 ** resolution 0.1 %RH
1068 ** Accuracy: 3% RH
1069 * Pressure Sensor Spec:
1070 ** Range: 10~1100hPa
1071 ** Resolution: 0.1hPa
1072 ** Accuracy: ±0.1hPa
1073 * Illuminate sensor:
1074 ** Range: 0~2/20/200kLux
1075 ** Resolution: 10 Lux
1076 ** Accuracy: ±3%FS
1077 * Working Temperature: -30℃~70℃
1078 * Working Humidity: 10~90%RH
1079 * Power Consumption: 4mA @ 12v
1080
1081 === 6.5.3 Dimension ===
1082
1083 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1084
1085
1086 === 6.5.4 Pin Mapping ===
1087
1088 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1089
1090
1091 === 6.5.5 Installation Notice ===
1092
1093 Do not power on while connect the cables. Double check the wiring before power on.
1094
1095
1096
1097 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1098
1099
1100 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1101
1102
1103 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1104
1105 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1106
1107
1108 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1109
1110
1111 WSS-06 is designed to support the Dragino Weather station solution.
1112
1113
1114 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1115
1116 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1117
1118
1119
1120 === 6.6.1 Feature ===
1121
1122 * RS485 Total Solar Radiation sensor
1123 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1124 * Measure Reflected Radiation if sense area towards ground.
1125
1126 === 6.6.2 Specification ===
1127
1128 * Input Power: DC 5 ~~ 24v
1129 * Interface: RS485
1130 * Detect spectrum: 0.3~3μm(300~3000nm)
1131 * Measure strength range: 0~2000W/m2
1132 * Resolution: 0.1W/m2
1133 * Accuracy: ±3%
1134 * Yearly Stability: ≤±2%
1135 * Cosine response: ≤7% (@ Sun angle 10°)
1136 * Temperature Effect: ±2%(-10℃~40℃)
1137 * Working Temperature: -40℃~70℃
1138 * Working Humidity: 10~90%RH
1139 * Power Consumption: 4mA @ 12v
1140
1141 === 6.6.3 Dimension ===
1142
1143 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1144
1145
1146 === 6.6.4 Pin Mapping ===
1147
1148 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1149
1150
1151 === 6.6.5 Installation Notice ===
1152
1153 Do not power on while connect the cables. Double check the wiring before power on.
1154
1155 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1156
1157 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1158
1159
1160 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1161
1162 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1163
1164
1165 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1166
1167
1168
1169 WSS-07 is designed to support the Dragino Weather station solution.
1170
1171
1172 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1173
1174 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1175
1176
1177 === 6.7.1 Feature ===
1178
1179 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1180
1181
1182 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1183
1184
1185 === 6.7.2 Specification ===
1186
1187 * Input Power: DC 5 ~~ 24v
1188 * Interface: RS485
1189 * Response Spectrum: 400~700nm
1190 * Measure range: 0~2500μmol/m2•s
1191 * Resolution: 1μmol/m2•s
1192 * Accuracy: ±2%
1193 * Yearly Stability: ≤±2%
1194 * Working Temperature: -30℃~75℃
1195 * Working Humidity: 10~90%RH
1196 * Power Consumption: 3mA @ 12v
1197
1198 === 6.7.3 Dimension ===
1199
1200 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1201
1202
1203 === 6.7.4 Pin Mapping ===
1204
1205 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1206
1207
1208 === 6.7.5 Installation Notice ===
1209
1210 Do not power on while connect the cables. Double check the wiring before power on.
1211
1212
1213 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1214
1215 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1216
1217
1218 = 7. FAQ =
1219
1220 == 7.1 What else do I need to purchase to build Weather Station? ==
1221
1222 Below is the installation photo and structure:
1223
1224 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1225
1226
1227 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1228
1229
1230
1231
1232 == 7.2 How to upgrade firmware for WSC1-L? ==
1233
1234 Firmware Location & Change log:
1235
1236 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1237
1238
1239 Firmware Upgrade instruction:
1240
1241 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1242
1243
1244 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1245
1246 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1247
1248
1249
1250 == 7.4 Can I add my weather sensors? ==
1251
1252 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1253
1254
1255 = 8. Trouble Shooting =
1256
1257
1258
1259
1260
1261
1262 = 9. Order Info =
1263
1264
1265 == 9.1 Main Process Unit ==
1266
1267 Part Number: **WSC1-L-XX**
1268
1269 **XX**: The default frequency band
1270
1271 * **AS923**: LoRaWAN AS923 band
1272 * **AU915**: LoRaWAN AU915 band
1273 * **EU433**: LoRaWAN EU433 band
1274 * **EU868**: LoRaWAN EU868 band
1275 * **KR920**: LoRaWAN KR920 band
1276 * **US915**: LoRaWAN US915 band
1277 * **IN865**: LoRaWAN IN865 band
1278 * **CN470**: LoRaWAN CN470 band
1279
1280 == 9.2 Sensors ==
1281
1282 |**Sensor Model**|**Part Number**
1283 |**Rain Gauge**|WSS-01
1284 |**Rain Gauge installation Bracket for Pole**|WS-K2
1285 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1286 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1287 |**Rain/Snow Detect Sensor**|WSS-04
1288 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1289 |**Total Solar Radiation Sensor**|WSS-06
1290 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1291
1292 = 10. Support =
1293
1294 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1295 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1296
1297 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1298
1299
1300
1301
1302
1303 = 11. Appendix I: Field Installation Photo =
1304
1305
1306 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1307
1308
1309 **Storage Battery**: 12v,12AH li battery
1310
1311
1312 Wind Speed/Direction.
1313
1314 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1315
1316
1317 Total Solar Radiation sensor
1318
1319 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1320
1321
1322
1323 PAR Sensor
1324
1325 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1326
1327
1328 CO2/PM2.5/PM10 3 in 1 sensor
1329
1330 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1331
1332
1333 Rain / Snow Detect:
1334
1335 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1336
1337
1338 Rain Gauge.
1339
1340 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]