Version 14.6 by Xiaoling on 2022/06/24 13:36

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
83
84
85 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
86
87 [[image:1656042192857-709.png]]
88
89
90 (% style="color:red" %)**Notice:**
91
92 1. WSC1-L will auto scan available weather sensors when power on or reboot.
93 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
94
95 == 2.3 Example to use for LoRaWAN network ==
96
97 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
98
99
100 [[image:1656042612899-422.png]]
101
102
103
104 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
105
106
107 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
108
109 Each WSC1-L is shipped with a sticker with the default device EUI as below:
110
111 [[image:image-20220624115043-1.jpeg]]
112
113
114 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
115
116 **Add APP EUI in the application.**
117
118 [[image:1656042662694-311.png]]
119
120 [[image:1656042673910-429.png]]
121
122
123
124
125 **Choose Manually to add WSC1-L**
126
127 [[image:1656042695755-103.png]]
128
129
130
131 **Add APP KEY and DEV EUI**
132
133 [[image:1656042723199-746.png]]
134
135
136
137 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
138
139
140 [[image:1656042745346-283.png]]
141
142
143
144 == 2.4 Uplink Payload ==
145
146 Uplink payloads include two types: Valid Sensor Value and other status / control command.
147
148 * Valid Sensor Value: Use FPORT=2
149 * Other control command: Use FPORT other than 2.
150
151 === 2.4.1 Uplink FPORT~=5, Device Status ===
152
153 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
154
155
156 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
157
158 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
159 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
160 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
161
162 [[image:1656043061044-343.png]]
163
164
165 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
166
167
168
169 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
170
171 For WSC1-L, this value is 0x0D.
172
173
174
175 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
176
177 0x0100, Means: v1.0.0 version.
178
179
180
181 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
182
183 *0x01: EU868
184
185 *0x02: US915
186
187 *0x03: IN865
188
189 *0x04: AU915
190
191 *0x05: KZ865
192
193 *0x06: RU864
194
195 *0x07: AS923
196
197 *0x08: AS923-1
198
199 *0x09: AS923-2
200
201 *0x0a: AS923-3
202
203
204
205 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
206
207 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
208
209
210
211 ==== (% style="color:#037691" %)**BAT:**(%%) ====
212
213 shows the battery voltage for WSC1-L MCU.
214
215 Ex1: 0x0BD6/1000 = 3.03 V
216
217
218
219 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
220
221 |Byte3|Byte2|Byte1
222
223 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
224
225
226 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
227 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
228 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
229 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
230 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
231 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
232
233 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
234
235 External sensors detected by WSC1-L include :
236
237 custom sensor A1,
238
239 PAR sensor (WSS-07),
240
241 Total Solar Radiation sensor (WSS-06),
242
243 CO2/PM2.5/PM10 (WSS-03),
244
245 Wind Speed/Direction (WSS-02)
246
247
248
249
250 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
251
252 (% style="color:#037691" %)**Downlink:0x26 01**
253
254 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
255
256
257
258
259 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
260
261 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
262
263 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
264
265
266 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
267
268 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
269
270 (% style="color:#4472c4" %)** Uplink Payload**:
271
272 |Type Code|Length (Bytes)|Measured Value
273
274 (% style="color:#4472c4" %)** Sensor Segment Define**:
275
276
277
278 Sensor Type Table:
279
280 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
281 |**Wind Speed**|0x01|(((
282 Speed: 0~60m/s
283
284 Level: 0~17
285 )))|0x03 |(((
286 0x0024/10=3.6m/s
287
288 (0x02FE: No Sensor, 0x02FF: Value Error)
289
290 0x02=2
291
292 (0x14: No Sensor, 0x15: Value Error)
293 )))
294 |**Wind Direction**|0x02|(((
295 Angel: 0~360°
296
297 Direction: 16 positions
298 )))|0x03|(((
299 0x029A/10=66.6°
300
301 (0x0EFE: No Sensor,0x0EFF: Value Error)
302
303 0X03=3(ENE)
304
305 (0x14: No Sensor,0x15: Value Error)
306 )))
307 |**Illumination**|0x03|0~200000Lux|0x02|(((
308 0x04D2 *10=12340Lux
309
310 (0x4EFE: No Sensor,0x4EFF: Value Error)
311 )))
312 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
313 0x00 (00) No Rain or snow detected
314
315 (0x02: No Sensor,0x03: Value Error)
316 )))
317 |**CO2**|0x05|0~5000ppm|0x02|(((
318 0x0378=888ppm
319
320 (0x14FE: No Sensor,0x14FF: Value Error)
321 )))
322 |**Temperature**|0x06|-30℃~70℃|0x02|(((
323 0xFFDD/10=-3.5℃
324
325 (0x02FE: No Sensor,0x02FF: Value Error)
326 )))
327 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
328 |**Pressure**|0x08|10~1100hPa|0x02|(((
329 0x2748/10=1005.6hPa
330
331 (0x00: No Sensor,0x01: Value Error)
332 )))
333 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
334 0x0000/10=0mm /min
335
336 (0x03FE: No Sensor,0x03FF: Value Error)
337 )))
338 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
339 0x0023=35μg/m^^3 ^^
340
341 (0x03FE: No Sensor,0x03FF: Value Error)
342 )))
343 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
344 0x002D=45μg/m^^3 ^^
345
346 (0x03FE: No Sensor,0x03FF: Value Error)
347 )))
348 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
349 0x00B3=179μmol/m^^2^^•s
350
351 (0x09FE: No Sensor,0x9FF: Value Error)
352 )))
353 |(((
354 **Total Solar**
355
356 **Radiation**
357 )))|0x0D|0~2000W/m^^2^^|0x02|(((
358 0x0073/10=11.5W/m^^2^^
359
360 (0x4EFE: No Sensor,0x4EFF: Value Error)
361 )))
362
363 Below is an example payload:
364
365 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
366
367
368 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
369
370 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
371
372 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
373
374
375 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
376
377 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
378
379 Uplink 2: 0D 02 00 73
380
381
382
383
384 === 2.4.3 Decoder in TTN V3 ===
385
386 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
387
388
389 Download decoder for suitable platform from:
390
391 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
392
393 and put as below:
394
395 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
396
397
398
399 == 2.5 Show data on Application Server ==
400
401 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
402
403
404 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
405
406 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
407
408 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
409
410
411 Add TagoIO:
412
413 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
414
415 Authorization:
416
417 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
418
419
420 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
421
422 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
423
424
425
426 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
427
428 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
429
430 * AT Command Connection: See [[FAQ>>||anchor="H"]].
431 * LoRaWAN Downlink instruction for different platforms:
432
433 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
434
435
436 There are two kinds of commands to configure WSC1-L, they are:
437
438 * (% style="color:#4472c4" %)**General Commands**.
439
440 These commands are to configure:
441
442 * General system settings like: uplink interval.
443 * LoRaWAN protocol & radio related command.
444
445 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
446
447 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
448
449 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
450
451
452 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
453
454 These commands only valid for WSC1-L, as below:
455
456
457 == 3.1 Set Transmit Interval Time ==
458
459 Feature: Change LoRaWAN End Node Transmit Interval.
460
461 (% style="color:#037691" %)**AT Command: AT+TDC**
462
463 |**Command Example**|**Function**|**Response**
464 |AT+TDC?|Show current transmit Interval|(((
465 30000
466
467 OK
468
469 the interval is 30000ms = 30s
470 )))
471 |AT+TDC=60000|Set Transmit Interval|(((
472 OK
473
474 Set transmit interval to 60000ms = 60 seconds
475 )))
476
477 (% style="color:#037691" %)**Downlink Command: 0x01**
478
479 Format: Command Code (0x01) followed by 3 bytes time value.
480
481 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
482
483 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
484 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
485
486 == 3.2 Set Emergency Mode ==
487
488 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
489
490
491 (% style="color:#037691" %)**AT Command:**
492
493 |**Command Example**|**Function**|**Response**
494 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
495 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
496
497 (% style="color:#037691" %)**Downlink Command:**
498
499 * 0xE101     Same as: AT+ALARMMOD=1
500 * 0xE100     Same as: AT+ALARMMOD=0
501
502 == 3.3 Add or Delete RS485 Sensor ==
503
504 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
505
506 (% style="color:#037691" %)**AT Command: **
507
508 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
509
510 * Type_Code range: A1 ~~ A4
511 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
512 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
513 * Read_Length: RS485 response frame length supposed to receive. Max can receive
514 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
515 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
516 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
517
518 Example:
519
520 User need to change external sensor use the type code as address code.
521
522 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
523
524 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
525 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
526 | | | | | | | |
527
528 The response frame of the sensor is as follows:
529
530 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
531 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
532 | | | | | | | |
533
534 Then the following parameters should be:
535
536 * Address_Code range: A1
537 * Query_Length: 8
538 * Query_Command: A103000000019CAA
539 * Read_Length: 8
540 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
541 * has_CRC: 1
542 * timeout: 1500 (Fill in the test according to the actual situation)
543
544 So the input command is:
545
546 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
547
548
549 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
550
551 |Type Code|Length (Bytes)|Measured Value
552 |A1|2|0x000A
553
554 Related commands:
555
556 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
557
558 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
559
560
561 (% style="color:#037691" %)**Downlink Command:  **
562
563 **delete custom sensor A1:**
564
565 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
566
567 **Remove all custom sensors**
568
569 * 0xE5FF  
570
571 == 3.4 RS485 Test Command ==
572
573 (% style="color:#037691" %)**AT Command:**
574
575 |**Command Example**|**Function**|**Response**
576 |AT+RSWRITE=xxxxxx|(((
577 Send command to 485 sensor
578
579 Range : no more than 10 bytes
580 )))|OK
581
582 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
583
584 AT+RSWRITE=0103000001840A
585
586
587 (% style="color:#037691" %)**Downlink Command:**
588
589 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
590
591 == 3.5 RS485 response timeout ==
592
593 Feature: Set or get extended time to receive 485 sensor data.
594
595 (% style="color:#037691" %)**AT Command:**
596
597 |**Command Example**|**Function**|**Response**
598 |AT+DTR=1000|(((
599 Set response timeout to:
600
601 Range : 0~~10000
602 )))|OK
603
604 (% style="color:#037691" %)**Downlink Command:**
605
606 Format: Command Code (0xE0) followed by 3 bytes time value.
607
608 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
609
610 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
611 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
612
613 == 3.6 Set Sensor Type ==
614
615 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
616
617 See [[definition>>||anchor="H"]] for the sensor type.
618
619
620 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
621 | |A4|A3|A2|A1| | |
622 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
623 | | |Solar Radiation|PAR|PM10|PM2.5|(((
624 Rain
625
626 Gauge
627 )))|(((
628 Air
629
630 Pressure
631 )))
632 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
633 |Humidity|Temperature|CO2|(((
634 Rain/Snow
635
636 Detect
637 )))|illuminance|(((
638 Wind
639
640 Direction
641 )))|Wind Speed|BAT
642
643 (% style="color:#037691" %)**AT Command:**
644
645 |**Command Example**|**Function**|**Response**
646 |AT+STYPE=80221|Set sensor types|OK
647
648 Eg: The setting command **AT+STYPE=802212** means:
649
650 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
651 |0|0|0|0|1|0|0|0
652 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
653 |0|0|0|0|0|0|1|0
654 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
655 |0|0|1|0|0|0|0|1
656
657 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
658
659
660 (% style="color:#037691" %)**Downlink Command:**
661
662 * 0xE400802212     Same as: AT+STYPE=80221
663
664 (% style="color:red" %)**Note:**
665
666 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
667
668
669
670
671
672 = 4. Power consumption and battery =
673
674 == 4.1 Total Power Consumption ==
675
676 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
677
678
679 == 4.2 Reduce power consumption ==
680
681 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
682
683
684
685 == 4.3 Battery ==
686
687 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
688
689
690 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
691
692
693
694 = 5. Main Process Unit WSC1-L =
695
696 == 5.1 Features ==
697
698 * Wall Attachable.
699 * LoRaWAN v1.0.3 Class A protocol.
700 * RS485 / Modbus protocol
701 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
702 * AT Commands to change parameters
703 * Remote configure parameters via LoRaWAN Downlink
704 * Firmware upgradable via program port
705 * Powered by external 12v battery
706 * Back up rechargeable 1000mAh battery
707 * IP Rating: IP65
708 * Support default sensors or 3rd party RS485 sensors
709
710 == 5.2 Power Consumption ==
711
712 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
713
714
715
716 == 5.3 Storage & Operation Temperature ==
717
718 -20°C to +60°C
719
720
721 == 5.4 Pin Mapping ==
722
723 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
724
725
726 == 5.5 Mechanical ==
727
728 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
729
730
731
732
733 == 5.6 Connect to RS485 Sensors ==
734
735 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
736
737
738 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
739
740
741 Hardware Design for the Converter Board please see:
742
743 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
744
745
746
747
748
749 = 6. Weather Sensors =
750
751 == 6.1 Rain Gauge ~-~- WSS-01 ==
752
753 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
754
755
756 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
757
758 shape to make sure it works smoothly and is easy to clean.
759
760
761 WSS-01 is designed to support the Dragino Weather station solution.
762
763 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
764
765 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
766
767
768 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
769
770 to screw up and adjust the bottom horizontally.
771
772
773 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
774
775
776
777 === 6.1.1 Feature ===
778
779 * RS485 Rain Gauge
780 * Small dimension, easy to install
781 * Vents under funnel, avoid leaf or other things to avoid rain flow.
782 * ABS enclosure.
783 * Horizontal adjustable.
784
785 === 6.1.2 Specification ===
786
787 * Resolution: 0.2mm
788 * Accuracy: ±3%
789 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
790 * Input Power: DC 5~~24v
791 * Interface: RS485
792 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
793 * Working Humidity: <100% (no dewing)
794 * Power Consumption: 4mA @ 12v.
795
796 === 6.1.3 Dimension ===
797
798 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
799
800
801 === 6.1.4 Pin Mapping ===
802
803 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
804
805
806
807
808 === 6.1.5 Installation Notice ===
809
810 Do not power on while connect the cables. Double check the wiring before power on.
811
812 Installation Photo as reference:
813
814
815 (% style="color:#4472c4" %)** Install on Ground:**
816
817 WSS-01 Rain Gauge include screws so can install in ground directly .
818
819
820 (% style="color:#4472c4" %)** Install on pole:**
821
822 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
823
824 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
825
826
827 WS-K2: Bracket Kit for Pole installation:
828
829 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
830
831 WSSC-K2 dimension document, please see:
832
833 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
834
835
836
837 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
838
839 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
840
841 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
842
843
844 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
845
846
847 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
848
849 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
850
851
852 === 6.2.1 Feature ===
853
854 * RS485 wind speed / direction sensor
855 * PC enclosure, resist corrosion
856
857 === 6.2.2 Specification ===
858
859 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
860 * Wind direction range: 0 ~~ 360°
861 * Start wind speed: ≤0.3m/s
862 * Accuracy: ±(0.3+0.03V)m/s , ±1°
863 * Input Power: DC 5~~24v
864 * Interface: RS485
865 * Working Temperature: -30℃~70℃
866 * Working Humidity: <100% (no dewing)
867 * Power Consumption: 13mA ~~ 12v.
868 * Cable Length: 2 meters
869
870 === 6.2.3 Dimension ===
871
872 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
873
874
875 === 6.2.4 Pin Mapping ===
876
877 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
878
879
880 === 6.2.4 Angle Mapping ===
881
882 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
883
884
885 === 6.2.5 Installation Notice ===
886
887 Do not power on while connect the cables. Double check the wiring before power on.
888
889
890 The sensor must be installed with below direction, towards North.
891
892
893 |(((
894 North
895 )))
896
897 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
898
899
900
901
902
903
904
905
906 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
907
908 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
909
910
911 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
912
913
914 WSS-03 is designed to support the Dragino Weather station solution.
915
916 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
917
918 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
919
920
921 === 6.3.1 Feature ===
922
923 * RS485 CO2, PM2.5, PM10 sensor
924 * NDIR to measure CO2 with Internal Temperature Compensation
925 * Laser Beam Scattering to PM2.5 and PM10
926
927 === 6.3.2 Specification ===
928
929 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
930 * CO2 resolution: 1ppm
931 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
932 * PM2.5/PM10 resolution: 1μg/m3
933 * Input Power: DC 7 ~~ 24v
934 * Preheat time: 3min
935 * Interface: RS485
936 * Working Temperature:
937 ** CO2: 0℃~50℃;
938 ** PM2.5/PM10: -30 ~~ 50℃
939 * Working Humidity:
940 ** PM2.5/PM10: 15~80%RH (no dewing)
941 ** CO2: 0~95%RH
942 * Power Consumption: 50mA@ 12v.
943
944 === 6.3.3 Dimension ===
945
946 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
947
948
949 === 6.3.4 Pin Mapping ===
950
951 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
952
953
954 === 6.3.5 Installation Notice ===
955
956 Do not power on while connect the cables. Double check the wiring before power on.
957
958 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
959
960 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
961
962
963
964
965
966
967 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
968
969 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
970
971
972 WSS-04 has auto heating feature, this ensures measurement more reliable.
973
974
975 WSS-04 is designed to support the Dragino Weather station solution.
976
977 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
978
979 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
980
981
982
983 === 6.4.1 Feature ===
984
985 * RS485 Rain/Snow detect sensor
986 * Surface heating to dry
987 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
988
989 === 6.4.2 Specification ===
990
991 * Detect if there is rain or snow
992 * Input Power: DC 12 ~~ 24v
993 * Interface: RS485
994 * Working Temperature: -30℃~70℃
995 * Working Humidity: 10~90%RH
996 * Power Consumption:
997 ** No heating: 12mA @ 12v,
998 ** heating: 94ma @ 12v.
999
1000 === 6.4.3 Dimension ===
1001
1002 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1003
1004
1005 === 6.4.4 Pin Mapping ===
1006
1007 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1008
1009
1010 === 6.4.5 Installation Notice ===
1011
1012 Do not power on while connect the cables. Double check the wiring before power on.
1013
1014
1015 Install with 15°degree.
1016
1017 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1018
1019 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1020
1021
1022
1023
1024 === 6.4.6 Heating ===
1025
1026
1027 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1028
1029
1030
1031
1032
1033 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1034
1035 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1036
1037
1038 WSS-05 is designed to support the Dragino Weather station solution.
1039
1040 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1041
1042 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1043
1044
1045 === 6.5.1 Feature ===
1046
1047 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1048
1049 === 6.5.2 Specification ===
1050
1051 * Input Power: DC 12 ~~ 24v
1052 * Interface: RS485
1053 * Temperature Sensor Spec:
1054 ** Range: -30 ~~ 70℃
1055 ** resolution 0.1℃
1056 ** Accuracy: ±0.5℃
1057 * Humidity Sensor Spec:
1058 ** Range: 0 ~~ 100% RH
1059 ** resolution 0.1 %RH
1060 ** Accuracy: 3% RH
1061 * Pressure Sensor Spec:
1062 ** Range: 10~1100hPa
1063 ** Resolution: 0.1hPa
1064 ** Accuracy: ±0.1hPa
1065 * Illuminate sensor:
1066 ** Range: 0~2/20/200kLux
1067 ** Resolution: 10 Lux
1068 ** Accuracy: ±3%FS
1069 * Working Temperature: -30℃~70℃
1070 * Working Humidity: 10~90%RH
1071 * Power Consumption: 4mA @ 12v
1072
1073 === 6.5.3 Dimension ===
1074
1075 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1076
1077
1078 === 6.5.4 Pin Mapping ===
1079
1080 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1081
1082
1083 === 6.5.5 Installation Notice ===
1084
1085 Do not power on while connect the cables. Double check the wiring before power on.
1086
1087
1088
1089 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1090
1091
1092 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1093
1094
1095 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1096
1097 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1098
1099
1100 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1101
1102
1103 WSS-06 is designed to support the Dragino Weather station solution.
1104
1105
1106 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1107
1108 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1109
1110
1111
1112 === 6.6.1 Feature ===
1113
1114 * RS485 Total Solar Radiation sensor
1115 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1116 * Measure Reflected Radiation if sense area towards ground.
1117
1118 === 6.6.2 Specification ===
1119
1120 * Input Power: DC 5 ~~ 24v
1121 * Interface: RS485
1122 * Detect spectrum: 0.3~3μm(300~3000nm)
1123 * Measure strength range: 0~2000W/m2
1124 * Resolution: 0.1W/m2
1125 * Accuracy: ±3%
1126 * Yearly Stability: ≤±2%
1127 * Cosine response: ≤7% (@ Sun angle 10°)
1128 * Temperature Effect: ±2%(-10℃~40℃)
1129 * Working Temperature: -40℃~70℃
1130 * Working Humidity: 10~90%RH
1131 * Power Consumption: 4mA @ 12v
1132
1133 === 6.6.3 Dimension ===
1134
1135 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1136
1137
1138 === 6.6.4 Pin Mapping ===
1139
1140 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1141
1142
1143 === 6.6.5 Installation Notice ===
1144
1145 Do not power on while connect the cables. Double check the wiring before power on.
1146
1147 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1148
1149 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1150
1151
1152 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1153
1154 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1155
1156
1157 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1158
1159
1160
1161 WSS-07 is designed to support the Dragino Weather station solution.
1162
1163
1164 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1165
1166 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1167
1168
1169 === 6.7.1 Feature ===
1170
1171 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1172
1173
1174 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1175
1176
1177 === 6.7.2 Specification ===
1178
1179 * Input Power: DC 5 ~~ 24v
1180 * Interface: RS485
1181 * Response Spectrum: 400~700nm
1182 * Measure range: 0~2500μmol/m2•s
1183 * Resolution: 1μmol/m2•s
1184 * Accuracy: ±2%
1185 * Yearly Stability: ≤±2%
1186 * Working Temperature: -30℃~75℃
1187 * Working Humidity: 10~90%RH
1188 * Power Consumption: 3mA @ 12v
1189
1190 === 6.7.3 Dimension ===
1191
1192 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1193
1194
1195 === 6.7.4 Pin Mapping ===
1196
1197 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1198
1199
1200 === 6.7.5 Installation Notice ===
1201
1202 Do not power on while connect the cables. Double check the wiring before power on.
1203
1204
1205 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1206
1207 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1208
1209
1210 = 7. FAQ =
1211
1212 == 7.1 What else do I need to purchase to build Weather Station? ==
1213
1214 Below is the installation photo and structure:
1215
1216 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1217
1218
1219 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1220
1221
1222
1223
1224 == 7.2 How to upgrade firmware for WSC1-L? ==
1225
1226 Firmware Location & Change log:
1227
1228 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1229
1230
1231 Firmware Upgrade instruction:
1232
1233 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1234
1235
1236 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1237
1238 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1239
1240
1241
1242 == 7.4 Can I add my weather sensors? ==
1243
1244 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1245
1246
1247 = 8. Trouble Shooting =
1248
1249
1250
1251
1252
1253
1254 = 9. Order Info =
1255
1256
1257 == 9.1 Main Process Unit ==
1258
1259 Part Number: **WSC1-L-XX**
1260
1261 **XX**: The default frequency band
1262
1263 * **AS923**: LoRaWAN AS923 band
1264 * **AU915**: LoRaWAN AU915 band
1265 * **EU433**: LoRaWAN EU433 band
1266 * **EU868**: LoRaWAN EU868 band
1267 * **KR920**: LoRaWAN KR920 band
1268 * **US915**: LoRaWAN US915 band
1269 * **IN865**: LoRaWAN IN865 band
1270 * **CN470**: LoRaWAN CN470 band
1271
1272 == 9.2 Sensors ==
1273
1274 |**Sensor Model**|**Part Number**
1275 |**Rain Gauge**|WSS-01
1276 |**Rain Gauge installation Bracket for Pole**|WS-K2
1277 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1278 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1279 |**Rain/Snow Detect Sensor**|WSS-04
1280 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1281 |**Total Solar Radiation Sensor**|WSS-06
1282 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1283
1284 = 10. Support =
1285
1286 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1287 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1288
1289 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1290
1291
1292
1293
1294
1295 = 11. Appendix I: Field Installation Photo =
1296
1297
1298 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1299
1300
1301 **Storage Battery**: 12v,12AH li battery
1302
1303
1304 Wind Speed/Direction.
1305
1306 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1307
1308
1309 Total Solar Radiation sensor
1310
1311 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1312
1313
1314
1315 PAR Sensor
1316
1317 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1318
1319
1320 CO2/PM2.5/PM10 3 in 1 sensor
1321
1322 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1323
1324
1325 Rain / Snow Detect:
1326
1327 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1328
1329
1330 Rain Gauge.
1331
1332 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]