Version 130.1 by Mengting Qiu on 2025/06/10 18:53

Show last authors
1
2
3 [[image:1656035424980-692.png||data-xwiki-image-style-alignment="center" height="533" width="386"]]
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 Overview ==
25
26
27 (((
28 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
29 )))
30
31 (((
32 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
33 )))
34
35 (((
36 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in Li-ion backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
37 )))
38
39 (((
40 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
41 )))
42
43
44 = 2. How to use =
45
46 == 2.1 Installation ==
47
48
49 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
50
51
52 [[image:1656041948552-849.png]]
53
54
55 (% style="color:blue" %)** Wiring:**
56
57 ~1. WSC1-L and sensors all powered by solar power via MPPT
58
59 2. WSC1-L and sensors connect to each other via RS485/Modbus.
60
61 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
62
63
64 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
65
66 [[image:1656042136605-251.png]]
67
68
69 (% style="color:red" %)**Notice 1:**
70
71 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
72 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
73 * Weather sensors won't work if solar panel and storage battery fails.
74
75 (% style="color:red" %)**Notice 2:**
76
77 Due to shipment and importation limitation, user is better to purchase below parts locally:
78
79 * Solar Panel
80 * Storage Battery
81 * MPPT Solar Recharger
82 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
83 * Cabinet.
84
85 == 2.2 How it works? ==
86
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109 [[image:1656042612899-422.png]]
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128
129 **Create the application.**
130
131 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
132
133 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
134
135
136 **Add devices to the created Application.**
137
138 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
139
140 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
141
142
143 **Enter end device specifics manually.**
144
145 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
146
147
148 **Add DevEUI and AppKey.**
149
150 **Customize a platform ID for the device.**
151
152 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
153
154
155 (% style="color:blue" %)**Step 2**(%%): Add decoder.
156
157 In TTN, user can add a custom payload so it shows friendly reading.
158
159 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/Weather%20Station>>https://github.com/dragino/dragino-end-node-decoder/tree/main/Weather%20Station]]
160
161 Below is TTN screen shot:
162
163 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
164
165 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
166
167
168 (((
169 (% style="color:blue" %)**Step 3**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
170 )))
171
172 [[image:1656042745346-283.png]]
173
174
175 == 2.4 Uplink Payload ==
176
177
178 Uplink payloads include two types: Valid Sensor Value and other status / control command.
179
180 * Valid Sensor Value: Use FPORT=2
181 * Other control command: Use FPORT other than 2.
182
183 === 2.4.1 Uplink FPORT~=5, Device Status ===
184
185
186 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
187
188
189 (((
190 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
191 )))
192
193 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
194 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 60px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**3**
195 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
196
197 [[image:1656043061044-343.png]]
198
199
200 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
201
202
203 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
204
205 For WSC1-L, this value is 0x0D.
206
207
208 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
209
210 0x0100, Means: v1.0.0 version.
211
212
213 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
214
215 0x01: EU868
216
217 0x02: US915
218
219 0x03: IN865
220
221 0x04: AU915
222
223 0x05: KZ865
224
225 0x06: RU864
226
227 0x07: AS923
228
229 0x08: AS923-1
230
231 0x09: AS923-2
232
233 0x0a: AS923-3
234
235
236 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
237
238 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
239
240
241 ==== (% style="color:#037691" %)**BAT:**(%%) ====
242
243 (((
244 shows the battery voltage for WSC1-L MCU.
245 )))
246
247 (((
248 Ex1: 0x0BD6/1000 = 3.03 V
249 )))
250
251
252 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
253
254 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
255 |Byte3|Byte2|Byte1
256
257 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
258
259 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
260 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:110px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
261 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
262 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
263 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
264 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
265 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
266
267 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
268
269 External sensors detected by WSC1-L include :
270
271 custom sensor A1,
272
273 PAR sensor (WSS-07),
274
275 Total Solar Radiation sensor (WSS-06),
276
277 CO2/PM2.5/PM10 (WSS-03),
278
279 Wind Speed/Direction (WSS-02)
280
281
282 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
283
284 (% style="color:#037691" %)**Downlink:0x26 01**
285
286 [[image:1656049673488-415.png]]
287
288
289 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
290
291
292 ==== 2.4.2.1 paylaod before firmware V1.3.1(including v1.3.1) ====
293
294 (((
295 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
296 )))
297
298 (((
299 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
300 )))
301
302 (((
303 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
304 )))
305
306
307 (% style="color:#4472c4" %)** Uplink Payload**:
308
309 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
310 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
311
312 (% style="color:#4472c4" %)** Sensor Segment Define**:
313
314 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
315 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
316
317 (% style="color:#4472c4" %)**Sensor Type Table:**
318
319 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
320 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
321 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
322 Speed: 0 ~~ 60m/s
323 Level: 0 ~~ 17
324 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
325 (((
326 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
327 )))
328
329 (((
330 0x02=2 (0x14: No Sensor, 0x15: Value Error)
331 )))
332 )))
333 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
334 Angel: 0 ~~ 360°
335 Direction: 16 positions
336 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
337 (((
338 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
339 )))
340
341 (((
342 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
343 )))
344 )))
345 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
346 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
347 )))
348 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
349 (((
350 0x00 (00) No Rain or snow detected
351 )))
352
353 (((
354 (0x02: No Sensor,0x03: Value Error)
355 )))
356 )))
357 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
358 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
359 )))
360 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
361 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
362 )))
363 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
364 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
365 )))
366 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
367 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
368 )))
369 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
370 0mm~100mm(Rainfall in the last 24 hours)
371 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
372 (((
373 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
374 )))
375
376 (((
377 (0x03FE: No Sensor,0x03FF: Value Error)
378 )))
379 )))
380 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
381 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
382 )))
383 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
384 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
385 )))
386 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
387 0~2500μmol/m^^2^^•s
388 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
389 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
390 )))
391 |(% style="width:103px" %)(((
392 Total Solar Radiation
393 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
394 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
395 )))
396
397 (((
398 Below is an example payload:  [[image:image-20220624140615-3.png]]
399 )))
400
401
402
403 (((
404 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
405 )))
406
407 * (((
408 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
409 )))
410
411 (((
412 Uplink 1:  [[image:image-20220624140735-4.png]]
413 )))
414
415
416
417 (((
418 Uplink 2:  [[image:image-20220624140842-5.png]]
419
420 )))
421
422 * (((
423 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
424 )))
425
426 (((
427 Uplink 1:  [[image:image-20220624141025-6.png]]
428 )))
429
430
431
432 Uplink 2:  [[image:image-20220624141100-7.png]]
433
434
435
436 ==== 2.4.2.2 paylaod since firmware V1.3.1 ====
437
438
439 (% style="color:red" %)**Note: Since firmware V1.3.1, [[MSP mode>>||anchor="H3.8SettheMSPmode28SincefirmwareV1.3.129"]] has been added for WSS-02. Thus the wind speed paylaod length increases(Add 4 bytes for maximum wind speed and average wind speed).**
440
441 (((
442 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
443 )))
444
445 (% style="color:#4472c4" %)** Uplink Payload**:
446
447 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
448 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
449
450 (% style="color:#4472c4" %)** Sensor Segment Define**:
451
452 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
453 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
454
455 (% style="color:#4472c4" %)**Sensor Type Table:**
456
457 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
458 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
459 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
460 ①Speed: 0 ~~ 60m/s
461
462 ②(% style="color:#4472c4" %)**Maximum wind speed: **(%%)0 ~~ 60m/s
463
464 ③(% style="color:#4472c4" %)**Average wind speed:**(%%) 0 ~~ 60m/s
465 ④Level: 0 ~~ 17
466 )))|(% style="width:122px" %)0x07 |(% style="width:904px" %)(((
467 (((
468 ①0x0015/10=2.1m/s (0x02FE: No Sensor, 0x02EE: Value Error)
469
470 ②0x0024/10=3.6m/s
471
472 ③0x000E/10=1.4m/s
473 )))
474
475 (((
476 ④0x02=2 (0x14: No Sensor, 0x15: Value Error)
477 )))
478 )))
479 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
480 Angel: 0 ~~ 360°
481 Direction: 16 positions
482 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
483 (((
484 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
485 )))
486
487 (((
488 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
489 )))
490 )))
491 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
492 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
493 )))
494 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
495 (((
496 0x00 (00) No Rain or snow detected
497 )))
498
499 (((
500 (0x02: No Sensor,0x03: Value Error)
501 )))
502 )))
503 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
504 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
505 )))
506 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
507 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
508 )))
509 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
510 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
511 )))
512 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
513 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
514 )))
515 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
516 0mm~100mm(Rainfall in the last 24 hours)
517 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
518 (((
519 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
520 )))
521
522 (((
523 (0x03FE: No Sensor,0x03FF: Value Error)
524 )))
525 )))
526 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
527 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
528 )))
529 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
530 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
531 )))
532 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
533 0~2500μmol/m^^2^^•s
534 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
535 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
536 )))
537 |(% style="width:103px" %)(((
538 Total Solar Radiation
539 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
540 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
541 )))
542
543 === 2.4.3 Decoder in TTN V3 ===
544
545
546 (((
547 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
548 )))
549
550 (((
551 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
552 )))
553
554 (((
555 and put as below:
556 )))
557
558 [[image:1656051152438-578.png]]
559
560
561 == 2.5 Show data on Application Server ==
562
563
564 (((
565 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
566 )))
567
568 (((
569 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
570 )))
571
572 (((
573 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
574 )))
575
576 [[image:1656051197172-131.png]]
577
578
579 **Add TagoIO:**
580
581 [[image:1656051223585-631.png]]
582
583
584 **Authorization:**
585
586 [[image:1656051248318-368.png]]
587
588
589 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
590
591 [[image:1656051277767-168.png]]
592
593
594 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
595
596
597 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
598
599 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
600 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
601
602 There are two kinds of commands to configure WSC1-L, they are:
603
604 * (% style="color:blue" %)**General Commands**.
605
606 These commands are to configure:
607
608 * General system settings like: uplink interval.
609 * LoRaWAN protocol & radio related command.
610
611 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
612
613 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
614
615
616 * (% style="color:blue" %)**Commands special design for WSC1-L**
617
618 These commands only valid for WSC1-L, as below:
619
620
621 == 3.1 Set Transmit Interval Time ==
622
623
624 Feature: Change LoRaWAN End Node Transmit Interval.
625
626 (% style="color:#037691" %)**AT Command: AT+TDC**
627
628 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
629 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
630 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
631 30000
632 OK
633 the interval is 30000ms = 30s
634 )))
635 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
636 OK
637 Set transmit interval to 60000ms = 60 seconds
638 )))
639
640 (% style="color:#037691" %)**Downlink Command: 0x01**
641
642 Format: Command Code (0x01) followed by 3 bytes time value.
643
644 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
645
646 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
647 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
648
649 == 3.2 Set Emergency Mode ==
650
651
652 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
653
654 (% style="color:#037691" %)**AT Command:**
655
656 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
657 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
658 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
659 OK
660
661 )))
662 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
663 OK
664 )))
665
666 (% style="color:#037691" %)**Downlink Command:**
667
668 * 0xE101     Same as: AT+ALARMMOD=1
669 * 0xE100     Same as: AT+ALARMMOD=0
670
671 == 3.3 Add or Delete RS485 Sensor ==
672
673
674 (((
675 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
676 )))
677
678 (((
679 (% style="color:#037691" %)**AT Command: **
680 )))
681
682 (((
683 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
684 )))
685
686 * (((
687 Type_Code range:  A1 ~~ A4
688 )))
689 * (((
690 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
691 )))
692 * (((
693 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
694 )))
695 * (((
696 Read_Length:  RS485 response frame length supposed to receive. Max can receive
697 )))
698 * (((
699 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
700 )))
701 * (((
702 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
703 )))
704 * (((
705 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
706 )))
707
708 (((
709 **Example:**
710 )))
711
712 (((
713 User need to change external sensor use the type code as address code.
714 )))
715
716 (((
717 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
718 )))
719
720 [[image:image-20220624143553-10.png]]
721
722
723 The response frame of the sensor is as follows:
724
725 [[image:image-20220624143618-11.png]]
726
727
728 **Then the following parameters should be:**
729
730 * Address_Code range: A1
731 * Query_Length: 8
732 * Query_Command: A103000000019CAA
733 * Read_Length: 8
734 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
735 * has_CRC: 1
736 * timeout: 1500 (Fill in the test according to the actual situation)
737
738 **So the input command is:**
739
740 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
741
742
743 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
744
745 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
746 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
747 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
748
749 **Related commands:**
750
751 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
752
753 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
754
755
756 (% style="color:#037691" %)**Downlink Command:  **
757
758 **delete custom sensor A1:**
759
760 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
761
762 **Remove all custom sensors**
763
764 * 0xE5FF  
765
766 == 3.4 RS485 Test Command ==
767
768
769 (% style="color:#037691" %)**AT Command:**
770
771 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
772 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
773 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
774 Send command to 485 sensor. Range : no more than 10 bytes
775 )))|(% style="width:85px" %)OK
776
777 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
778
779 AT+RSWRITE=0103000001840A
780
781 If there is output from sensor, The console will show the output data
782
783
784 (% style="color:#037691" %)**Downlink Command:**
785
786 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
787
788 == 3.5 RS485 response timeout ==
789
790
791 Feature: Set or get extended time to receive 485 sensor data.
792
793 (% style="color:#037691" %)**AT Command:**
794
795 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
796 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
797 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
798 Set response timeout to: Range : 0~~10000
799 )))|(% style="width:85px" %)OK
800
801 (% style="color:#037691" %)**Downlink Command:**
802
803 Format: Command Code (0xE0) followed by 3 bytes time value.
804
805 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
806
807 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
808 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
809
810 == 3.6 Set Sensor Type ==
811
812
813 (((
814 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
815 )))
816
817 (((
818 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
819
820 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
821 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
822 | |A4|A3|A2|A1| | |
823 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
824 | | |Solar Radiation|PAR|PM10|PM2.5|(((
825 Rain
826 Gauge
827 )))|(((
828 Air
829 Pressure
830 )))
831 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
832 |Humidity|Temperature|CO2|(((
833 Rain/Snow
834 Detect
835 )))|illuminance|(((
836 Wind
837 Direction
838 )))|Wind Speed|BAT
839 )))
840
841
842 (% style="color:#037691" %)**AT Command:**
843
844 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:377px" %)
845 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 132px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
846 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
847
848 Eg: The setting command **AT+STYPE=80221** means:
849
850 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:495px" %)
851 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
852 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
853 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
854 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
855 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
856 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
857
858 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
859
860
861 (% style="color:#037691" %)**Downlink Command:**
862
863 * 0xE400080221  Same as: AT+STYPE=80221
864
865 (% style="color:red" %)**Note:**
866
867 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
868
869
870 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
871
872
873 (% style="color:#037691" %)**AT Command:**
874
875 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
876 |=(% style="width: 230px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 232px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
877 |(% style="width:240px" %)(((
878 AT+RAINFALLSWITCH=10(Value:3,4,5,6,8,10)
879 )))|(% style="width:232px" %)(((
880 Set the registers read by the rain gauge
881 )))|(% style="width:38px" %)OK
882
883 (% style="color:#037691" %)**Downlink Command:**
884
885 * 0xE703  Same as: AT+RAINFALLSWITCH=3
886
887 Value Definition:
888
889 * **3**: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
890 * **4**: Hourly rainfall: 0.2mm
891 * **5**: Rainfall in last hour: 0.2mm
892 * **6**: 24-hour maximum rainfall 10.0mm
893 * **8**: 24-hour minimum rainfall:0.0mm
894 * **10**: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
895
896 == 3.8 Set the MSP mode(Since firmware V1.3.1) ==
897
898
899 (% style="color:red" %)**Note: This feature is available for WSS-02.**
900
901 This function is used for the continuous collection of wind speed.
902
903 When MSP mode is turned on (AT+MSP=1), WSC1-L will collect real-time wind speed **every 5 seconds**. Then it will judge the maximum wind speed in this period according to the wind speed collected in TDC time, and calculate the average wind speed according to the wind speed data collected in TDC time and the number of data groups.
904
905 (% style="color:#037691" %)**AT Command: AT+MSP**
906
907 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
908 |=(% style="width: 158px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 214px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 136px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
909 |(% style="width:158px" %)(((
910 AT+MSP=?
911 )))|(% style="width:214px" %)Query whether MSP mode is on|(% style="width:136px" %)(((
912 0(default)
913
914 OK
915 )))
916 |(% style="width:158px" %)AT+MSP=0|(% style="width:214px" %)Disable the MSP mode|(% style="width:136px" %)OK
917 |(% style="width:158px" %)AT+MSP=1|(% style="width:214px" %)Enable the MSP mode|(% style="width:136px" %)OK
918
919 (% style="color:#037691" %)**Downlink Command: 0X34**
920
921 * Downlink payload: 34 00  ~/~/ Equal to AT+MSP=0
922 * Downlink payload: 34 01  ~/~/ Equal to AT+MSP=1
923
924 = 4. Power consumption and battery =
925
926 == 4.1 Total Power Consumption ==
927
928
929 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
930
931
932 == 4.2 Reduce power consumption ==
933
934
935 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
936
937
938 == 4.3 Battery ==
939
940
941 (((
942 All sensors are only power by external power source. If external power source is off. All sensor won't work.
943 )))
944
945 (((
946 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
947 )))
948
949
950 = 5. Main Process Unit WSC1-L =
951
952 == 5.1 Features ==
953
954
955 * Wall Attachable.
956 * LoRaWAN v1.0.3 Class A protocol.
957 * RS485 / Modbus protocol
958 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
959 * AT Commands to change parameters
960 * Remote configure parameters via LoRaWAN Downlink
961 * Firmware upgradable via program port
962 * Powered by external 12v battery
963 * Back up rechargeable 1000mAh battery
964 * IP Rating: IP65
965 * Support default sensors or 3rd party RS485 sensors
966
967 == 5.2 Power Consumption ==
968
969
970 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
971
972
973 == 5.3 Storage & Operation Temperature ==
974
975
976 -20°C to +60°C
977
978
979 == 5.4 Pin Mapping ==
980
981
982 [[image:1656054149793-239.png]]
983
984
985 == 5.5 Mechanical ==
986
987
988 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
989
990
991 == 5.6 Connect to RS485 Sensors ==
992
993
994 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
995
996
997 [[image:1656054389031-379.png]]
998
999
1000 Hardware Design for the Converter Board please see:
1001
1002 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
1003
1004
1005 = 6. Weather Sensors =
1006
1007 == 6.1 Rain Gauge ~-~- WSS-01 ==
1008
1009
1010 (((
1011 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
1012 )))
1013
1014 (((
1015 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
1016 )))
1017
1018 (((
1019 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
1020 )))
1021
1022 (((
1023 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
1024 )))
1025
1026 (((
1027 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
1028 )))
1029
1030
1031 === 6.1.1 Feature ===
1032
1033
1034 * RS485 Rain Gauge
1035 * Small dimension, easy to install
1036 * Vents under funnel, avoid leaf or other things to avoid rain flow.
1037 * ABS enclosure.
1038 * Horizontal adjustable.
1039
1040 === 6.1.2 Specification ===
1041
1042
1043 * Resolution: 0.2mm
1044 * Accuracy: ±3%
1045 * Range: 0 ~~ 100mm
1046 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
1047 * Input Power: DC 5 ~~ 24v
1048 * Interface: RS485
1049 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
1050 * Working Humidity: <100% (no dewing)
1051 * Power Consumption: 4mA @ 12v.
1052
1053 === 6.1.3 Dimension ===
1054
1055
1056 [[image:1656054957406-980.png]]
1057
1058
1059 === 6.1.4 Pin Mapping ===
1060
1061
1062 [[image:1656054972828-692.png]]
1063
1064
1065 === 6.1.5 Installation Notice ===
1066
1067
1068 (((
1069 Do not power on while connect the cables. Double check the wiring before power on.
1070 )))
1071
1072 (((
1073 Installation Photo as reference:
1074 )))
1075
1076
1077 (((
1078 (% style="color:#4472c4" %)** Install on Ground:**
1079 )))
1080
1081 (((
1082 WSS-01 Rain Gauge include screws so can install in ground directly .
1083 )))
1084
1085
1086 (((
1087 (% style="color:#4472c4" %)** Install on pole:**
1088 )))
1089
1090 (((
1091 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
1092 )))
1093
1094 [[image:image-20220624152218-1.png||height="526" width="276"]]
1095
1096 WS-K2: Bracket Kit for Pole installation
1097
1098
1099 WSSC-K2 dimension document, please see:
1100
1101 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
1102
1103
1104 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
1105
1106
1107 [[image:1656055444035-179.png]]
1108
1109
1110 (((
1111 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
1112 )))
1113
1114 (((
1115 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
1116 )))
1117
1118 (((
1119 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
1120 )))
1121
1122
1123 === 6.2.1 Feature ===
1124
1125
1126 * RS485 wind speed / direction sensor
1127 * PC enclosure, resist corrosion
1128
1129 === 6.2.2 Specification ===
1130
1131
1132 * Wind speed range: 0 ~~ 60m/s
1133 * Wind direction range: 0 ~~ 360°
1134 * Start wind speed: ≤0.3 m/s
1135 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1136 * Input Power: DC 5 ~~ 24v
1137 * Interface: RS485
1138 * Working Temperature: -30℃ ~~ 70℃
1139 * Working Humidity: <100% (no dewing)
1140 * Power Consumption: 13mA @12v.
1141 * Cable Length: 2 meters
1142
1143 === 6.2.3 Dimension ===
1144
1145
1146 [[image:image-20220624152813-2.png]]
1147
1148
1149 === 6.2.4 Pin Mapping ===
1150
1151
1152 [[image:1656056281231-994.png]]
1153
1154
1155 === 6.2.5  Angle Mapping ===
1156
1157
1158 [[image:1656056303845-585.png]]
1159
1160
1161 === 6.2.6  Installation Notice ===
1162
1163
1164 (((
1165 Do not power on while connect the cables. Double check the wiring before power on.
1166 )))
1167
1168 (((
1169 The sensor must be installed with below direction, towards North.
1170
1171
1172 )))
1173
1174 [[image:image-20220624153901-3.png]]
1175
1176
1177 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1178
1179
1180 (((
1181 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1182 )))
1183
1184 (((
1185 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1186 )))
1187
1188 (((
1189 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1190 )))
1191
1192
1193 === 6.3.1 Feature ===
1194
1195
1196 * RS485 CO2, PM2.5, PM10 sensor
1197 * NDIR to measure CO2 with Internal Temperature Compensation
1198 * Laser Beam Scattering to PM2.5 and PM10
1199
1200 === 6.3.2 Specification ===
1201
1202
1203 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1204 * CO2 resolution: 1ppm
1205 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1206 * PM2.5/PM10 resolution: 1μg/m3
1207 * Input Power: DC 7 ~~ 24v
1208 * Preheat time: 3min
1209 * Interface: RS485
1210 * Working Temperature:
1211 ** CO2: 0℃ ~~ 50℃;
1212 ** PM2.5/PM10: -30 ~~ 50℃
1213 * Working Humidity:
1214 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1215 ** CO2: 0 ~~ 95%RH
1216 * Power Consumption: 50mA@ 12v.
1217
1218 === 6.3.3 Dimension ===
1219
1220
1221 [[image:1656056708366-230.png]]
1222
1223
1224 === 6.3.4 Pin Mapping ===
1225
1226
1227 [[image:1656056722648-743.png]]
1228
1229
1230 === 6.3.5 Installation Notice ===
1231
1232
1233 Do not power on while connect the cables. Double check the wiring before power on.
1234
1235 [[image:1656056751153-304.png]]
1236
1237
1238 [[image:1656056766224-773.png]]
1239
1240
1241 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1242
1243
1244 (((
1245 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1246 )))
1247
1248 (((
1249 WSS-04 has auto heating feature, this ensures measurement more reliable.
1250 )))
1251
1252 (((
1253 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1254 )))
1255
1256
1257 === 6.4.1 Feature ===
1258
1259
1260 * RS485 Rain/Snow detect sensor
1261 * Surface heating to dry
1262 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1263
1264 === 6.4.2 Specification ===
1265
1266
1267 * Detect if there is rain or snow
1268 * Input Power: DC 12 ~~ 24v
1269 * Interface: RS485
1270 * Working Temperature: -30℃ ~~ 70℃
1271 * Working Humidity: 10 ~~ 90%RH
1272 * Power Consumption:
1273 ** No heating: 12mA @ 12v,
1274 ** heating: 94ma @ 12v.
1275
1276 === 6.4.3 Dimension ===
1277
1278
1279 [[image:1656056844782-155.png]]
1280
1281
1282 === 6.4.4 Pin Mapping ===
1283
1284
1285 [[image:1656056855590-754.png]]
1286
1287
1288 === 6.4.5 Installation Notice ===
1289
1290
1291 Do not power on while connect the cables. Double check the wiring before power on.
1292
1293 (((
1294 Install with 15°degree.
1295 )))
1296
1297 [[image:1656056873783-780.png]]
1298
1299
1300 [[image:1656056883736-804.png]]
1301
1302
1303 === 6.4.6 Heating ===
1304
1305
1306 (((
1307 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1308 )))
1309
1310
1311 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1312
1313
1314 (((
1315 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1316 )))
1317
1318 (((
1319 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1320 )))
1321
1322
1323 === 6.5.1 Feature ===
1324
1325
1326 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1327
1328 === 6.5.2 Specification ===
1329
1330
1331 * Input Power: DC 12 ~~ 24v
1332 * Interface: RS485
1333 * Temperature Sensor Spec:
1334 ** Range: -30 ~~ 70℃
1335 ** resolution 0.1℃
1336 ** Accuracy: ±0.5℃
1337 * Humidity Sensor Spec:
1338 ** Range: 0 ~~ 100% RH
1339 ** resolution 0.1 %RH
1340 ** Accuracy: ±3% RH
1341 * Pressure Sensor Spec:
1342 ** Range: 10 ~~ 1100hPa
1343 ** Resolution: 0.1hPa
1344 ** Accuracy: ±0.1hPa
1345 * Illuminate sensor:
1346 ** Range: 0~~2/20/200kLux
1347 ** Resolution: 10 Lux
1348 ** Accuracy: ±3%FS
1349 * Working Temperature: -30℃ ~~ 70℃
1350 * Working Humidity: 10 ~~ 90%RH
1351 * Power Consumption: 4mA @ 12v
1352
1353 === 6.5.3 Dimension ===
1354
1355
1356 [[image:1656057170639-522.png]]
1357
1358
1359 === 6.5.4 Pin Mapping ===
1360
1361
1362 [[image:1656057181899-910.png]]
1363
1364
1365 === 6.5.5 Installation Notice ===
1366
1367
1368 Do not power on while connect the cables. Double check the wiring before power on.
1369
1370 [[image:1656057199955-514.png]]
1371
1372 [[image:1656057212438-475.png]]
1373
1374
1375 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1376
1377
1378 (((
1379 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1380 )))
1381
1382 (((
1383 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1384 )))
1385
1386 (((
1387 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1388 )))
1389
1390
1391 === 6.6.1 Feature ===
1392
1393
1394 * RS485 Total Solar Radiation sensor
1395 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1396 * Measure Reflected Radiation if sense area towards ground.
1397
1398 === 6.6.2 Specification ===
1399
1400
1401 * Input Power: DC 5 ~~ 24v
1402 * Interface: RS485
1403 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1404 * Measure strength range: 0 ~~ 2000W/m2
1405 * Resolution: 0.1W/m2
1406 * Accuracy: ±3%
1407 * Yearly Stability: ≤±2%
1408 * Cosine response: ≤7% (@ Sun angle 10°)
1409 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1410 * Working Temperature: -40℃ ~~ 70℃
1411 * Working Humidity: 10 ~~ 90%RH
1412 * Power Consumption: 4mA @ 12v
1413
1414 === 6.6.3 Dimension ===
1415
1416
1417 [[image:1656057348695-898.png]]
1418
1419
1420 === 6.6.4 Pin Mapping ===
1421
1422
1423 [[image:1656057359343-744.png]]
1424
1425
1426 === 6.6.5 Installation Notice ===
1427
1428
1429 Do not power on while connect the cables. Double check the wiring before power on.
1430
1431 [[image:1656057369259-804.png]]
1432
1433 [[image:1656057377943-564.png]]
1434
1435
1436 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1437
1438
1439 (((
1440 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1441 )))
1442
1443 (((
1444 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1445 )))
1446
1447 (((
1448 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1449 )))
1450
1451
1452 === 6.7.1 Feature ===
1453
1454
1455 (((
1456 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1457 )))
1458
1459 (((
1460 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1461 )))
1462
1463
1464 === 6.7.2 Specification ===
1465
1466
1467 * Input Power: DC 5 ~~ 24v
1468 * Interface: RS485
1469 * Response Spectrum: 400~~700nm
1470 * Measure range: 0 ~~ 2500μmol/m2•s
1471 * Resolution: 1μmol/m2•s
1472 * Accuracy: ±2%
1473 * Yearly Stability: ≤ ±2%
1474 * Working Temperature: -30℃ ~~ 75℃
1475 * Working Humidity: 10 ~~ 90%RH
1476 * Power Consumption: 3mA @ 12v
1477
1478 === 6.7.3 Dimension ===
1479
1480
1481 [[image:1656057538793-888.png]]
1482
1483
1484 === 6.7.4 Pin Mapping ===
1485
1486
1487 [[image:1656057548116-203.png]]
1488
1489
1490 === 6.7.5 Installation Notice ===
1491
1492
1493 Do not power on while connect the cables. Double check the wiring before power on.
1494
1495 [[image:1656057557191-895.png]]
1496
1497 [[image:1656057565783-251.png]]
1498
1499
1500 = 7. FAQ =
1501
1502 == 7.1 What else do I need to purchase to build Weather Station? ==
1503
1504
1505 Below is the installation photo and structure:
1506
1507
1508 [[image:1656057598349-319.png]]
1509
1510
1511 [[image:1656057608049-693.png]]
1512
1513
1514 == 7.2 How to upgrade firmware for WSC1-L? ==
1515
1516
1517 (((
1518 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1519 )))
1520
1521 (((
1522 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1523 )))
1524
1525
1526 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1527
1528
1529 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1530
1531
1532 == 7.4 Can I add my weather sensors? ==
1533
1534
1535 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1536
1537
1538 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1539
1540
1541 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1542
1543
1544 == 7.6  How to change the data read by the rain gauge? ==
1545
1546
1547 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1548
1549 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1550
1551 **Rainfall query value:**
1552
1553 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1554
1555 4:Current Hourly rainfall: etc 0.2mm
1556
1557 5:Rainfall in last hour: etc 0.2mm
1558
1559 6:24-hour maximum rainfall: etc  10.0mm
1560
1561 8:24-hour minimum rainfall: etc  0.0mm
1562
1563 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1564
1565
1566 = 8. Trouble Shooting =
1567
1568 == 8.1 AT Command input doesn't work ==
1569
1570
1571 (((
1572 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1573 )))
1574
1575
1576 == 8.2  Possible reasons why the device is unresponsive: ==
1577
1578
1579 ~1. Check whether the battery voltage is lower than 2.8V
1580 2. Check whether the jumper of the device is correctly connected
1581
1582 [[image:image-20240330173709-1.png]]
1583
1584
1585 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1586
1587 [[image:image-20240330173724-2.png]]
1588
1589
1590 == 8.3  The rain gauge keeps showing an incorrect value of 102.2 ==
1591
1592 When the rain gauge keeps showing wrong values, it means that the device has exceeded its maximum range.
1593 Customer need to use RS485-USB to reset it
1594
1595 Wiring method:
1596 RS485-USB A<~-~-~-~-~-~-->rain gauge RS485A
1597 RS485-USB B<~-~-~-~-~-~-->rain gauge RS485B
1598
1599
1600 Use the reset command:
1601
1602 06 06 00 37 00 03 79 B2
1603
1604 [[image:image-20250219164620-1.png]]
1605
1606
1607
1608
1609
1610 = 9. Order Info =
1611
1612 == 9.1 Main Process Unit ==
1613
1614
1615 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1616
1617 (% style="color:blue" %)**XX**(%%): The default frequency band
1618
1619 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1620 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1621 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1622 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1623 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1624 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1625 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1626 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1627
1628 == 9.2 Sensors ==
1629
1630
1631 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1632 |=(% style="width: 300px;background-color:#4F81BD;color:white" %)**Sensor Model**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Part Number**
1633 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1634 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1635 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1636 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1637 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1638 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1639 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1640 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1641
1642 = 10. Support =
1643
1644
1645 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1646
1647 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1648
1649 = 11. Appendix I: Field Installation Photo =
1650
1651
1652 [[image:1656058346362-132.png||height="685" width="732"]]
1653
1654 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1655
1656
1657
1658 (% style="color:blue" %)**Wind Speed/Direction**
1659
1660 [[image:1656058373174-421.png||height="356" width="731"]]
1661
1662
1663
1664 (% style="color:blue" %)**Total Solar Radiation sensor**
1665
1666 [[image:1656058397364-282.png||height="453" width="732"]]
1667
1668
1669
1670 (% style="color:blue" %)**PAR Sensor**
1671
1672 [[image:1656058416171-615.png]]
1673
1674
1675
1676 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1677
1678 [[image:1656058441194-827.png||height="672" width="523"]]
1679
1680
1681
1682 (% style="color:blue" %)**Rain / Snow Detect**
1683
1684 [[image:1656058451456-166.png]]
1685
1686
1687
1688 (% style="color:blue" %)**Rain Gauge**
1689
1690 [[image:1656058463455-569.png||height="499" width="550"]]
1691
1692