Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:1656035424980-692.png||height="533" width="386"]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 Overview ==
26
27
28 (((
29 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
30 )))
31
32 (((
33 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
34 )))
35
36 (((
37 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in Li-ion backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
38 )))
39
40 (((
41 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
42 )))
43
44
45 = 2. How to use =
46
47 == 2.1 Installation ==
48
49
50 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
51
52
53 [[image:1656041948552-849.png]]
54
55
56 (% style="color:blue" %)** Wiring:**
57
58 ~1. WSC1-L and sensors all powered by solar power via MPPT
59
60 2. WSC1-L and sensors connect to each other via RS485/Modbus.
61
62 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
63
64
65 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
66
67 [[image:1656042136605-251.png]]
68
69
70 (% style="color:red" %)**Notice 1:**
71
72 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
73 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
74 * Weather sensors won't work if solar panel and storage battery fails.
75
76 (% style="color:red" %)**Notice 2:**
77
78 Due to shipment and importation limitation, user is better to purchase below parts locally:
79
80 * Solar Panel
81 * Storage Battery
82 * MPPT Solar Recharger
83 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
84 * Cabinet.
85
86 == 2.2 How it works? ==
87
88
89 (((
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91 )))
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107
108 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110 [[image:1656042612899-422.png]]
111
112
113 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
114
115
116 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
117
118 Each WSC1-L is shipped with a sticker with the default device EUI as below:
119
120 [[image:image-20230426084533-1.png||height="231" width="497"]]
121
122
123 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
124
125 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
126
127 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
128
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:image-20250122085806-2.png||height="369" width="1010"]]
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
140
141
142 **Add Keys**
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
145
146
147 (((
148 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
149 )))
150
151 [[image:1656042745346-283.png]]
152
153
154 == 2.4 Uplink Payload ==
155
156
157 Uplink payloads include two types: Valid Sensor Value and other status / control command.
158
159 * Valid Sensor Value: Use FPORT=2
160 * Other control command: Use FPORT other than 2.
161
162 === 2.4.1 Uplink FPORT~=5, Device Status ===
163
164
165 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
166
167
168 (((
169 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
170 )))
171
172 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
173 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 60px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**3**
174 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
175
176 [[image:1656043061044-343.png]]
177
178
179 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
180
181
182 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
183
184 For WSC1-L, this value is 0x0D.
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
193
194 0x01: EU868
195
196 0x02: US915
197
198 0x03: IN865
199
200 0x04: AU915
201
202 0x05: KZ865
203
204 0x06: RU864
205
206 0x07: AS923
207
208 0x08: AS923-1
209
210 0x09: AS923-2
211
212 0x0a: AS923-3
213
214
215 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
216
217 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
218
219
220 ==== (% style="color:#037691" %)**BAT:**(%%) ====
221
222 (((
223 shows the battery voltage for WSC1-L MCU.
224 )))
225
226 (((
227 Ex1: 0x0BD6/1000 = 3.03 V
228 )))
229
230
231 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
232
233 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
234 |Byte3|Byte2|Byte1
235
236 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
237
238 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
239 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:110px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
240 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
241 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
244 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
245
246 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
247
248 External sensors detected by WSC1-L include :
249
250 custom sensor A1,
251
252 PAR sensor (WSS-07),
253
254 Total Solar Radiation sensor (WSS-06),
255
256 CO2/PM2.5/PM10 (WSS-03),
257
258 Wind Speed/Direction (WSS-02)
259
260
261 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
262
263 (% style="color:#037691" %)**Downlink:0x26 01**
264
265 [[image:1656049673488-415.png]]
266
267
268 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
269
270
271 ==== 2.4.2.1 paylaod before firmware V1.3.1(including v1.3.1) ====
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281 (((
282 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
283 )))
284
285
286 (% style="color:#4472c4" %)** Uplink Payload**:
287
288 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
289 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
290
291 (% style="color:#4472c4" %)** Sensor Segment Define**:
292
293 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
294 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
295
296 (% style="color:#4472c4" %)**Sensor Type Table:**
297
298 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
299 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
300 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
301 Speed: 0 ~~ 60m/s
302 Level: 0 ~~ 17
303 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
304 (((
305 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
306 )))
307
308 (((
309 0x02=2 (0x14: No Sensor, 0x15: Value Error)
310 )))
311 )))
312 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
313 Angel: 0 ~~ 360°
314 Direction: 16 positions
315 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
316 (((
317 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
318 )))
319
320 (((
321 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
322 )))
323 )))
324 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
325 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
326 )))
327 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
328 (((
329 0x00 (00) No Rain or snow detected
330 )))
331
332 (((
333 (0x02: No Sensor,0x03: Value Error)
334 )))
335 )))
336 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
337 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
338 )))
339 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
340 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
341 )))
342 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
343 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
344 )))
345 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
346 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
347 )))
348 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
349 0mm~100mm(Rainfall in the last 24 hours)
350 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 (((
352 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
353 )))
354
355 (((
356 (0x03FE: No Sensor,0x03FF: Value Error)
357 )))
358 )))
359 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
360 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
361 )))
362 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
363 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
364 )))
365 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
366 0~2500μmol/m^^2^^•s
367 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
368 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
369 )))
370 |(% style="width:103px" %)(((
371 Total Solar Radiation
372 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
373 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
374 )))
375
376 (((
377 Below is an example payload:  [[image:image-20220624140615-3.png]]
378 )))
379
380
381 (((
382 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
383 )))
384
385 * (((
386 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
387 )))
388
389 (((
390 Uplink 1:  [[image:image-20220624140735-4.png]]
391 )))
392
393
394 (((
395 Uplink 2:  [[image:image-20220624140842-5.png]]
396
397 )))
398
399 * (((
400 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
401 )))
402
403 (((
404 Uplink 1:  [[image:image-20220624141025-6.png]]
405 )))
406
407
408 Uplink 2:  [[image:image-20220624141100-7.png]]
409
410
411
412 ==== 2.4.2.2 paylaod since firmware V1.3.1 ====
413
414
415 (% style="color:red" %)**Note: Since firmware V1.3.1, [[MSP mode>>||anchor="H3.8SettheMSPmode28SincefirmwareV1.3.129"]] has been added for WSS-02. Thus the wind speed paylaod length increases(Add 4 bytes for maximum wind speed and average wind speed).**
416
417 (((
418 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
419 )))
420
421 (% style="color:#4472c4" %)** Uplink Payload**:
422
423 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
424 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
425
426 (% style="color:#4472c4" %)** Sensor Segment Define**:
427
428 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
429 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
430
431 (% style="color:#4472c4" %)**Sensor Type Table:**
432
433 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
434 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
435 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
436 ①Speed: 0 ~~ 60m/s
437
438 ②(% style="color:#4472c4" %)**Maximum wind speed: **(%%)0 ~~ 60m/s
439
440 ③(% style="color:#4472c4" %)**Average wind speed:**(%%) 0 ~~ 60m/s
441 ④Level: 0 ~~ 17
442 )))|(% style="width:122px" %)0x07 |(% style="width:904px" %)(((
443 (((
444 ①0x0015/10=2.1m/s (0x02FE: No Sensor, 0x02EE: Value Error)
445
446 ②0x0024/10=3.6m/s
447
448 ③0x000E/10=1.4m/s
449 )))
450
451 (((
452 ④0x02=2 (0x14: No Sensor, 0x15: Value Error)
453 )))
454 )))
455 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
456 Angel: 0 ~~ 360°
457 Direction: 16 positions
458 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
459 (((
460 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
461 )))
462
463 (((
464 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
465 )))
466 )))
467 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
468 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
469 )))
470 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
471 (((
472 0x00 (00) No Rain or snow detected
473 )))
474
475 (((
476 (0x02: No Sensor,0x03: Value Error)
477 )))
478 )))
479 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
480 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
481 )))
482 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
483 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
484 )))
485 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
486 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
487 )))
488 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
489 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
490 )))
491 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
492 0mm~100mm(Rainfall in the last 24 hours)
493 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
494 (((
495 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
496 )))
497
498 (((
499 (0x03FE: No Sensor,0x03FF: Value Error)
500 )))
501 )))
502 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
503 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
504 )))
505 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
506 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
507 )))
508 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
509 0~2500μmol/m^^2^^•s
510 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
511 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
512 )))
513 |(% style="width:103px" %)(((
514 Total Solar Radiation
515 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
516 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
517 )))
518
519 === 2.4.3 Decoder in TTN V3 ===
520
521
522 (((
523 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
524 )))
525
526 (((
527 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
528 )))
529
530 (((
531 and put as below:
532 )))
533
534 [[image:1656051152438-578.png]]
535
536
537 == 2.5 Show data on Application Server ==
538
539
540 (((
541 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
542 )))
543
544 (((
545 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
546 )))
547
548 (((
549 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
550 )))
551
552 [[image:1656051197172-131.png]]
553
554
555 **Add TagoIO:**
556
557 [[image:1656051223585-631.png]]
558
559
560 **Authorization:**
561
562 [[image:1656051248318-368.png]]
563
564
565 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
566
567 [[image:1656051277767-168.png]]
568
569
570 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
571
572
573 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
574
575 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
576 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
577
578 There are two kinds of commands to configure WSC1-L, they are:
579
580 * (% style="color:blue" %)**General Commands**.
581
582 These commands are to configure:
583
584 * General system settings like: uplink interval.
585 * LoRaWAN protocol & radio related command.
586
587 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
588
589 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
590
591
592 * (% style="color:blue" %)**Commands special design for WSC1-L**
593
594 These commands only valid for WSC1-L, as below:
595
596
597 == 3.1 Set Transmit Interval Time ==
598
599
600 Feature: Change LoRaWAN End Node Transmit Interval.
601
602 (% style="color:#037691" %)**AT Command: AT+TDC**
603
604 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
605 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
606 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
607 30000
608 OK
609 the interval is 30000ms = 30s
610 )))
611 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
612 OK
613 Set transmit interval to 60000ms = 60 seconds
614 )))
615
616 (% style="color:#037691" %)**Downlink Command: 0x01**
617
618 Format: Command Code (0x01) followed by 3 bytes time value.
619
620 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
621
622 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
623 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
624
625 == 3.2 Set Emergency Mode ==
626
627
628 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
629
630 (% style="color:#037691" %)**AT Command:**
631
632 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
633 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
634 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
635 OK
636
637 )))
638 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
639 OK
640 )))
641
642 (% style="color:#037691" %)**Downlink Command:**
643
644 * 0xE101     Same as: AT+ALARMMOD=1
645 * 0xE100     Same as: AT+ALARMMOD=0
646
647 == 3.3 Add or Delete RS485 Sensor ==
648
649
650 (((
651 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
652 )))
653
654 (((
655 (% style="color:#037691" %)**AT Command: **
656 )))
657
658 (((
659 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
660 )))
661
662 * (((
663 Type_Code range:  A1 ~~ A4
664 )))
665 * (((
666 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
667 )))
668 * (((
669 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
670 )))
671 * (((
672 Read_Length:  RS485 response frame length supposed to receive. Max can receive
673 )))
674 * (((
675 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
676 )))
677 * (((
678 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
679 )))
680 * (((
681 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
682 )))
683
684 (((
685 **Example:**
686 )))
687
688 (((
689 User need to change external sensor use the type code as address code.
690 )))
691
692 (((
693 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
694 )))
695
696 [[image:image-20220624143553-10.png]]
697
698
699 The response frame of the sensor is as follows:
700
701 [[image:image-20220624143618-11.png]]
702
703
704 **Then the following parameters should be:**
705
706 * Address_Code range: A1
707 * Query_Length: 8
708 * Query_Command: A103000000019CAA
709 * Read_Length: 8
710 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
711 * has_CRC: 1
712 * timeout: 1500 (Fill in the test according to the actual situation)
713
714 **So the input command is:**
715
716 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
717
718
719 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
720
721 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
722 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
723 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
724
725 **Related commands:**
726
727 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
728
729 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
730
731
732 (% style="color:#037691" %)**Downlink Command:  **
733
734 **delete custom sensor A1:**
735
736 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
737
738 **Remove all custom sensors**
739
740 * 0xE5FF  
741
742 == 3.4 RS485 Test Command ==
743
744
745 (% style="color:#037691" %)**AT Command:**
746
747 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
748 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
749 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
750 Send command to 485 sensor. Range : no more than 10 bytes
751 )))|(% style="width:85px" %)OK
752
753 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
754
755 AT+RSWRITE=0103000001840A
756
757 If there is output from sensor, The console will show the output data
758
759
760 (% style="color:#037691" %)**Downlink Command:**
761
762 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
763
764 == 3.5 RS485 response timeout ==
765
766
767 Feature: Set or get extended time to receive 485 sensor data.
768
769 (% style="color:#037691" %)**AT Command:**
770
771 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
772 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
773 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
774 Set response timeout to: Range : 0~~10000
775 )))|(% style="width:85px" %)OK
776
777 (% style="color:#037691" %)**Downlink Command:**
778
779 Format: Command Code (0xE0) followed by 3 bytes time value.
780
781 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
782
783 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
784 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
785
786 == 3.6 Set Sensor Type ==
787
788
789 (((
790 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
791 )))
792
793 (((
794 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
795
796 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
797 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
798 | |A4|A3|A2|A1| | |
799 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
800 | | |Solar Radiation|PAR|PM10|PM2.5|(((
801 Rain
802 Gauge
803 )))|(((
804 Air
805 Pressure
806 )))
807 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
808 |Humidity|Temperature|CO2|(((
809 Rain/Snow
810 Detect
811 )))|illuminance|(((
812 Wind
813 Direction
814 )))|Wind Speed|BAT
815 )))
816
817
818 (% style="color:#037691" %)**AT Command:**
819
820 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:377px" %)
821 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 132px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
822 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
823
824 Eg: The setting command **AT+STYPE=80221** means:
825
826 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:495px" %)
827 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
828 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
829 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
830 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
831 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
832 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
833
834 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
835
836
837 (% style="color:#037691" %)**Downlink Command:**
838
839 * 0xE400080221  Same as: AT+STYPE=80221
840
841 (% style="color:red" %)**Note:**
842
843 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
844
845
846 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
847
848
849 (% style="color:#037691" %)**AT Command:**
850
851 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
852 |=(% style="width: 230px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 232px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
853 |(% style="width:240px" %)(((
854 AT+RAINFALLSWITCH=10(Value:3,4,5,6,8,10)
855 )))|(% style="width:232px" %)(((
856 Set the registers read by the rain gauge
857 )))|(% style="width:38px" %)OK
858
859 (% style="color:#037691" %)**Downlink Command:**
860
861 * 0xE703  Same as: AT+RAINFALLSWITCH=3
862
863 Value Definition:
864
865 * **3**: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
866 * **4**: Hourly rainfall: 0.2mm
867 * **5**: Rainfall in last hour: 0.2mm
868 * **6**: 24-hour maximum rainfall 10.0mm
869 * **8**: 24-hour minimum rainfall:0.0mm
870 * **10**: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
871
872 == 3.8 Set the MSP mode(Since firmware V1.3.1) ==
873
874
875 (% style="color:red" %)**Note: This feature is available for WSS-02.**
876
877 This function is used for the continuous collection of wind speed.
878
879 When MSP mode is turned on (AT+MSP=1), WSC1-L will collect real-time wind speed **every 5 seconds**. Then it will judge the maximum wind speed in this period according to the wind speed collected in TDC time, and calculate the average wind speed according to the wind speed data collected in TDC time and the number of data groups.
880
881 (% style="color:#037691" %)**AT Command: AT+MSP**
882
883 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
884 |=(% style="width: 158px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 214px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 136px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
885 |(% style="width:158px" %)(((
886 AT+MSP=?
887 )))|(% style="width:214px" %)Query whether MSP mode is on|(% style="width:136px" %)(((
888 0(default)
889
890 OK
891 )))
892 |(% style="width:158px" %)AT+MSP=0|(% style="width:214px" %)Disable the MSP mode|(% style="width:136px" %)OK
893 |(% style="width:158px" %)AT+MSP=1|(% style="width:214px" %)Enable the MSP mode|(% style="width:136px" %)OK
894
895 (% style="color:#037691" %)**Downlink Command: 0X34**
896
897 * Downlink payload: 34 00  ~/~/ Equal to AT+MSP=0
898 * Downlink payload: 34 01  ~/~/ Equal to AT+MSP=1
899
900 = 4. Power consumption and battery =
901
902 == 4.1 Total Power Consumption ==
903
904
905 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
906
907
908 == 4.2 Reduce power consumption ==
909
910
911 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
912
913
914 == 4.3 Battery ==
915
916
917 (((
918 All sensors are only power by external power source. If external power source is off. All sensor won't work.
919 )))
920
921 (((
922 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
923 )))
924
925
926 = 5. Main Process Unit WSC1-L =
927
928 == 5.1 Features ==
929
930
931 * Wall Attachable.
932 * LoRaWAN v1.0.3 Class A protocol.
933 * RS485 / Modbus protocol
934 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
935 * AT Commands to change parameters
936 * Remote configure parameters via LoRaWAN Downlink
937 * Firmware upgradable via program port
938 * Powered by external 12v battery
939 * Back up rechargeable 1000mAh battery
940 * IP Rating: IP65
941 * Support default sensors or 3rd party RS485 sensors
942
943 == 5.2 Power Consumption ==
944
945
946 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
947
948
949 == 5.3 Storage & Operation Temperature ==
950
951
952 -20°C to +60°C
953
954
955 == 5.4 Pin Mapping ==
956
957
958 [[image:1656054149793-239.png]]
959
960
961 == 5.5 Mechanical ==
962
963
964 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
965
966
967 == 5.6 Connect to RS485 Sensors ==
968
969
970 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
971
972
973 [[image:1656054389031-379.png]]
974
975
976 Hardware Design for the Converter Board please see:
977
978 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
979
980
981 = 6. Weather Sensors =
982
983 == 6.1 Rain Gauge ~-~- WSS-01 ==
984
985
986 (((
987 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
988 )))
989
990 (((
991 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
992 )))
993
994 (((
995 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
996 )))
997
998 (((
999 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
1000 )))
1001
1002 (((
1003 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
1004 )))
1005
1006
1007 === 6.1.1 Feature ===
1008
1009
1010 * RS485 Rain Gauge
1011 * Small dimension, easy to install
1012 * Vents under funnel, avoid leaf or other things to avoid rain flow.
1013 * ABS enclosure.
1014 * Horizontal adjustable.
1015
1016 === 6.1.2 Specification ===
1017
1018
1019 * Resolution: 0.2mm
1020 * Accuracy: ±3%
1021 * Range: 0 ~~ 100mm
1022 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
1023 * Input Power: DC 5 ~~ 24v
1024 * Interface: RS485
1025 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
1026 * Working Humidity: <100% (no dewing)
1027 * Power Consumption: 4mA @ 12v.
1028
1029 === 6.1.3 Dimension ===
1030
1031
1032 [[image:1656054957406-980.png]]
1033
1034
1035 === 6.1.4 Pin Mapping ===
1036
1037
1038 [[image:1656054972828-692.png]]
1039
1040
1041 === 6.1.5 Installation Notice ===
1042
1043
1044 (((
1045 Do not power on while connect the cables. Double check the wiring before power on.
1046 )))
1047
1048 (((
1049 Installation Photo as reference:
1050 )))
1051
1052
1053 (((
1054 (% style="color:#4472c4" %)** Install on Ground:**
1055 )))
1056
1057 (((
1058 WSS-01 Rain Gauge include screws so can install in ground directly .
1059 )))
1060
1061
1062 (((
1063 (% style="color:#4472c4" %)** Install on pole:**
1064 )))
1065
1066 (((
1067 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
1068 )))
1069
1070 [[image:image-20220624152218-1.png||height="526" width="276"]]
1071
1072 WS-K2: Bracket Kit for Pole installation
1073
1074
1075 WSSC-K2 dimension document, please see:
1076
1077 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
1078
1079
1080 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
1081
1082
1083 [[image:1656055444035-179.png]]
1084
1085
1086 (((
1087 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
1088 )))
1089
1090 (((
1091 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
1092 )))
1093
1094 (((
1095 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
1096 )))
1097
1098
1099 === 6.2.1 Feature ===
1100
1101
1102 * RS485 wind speed / direction sensor
1103 * PC enclosure, resist corrosion
1104
1105 === 6.2.2 Specification ===
1106
1107
1108 * Wind speed range: 0 ~~ 60m/s
1109 * Wind direction range: 0 ~~ 360°
1110 * Start wind speed: ≤0.3 m/s
1111 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1112 * Input Power: DC 5 ~~ 24v
1113 * Interface: RS485
1114 * Working Temperature: -30℃ ~~ 70℃
1115 * Working Humidity: <100% (no dewing)
1116 * Power Consumption: 13mA ~~ 12v.
1117 * Cable Length: 2 meters
1118
1119 === 6.2.3 Dimension ===
1120
1121
1122 [[image:image-20220624152813-2.png]]
1123
1124
1125 === 6.2.4 Pin Mapping ===
1126
1127
1128 [[image:1656056281231-994.png]]
1129
1130
1131 === 6.2.5  Angle Mapping ===
1132
1133
1134 [[image:1656056303845-585.png]]
1135
1136
1137 === 6.2.6  Installation Notice ===
1138
1139
1140 (((
1141 Do not power on while connect the cables. Double check the wiring before power on.
1142 )))
1143
1144 (((
1145 The sensor must be installed with below direction, towards North.
1146
1147
1148 )))
1149
1150 [[image:image-20220624153901-3.png]]
1151
1152
1153 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1154
1155
1156 (((
1157 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1158 )))
1159
1160 (((
1161 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1162 )))
1163
1164 (((
1165 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1166 )))
1167
1168
1169 === 6.3.1 Feature ===
1170
1171
1172 * RS485 CO2, PM2.5, PM10 sensor
1173 * NDIR to measure CO2 with Internal Temperature Compensation
1174 * Laser Beam Scattering to PM2.5 and PM10
1175
1176 === 6.3.2 Specification ===
1177
1178
1179 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1180 * CO2 resolution: 1ppm
1181 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1182 * PM2.5/PM10 resolution: 1μg/m3
1183 * Input Power: DC 7 ~~ 24v
1184 * Preheat time: 3min
1185 * Interface: RS485
1186 * Working Temperature:
1187 ** CO2: 0℃ ~~ 50℃;
1188 ** PM2.5/PM10: -30 ~~ 50℃
1189 * Working Humidity:
1190 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1191 ** CO2: 0 ~~ 95%RH
1192 * Power Consumption: 50mA@ 12v.
1193
1194 === 6.3.3 Dimension ===
1195
1196
1197 [[image:1656056708366-230.png]]
1198
1199
1200 === 6.3.4 Pin Mapping ===
1201
1202
1203 [[image:1656056722648-743.png]]
1204
1205
1206 === 6.3.5 Installation Notice ===
1207
1208
1209 Do not power on while connect the cables. Double check the wiring before power on.
1210
1211
1212 [[image:1656056751153-304.png]]
1213
1214
1215 [[image:1656056766224-773.png]]
1216
1217
1218 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1219
1220
1221 (((
1222 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1223 )))
1224
1225 (((
1226 WSS-04 has auto heating feature, this ensures measurement more reliable.
1227 )))
1228
1229 (((
1230 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1231 )))
1232
1233
1234 === 6.4.1 Feature ===
1235
1236
1237 * RS485 Rain/Snow detect sensor
1238 * Surface heating to dry
1239 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1240
1241 === 6.4.2 Specification ===
1242
1243
1244 * Detect if there is rain or snow
1245 * Input Power: DC 12 ~~ 24v
1246 * Interface: RS485
1247 * Working Temperature: -30℃ ~~ 70℃
1248 * Working Humidity: 10 ~~ 90%RH
1249 * Power Consumption:
1250 ** No heating: 12mA @ 12v,
1251 ** heating: 94ma @ 12v.
1252
1253 === 6.4.3 Dimension ===
1254
1255
1256 [[image:1656056844782-155.png]]
1257
1258
1259 === 6.4.4 Pin Mapping ===
1260
1261
1262 [[image:1656056855590-754.png]]
1263
1264
1265 === 6.4.5 Installation Notice ===
1266
1267
1268 Do not power on while connect the cables. Double check the wiring before power on.
1269
1270 (((
1271 Install with 15°degree.
1272 )))
1273
1274 [[image:1656056873783-780.png]]
1275
1276
1277 [[image:1656056883736-804.png]]
1278
1279
1280 === 6.4.6 Heating ===
1281
1282
1283 (((
1284 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1285 )))
1286
1287
1288 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1289
1290
1291 (((
1292 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1293 )))
1294
1295 (((
1296 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1297 )))
1298
1299
1300 === 6.5.1 Feature ===
1301
1302
1303 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1304
1305 === 6.5.2 Specification ===
1306
1307
1308 * Input Power: DC 12 ~~ 24v
1309 * Interface: RS485
1310 * Temperature Sensor Spec:
1311 ** Range: -30 ~~ 70℃
1312 ** resolution 0.1℃
1313 ** Accuracy: ±0.5℃
1314 * Humidity Sensor Spec:
1315 ** Range: 0 ~~ 100% RH
1316 ** resolution 0.1 %RH
1317 ** Accuracy: 3% RH
1318 * Pressure Sensor Spec:
1319 ** Range: 10 ~~ 1100hPa
1320 ** Resolution: 0.1hPa
1321 ** Accuracy: ±0.1hPa
1322 * Illuminate sensor:
1323 ** Range: 0~~2/20/200kLux
1324 ** Resolution: 10 Lux
1325 ** Accuracy: ±3%FS
1326 * Working Temperature: -30℃ ~~ 70℃
1327 * Working Humidity: 10 ~~ 90%RH
1328 * Power Consumption: 4mA @ 12v
1329
1330 === 6.5.3 Dimension ===
1331
1332
1333 [[image:1656057170639-522.png]]
1334
1335
1336 === 6.5.4 Pin Mapping ===
1337
1338
1339 [[image:1656057181899-910.png]]
1340
1341
1342 === 6.5.5 Installation Notice ===
1343
1344
1345 Do not power on while connect the cables. Double check the wiring before power on.
1346
1347 [[image:1656057199955-514.png]]
1348
1349 [[image:1656057212438-475.png]]
1350
1351
1352 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1353
1354
1355 (((
1356 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1357 )))
1358
1359 (((
1360 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1361 )))
1362
1363 (((
1364 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1365 )))
1366
1367
1368 === 6.6.1 Feature ===
1369
1370
1371 * RS485 Total Solar Radiation sensor
1372 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1373 * Measure Reflected Radiation if sense area towards ground.
1374
1375 === 6.6.2 Specification ===
1376
1377
1378 * Input Power: DC 5 ~~ 24v
1379 * Interface: RS485
1380 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1381 * Measure strength range: 0 ~~ 2000W/m2
1382 * Resolution: 0.1W/m2
1383 * Accuracy: ±3%
1384 * Yearly Stability: ≤±2%
1385 * Cosine response: ≤7% (@ Sun angle 10°)
1386 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1387 * Working Temperature: -40℃ ~~ 70℃
1388 * Working Humidity: 10 ~~ 90%RH
1389 * Power Consumption: 4mA @ 12v
1390
1391 === 6.6.3 Dimension ===
1392
1393
1394 [[image:1656057348695-898.png]]
1395
1396
1397 === 6.6.4 Pin Mapping ===
1398
1399
1400 [[image:1656057359343-744.png]]
1401
1402
1403 === 6.6.5 Installation Notice ===
1404
1405
1406 Do not power on while connect the cables. Double check the wiring before power on.
1407
1408 [[image:1656057369259-804.png]]
1409
1410 [[image:1656057377943-564.png]]
1411
1412
1413 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1414
1415
1416 (((
1417 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1418 )))
1419
1420 (((
1421 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1422 )))
1423
1424 (((
1425 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1426 )))
1427
1428
1429 === 6.7.1 Feature ===
1430
1431
1432 (((
1433 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1434 )))
1435
1436 (((
1437 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1438 )))
1439
1440
1441 === 6.7.2 Specification ===
1442
1443
1444 * Input Power: DC 5 ~~ 24v
1445 * Interface: RS485
1446 * Response Spectrum: 400~~700nm
1447 * Measure range: 0 ~~ 2500μmol/m2•s
1448 * Resolution: 1μmol/m2•s
1449 * Accuracy: ±2%
1450 * Yearly Stability: ≤ ±2%
1451 * Working Temperature: -30℃ ~~ 75℃
1452 * Working Humidity: 10 ~~ 90%RH
1453 * Power Consumption: 3mA @ 12v
1454
1455 === 6.7.3 Dimension ===
1456
1457
1458 [[image:1656057538793-888.png]]
1459
1460
1461 === 6.7.4 Pin Mapping ===
1462
1463
1464 [[image:1656057548116-203.png]]
1465
1466
1467 === 6.7.5 Installation Notice ===
1468
1469
1470 Do not power on while connect the cables. Double check the wiring before power on.
1471
1472 [[image:1656057557191-895.png]]
1473
1474 [[image:1656057565783-251.png]]
1475
1476
1477 = 7. FAQ =
1478
1479 == 7.1 What else do I need to purchase to build Weather Station? ==
1480
1481
1482 Below is the installation photo and structure:
1483
1484
1485 [[image:1656057598349-319.png]]
1486
1487
1488 [[image:1656057608049-693.png]]
1489
1490
1491 == 7.2 How to upgrade firmware for WSC1-L? ==
1492
1493
1494 (((
1495 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1496 )))
1497
1498 (((
1499 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1500 )))
1501
1502
1503 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1504
1505
1506 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1507
1508
1509 == 7.4 Can I add my weather sensors? ==
1510
1511
1512 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1513
1514
1515 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1516
1517
1518 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1519
1520
1521 == 7.6  How to change the data read by the rain gauge? ==
1522
1523
1524 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1525
1526 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1527
1528 **Rainfall query value:**
1529
1530 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1531
1532 4:Current Hourly rainfall: etc 0.2mm
1533
1534 5:Rainfall in last hour: etc 0.2mm
1535
1536 6:24-hour maximum rainfall: etc  10.0mm
1537
1538 8:24-hour minimum rainfall: etc  0.0mm
1539
1540 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1541
1542
1543 = 8. Trouble Shooting =
1544
1545 == 8.1 AT Command input doesn't work ==
1546
1547
1548 (((
1549 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1550 )))
1551
1552
1553 == 8.2  Possible reasons why the device is unresponsive: ==
1554
1555
1556 ~1. Check whether the battery voltage is lower than 2.8V
1557 2. Check whether the jumper of the device is correctly connected
1558
1559 [[image:image-20240330173709-1.png]]
1560
1561
1562 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1563
1564 [[image:image-20240330173724-2.png]]
1565
1566
1567 == 8.3  The rain gauge keeps showing an incorrect value of 102.2 ==
1568
1569 When the rain gauge keeps showing wrong values, it means that the device has exceeded its maximum range.
1570 Customer need to use RS485-USB to reset it
1571
1572 Wiring method:
1573 RS485-USB A<~-~-~-~-~-~-->rain gauge RS485A
1574 RS485-USB B<~-~-~-~-~-~-->rain gauge RS485B
1575
1576
1577 Use the reset command:
1578
1579 06 06 00 37 00 03 79 B2
1580
1581 [[image:image-20250219164620-1.png]]
1582
1583
1584
1585
1586
1587 = 9. Order Info =
1588
1589 == 9.1 Main Process Unit ==
1590
1591
1592 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1593
1594 (% style="color:blue" %)**XX**(%%): The default frequency band
1595
1596 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1597 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1598 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1599 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1600 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1601 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1602 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1603 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1604
1605 == 9.2 Sensors ==
1606
1607
1608 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1609 |=(% style="width: 300px;background-color:#4F81BD;color:white" %)**Sensor Model**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Part Number**
1610 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1611 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1612 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1613 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1614 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1615 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1616 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1617 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1618
1619 = 10. Support =
1620
1621
1622 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1623
1624 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1625
1626 = 11. Appendix I: Field Installation Photo =
1627
1628
1629 [[image:1656058346362-132.png||height="685" width="732"]]
1630
1631 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1632
1633
1634
1635 (% style="color:blue" %)**Wind Speed/Direction**
1636
1637 [[image:1656058373174-421.png||height="356" width="731"]]
1638
1639
1640
1641 (% style="color:blue" %)**Total Solar Radiation sensor**
1642
1643 [[image:1656058397364-282.png||height="453" width="732"]]
1644
1645
1646
1647 (% style="color:blue" %)**PAR Sensor**
1648
1649 [[image:1656058416171-615.png]]
1650
1651
1652
1653 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1654
1655 [[image:1656058441194-827.png||height="672" width="523"]]
1656
1657
1658
1659 (% style="color:blue" %)**Rain / Snow Detect**
1660
1661 [[image:1656058451456-166.png]]
1662
1663
1664
1665 (% style="color:blue" %)**Rain Gauge**
1666
1667 [[image:1656058463455-569.png||height="499" width="550"]]
1668
1669
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0