Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:1656035424980-692.png||height="533" width="386"]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 Overview ==
26
27
28 (((
29 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
30 )))
31
32 (((
33 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
34 )))
35
36 (((
37 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in Li-ion backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
38 )))
39
40 (((
41 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
42 )))
43
44
45 = 2. How to use =
46
47 == 2.1 Installation ==
48
49
50 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
51
52
53 [[image:1656041948552-849.png]]
54
55
56 (% style="color:blue" %)** Wiring:**
57
58 ~1. WSC1-L and sensors all powered by solar power via MPPT
59
60 2. WSC1-L and sensors connect to each other via RS485/Modbus.
61
62 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
63
64
65 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
66
67 [[image:1656042136605-251.png]]
68
69
70 (% style="color:red" %)**Notice 1:**
71
72 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
73 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
74 * Weather sensors won't work if solar panel and storage battery fails.
75
76 (% style="color:red" %)**Notice 2:**
77
78 Due to shipment and importation limitation, user is better to purchase below parts locally:
79
80 * Solar Panel
81 * Storage Battery
82 * MPPT Solar Recharger
83 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
84 * Cabinet.
85
86 == 2.2 How it works? ==
87
88
89 (((
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91 )))
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107
108 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110 [[image:1656042612899-422.png]]
111
112
113 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
114
115
116 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
117
118 Each WSC1-L is shipped with a sticker with the default device EUI as below:
119
120 [[image:image-20230426084533-1.png||height="231" width="497"]]
121
122
123 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
124
125 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
126
127 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
128
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:image-20250122085806-2.png||height="369" width="1010"]]
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
140
141
142 **Add Keys**
143
144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
145
146
147 (((
148 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
149 )))
150
151 [[image:1656042745346-283.png]]
152
153
154 == 2.4 Uplink Payload ==
155
156
157 Uplink payloads include two types: Valid Sensor Value and other status / control command.
158
159 * Valid Sensor Value: Use FPORT=2
160 * Other control command: Use FPORT other than 2.
161
162 === 2.4.1 Uplink FPORT~=5, Device Status ===
163
164
165 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
166
167
168 (((
169 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
170 )))
171
172 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
173 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 60px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**3**
174 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
175
176 [[image:1656043061044-343.png]]
177
178
179 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
180
181
182 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
183
184 For WSC1-L, this value is 0x0D.
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
193
194 0x01: EU868
195
196 0x02: US915
197
198 0x03: IN865
199
200 0x04: AU915
201
202 0x05: KZ865
203
204 0x06: RU864
205
206 0x07: AS923
207
208 0x08: AS923-1
209
210 0x09: AS923-2
211
212 0x0a: AS923-3
213
214
215 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
216
217 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
218
219
220 ==== (% style="color:#037691" %)**BAT:**(%%) ====
221
222 (((
223 shows the battery voltage for WSC1-L MCU.
224 )))
225
226 (((
227 Ex1: 0x0BD6/1000 = 3.03 V
228 )))
229
230
231 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
232
233 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
234 |Byte3|Byte2|Byte1
235
236 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
237
238 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
239 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:110px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
240 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
241 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
244 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
245
246 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
247
248 External sensors detected by WSC1-L include :
249
250 custom sensor A1,
251
252 PAR sensor (WSS-07),
253
254 Total Solar Radiation sensor (WSS-06),
255
256 CO2/PM2.5/PM10 (WSS-03),
257
258 Wind Speed/Direction (WSS-02)
259
260
261 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
262
263 (% style="color:#037691" %)**Downlink:0x26 01**
264
265 [[image:1656049673488-415.png]]
266
267
268 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
269
270
271 ==== 2.4.2.1 paylaod before firmware V1.3.1(including v1.3.1) ====
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281 (((
282 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
283 )))
284
285
286 (% style="color:#4472c4" %)** Uplink Payload**:
287
288 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
289 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
290
291 (% style="color:#4472c4" %)** Sensor Segment Define**:
292
293 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
294 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
295
296 (% style="color:#4472c4" %)**Sensor Type Table:**
297
298 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
299 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
300 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
301 Speed: 0 ~~ 60m/s
302 Level: 0 ~~ 17
303 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
304 (((
305 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
306 )))
307
308 (((
309 0x02=2 (0x14: No Sensor, 0x15: Value Error)
310 )))
311 )))
312 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
313 Angel: 0 ~~ 360°
314 Direction: 16 positions
315 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
316 (((
317 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
318 )))
319
320 (((
321 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
322 )))
323 )))
324 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
325 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
326 )))
327 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
328 (((
329 0x00 (00) No Rain or snow detected
330 )))
331
332 (((
333 (0x02: No Sensor,0x03: Value Error)
334 )))
335 )))
336 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
337 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
338 )))
339 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
340 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
341 )))
342 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
343 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
344 )))
345 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
346 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
347 )))
348 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
349 0mm~100mm(Rainfall in the last 24 hours)
350 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 (((
352 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
353 )))
354
355 (((
356 (0x03FE: No Sensor,0x03FF: Value Error)
357 )))
358 )))
359 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
360 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
361 )))
362 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
363 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
364 )))
365 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
366 0~2500μmol/m^^2^^•s
367 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
368 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
369 )))
370 |(% style="width:103px" %)(((
371 Total Solar Radiation
372 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
373 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
374 )))
375
376 (((
377 Below is an example payload:  [[image:image-20220624140615-3.png]]
378 )))
379
380
381 (((
382 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
383 )))
384
385 * (((
386 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
387 )))
388
389 (((
390 Uplink 1:  [[image:image-20220624140735-4.png]]
391 )))
392
393
394 (((
395 Uplink 2:  [[image:image-20220624140842-5.png]]
396
397 )))
398
399 * (((
400 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
401 )))
402
403 (((
404 Uplink 1:  [[image:image-20220624141025-6.png]]
405 )))
406
407
408 Uplink 2:  [[image:image-20220624141100-7.png]]
409
410
411
412 ==== 2.4.2.2 paylaod since firmware V1.3.1 ====
413
414
415 (% style="color:red" %)**Note: Since firmware V1.3.1, MSP functionality has been added for WSS-02. Thus the wind speed paylaod length increases(Add 4 bytes for maximum wind speed and average wind speed).**
416
417 (((
418 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
419 )))
420
421 (% style="color:#4472c4" %)** Uplink Payload**:
422
423 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
424 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
425
426 (% style="color:#4472c4" %)** Sensor Segment Define**:
427
428 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
429 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
430
431 (% style="color:#4472c4" %)**Sensor Type Table:**
432
433 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
434 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
435 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
436 ①Speed: 0 ~~ 60m/s
437
438 ②(% style="color:#4472c4" %)**Maximum wind speed: **(%%)0 ~~ 60m/s
439
440 ③(% style="color:#4472c4" %)**Average wind speed:**(%%) 0 ~~ 60m/s
441 ④Level: 0 ~~ 17
442 )))|(% style="width:122px" %)0x07 |(% style="width:904px" %)(((
443 (((
444 ①0x0015/10=2.1m/s (0x02FE: No Sensor, 0x02EE: Value Error)
445
446 ②0x0024/10=3.6m/s
447
448 ③0x000E/10=1.4m/s
449 )))
450
451 (((
452 ④0x02=2 (0x14: No Sensor, 0x15: Value Error)
453 )))
454 )))
455 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
456 Angel: 0 ~~ 360°
457 Direction: 16 positions
458 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
459 (((
460 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
461 )))
462
463 (((
464 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
465 )))
466 )))
467 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
468 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
469 )))
470 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
471 (((
472 0x00 (00) No Rain or snow detected
473 )))
474
475 (((
476 (0x02: No Sensor,0x03: Value Error)
477 )))
478 )))
479 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
480 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
481 )))
482 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
483 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
484 )))
485 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
486 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
487 )))
488 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
489 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
490 )))
491 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
492 0mm~100mm(Rainfall in the last 24 hours)
493 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
494 (((
495 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
496 )))
497
498 (((
499 (0x03FE: No Sensor,0x03FF: Value Error)
500 )))
501 )))
502 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
503 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
504 )))
505 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
506 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
507 )))
508 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
509 0~2500μmol/m^^2^^•s
510 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
511 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
512 )))
513 |(% style="width:103px" %)(((
514 Total Solar Radiation
515 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
516 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
517 )))
518
519
520 === 2.4.3 Decoder in TTN V3 ===
521
522
523 (((
524 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
525 )))
526
527 (((
528 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
529 )))
530
531 (((
532 and put as below:
533 )))
534
535 [[image:1656051152438-578.png]]
536
537
538 == 2.5 Show data on Application Server ==
539
540
541 (((
542 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
543 )))
544
545 (((
546 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
547 )))
548
549 (((
550 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
551 )))
552
553 [[image:1656051197172-131.png]]
554
555
556 **Add TagoIO:**
557
558 [[image:1656051223585-631.png]]
559
560
561 **Authorization:**
562
563 [[image:1656051248318-368.png]]
564
565
566 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
567
568 [[image:1656051277767-168.png]]
569
570
571 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
572
573
574 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
575
576 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
577 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
578
579 There are two kinds of commands to configure WSC1-L, they are:
580
581 * (% style="color:blue" %)**General Commands**.
582
583 These commands are to configure:
584
585 * General system settings like: uplink interval.
586 * LoRaWAN protocol & radio related command.
587
588 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
589
590 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
591
592
593 * (% style="color:blue" %)**Commands special design for WSC1-L**
594
595 These commands only valid for WSC1-L, as below:
596
597
598 == 3.1 Set Transmit Interval Time ==
599
600
601 Feature: Change LoRaWAN End Node Transmit Interval.
602
603 (% style="color:#037691" %)**AT Command: AT+TDC**
604
605 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
606 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
607 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
608 30000
609 OK
610 the interval is 30000ms = 30s
611 )))
612 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
613 OK
614 Set transmit interval to 60000ms = 60 seconds
615 )))
616
617 (% style="color:#037691" %)**Downlink Command: 0x01**
618
619 Format: Command Code (0x01) followed by 3 bytes time value.
620
621 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
622
623 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
624 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
625
626 == 3.2 Set Emergency Mode ==
627
628
629 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
630
631 (% style="color:#037691" %)**AT Command:**
632
633 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
634 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
635 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
636 OK
637
638 )))
639 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
640 OK
641 )))
642
643 (% style="color:#037691" %)**Downlink Command:**
644
645 * 0xE101     Same as: AT+ALARMMOD=1
646 * 0xE100     Same as: AT+ALARMMOD=0
647
648 == 3.3 Add or Delete RS485 Sensor ==
649
650
651 (((
652 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
653 )))
654
655 (((
656 (% style="color:#037691" %)**AT Command: **
657 )))
658
659 (((
660 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
661 )))
662
663 * (((
664 Type_Code range:  A1 ~~ A4
665 )))
666 * (((
667 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
668 )))
669 * (((
670 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
671 )))
672 * (((
673 Read_Length:  RS485 response frame length supposed to receive. Max can receive
674 )))
675 * (((
676 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
677 )))
678 * (((
679 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
680 )))
681 * (((
682 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
683 )))
684
685 (((
686 **Example:**
687 )))
688
689 (((
690 User need to change external sensor use the type code as address code.
691 )))
692
693 (((
694 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
695 )))
696
697 [[image:image-20220624143553-10.png]]
698
699
700 The response frame of the sensor is as follows:
701
702 [[image:image-20220624143618-11.png]]
703
704
705 **Then the following parameters should be:**
706
707 * Address_Code range: A1
708 * Query_Length: 8
709 * Query_Command: A103000000019CAA
710 * Read_Length: 8
711 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
712 * has_CRC: 1
713 * timeout: 1500 (Fill in the test according to the actual situation)
714
715 **So the input command is:**
716
717 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
718
719
720 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
721
722 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
723 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
724 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
725
726 **Related commands:**
727
728 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
729
730 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
731
732
733 (% style="color:#037691" %)**Downlink Command:  **
734
735 **delete custom sensor A1:**
736
737 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
738
739 **Remove all custom sensors**
740
741 * 0xE5FF  
742
743 == 3.4 RS485 Test Command ==
744
745
746 (% style="color:#037691" %)**AT Command:**
747
748 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
749 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
750 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
751 Send command to 485 sensor. Range : no more than 10 bytes
752 )))|(% style="width:85px" %)OK
753
754 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
755
756 AT+RSWRITE=0103000001840A
757
758 If there is output from sensor, The console will show the output data
759
760
761 (% style="color:#037691" %)**Downlink Command:**
762
763 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
764
765 == 3.5 RS485 response timeout ==
766
767
768 Feature: Set or get extended time to receive 485 sensor data.
769
770 (% style="color:#037691" %)**AT Command:**
771
772 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
773 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
774 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
775 Set response timeout to: Range : 0~~10000
776 )))|(% style="width:85px" %)OK
777
778 (% style="color:#037691" %)**Downlink Command:**
779
780 Format: Command Code (0xE0) followed by 3 bytes time value.
781
782 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
783
784 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
785 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
786
787 == 3.6 Set Sensor Type ==
788
789
790 (((
791 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
792 )))
793
794 (((
795 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
796
797 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
798 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
799 | |A4|A3|A2|A1| | |
800 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
801 | | |Solar Radiation|PAR|PM10|PM2.5|(((
802 Rain
803 Gauge
804 )))|(((
805 Air
806 Pressure
807 )))
808 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
809 |Humidity|Temperature|CO2|(((
810 Rain/Snow
811 Detect
812 )))|illuminance|(((
813 Wind
814 Direction
815 )))|Wind Speed|BAT
816 )))
817
818
819 (% style="color:#037691" %)**AT Command:**
820
821 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:377px" %)
822 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 132px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
823 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
824
825 Eg: The setting command **AT+STYPE=80221** means:
826
827 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:495px" %)
828 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
829 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
830 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
831 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
832 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
833 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
834
835 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
836
837
838 (% style="color:#037691" %)**Downlink Command:**
839
840 * 0xE400080221  Same as: AT+STYPE=80221
841
842 (% style="color:red" %)**Note:**
843
844 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
845
846
847 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
848
849
850 (% style="color:#037691" %)**AT Command:**
851
852 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
853 |=(% style="width: 230px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 232px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
854 |(% style="width:240px" %)(((
855 AT+RAINFALLSWITCH=10(Value:3,4,5,6,8,10)
856 )))|(% style="width:232px" %)(((
857 Set the registers read by the rain gauge
858 )))|(% style="width:38px" %)OK
859
860 (% style="color:#037691" %)**Downlink Command:**
861
862 * 0xE703  Same as: AT+RAINFALLSWITCH=3
863
864 Value Definition:
865
866 * **3**: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
867 * **4**: Hourly rainfall: 0.2mm
868 * **5**: Rainfall in last hour: 0.2mm
869 * **6**: 24-hour maximum rainfall 10.0mm
870 * **8**: 24-hour minimum rainfall:0.0mm
871 * **10**: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
872
873
874 == 3.8 Set the MSP mode(Since firmware V1.3.1) ==
875
876
877 (% style="color:red" %)**Note: This feature is available for WSS-02.**
878
879 This function is used for the continuous collection of wind speed.
880
881 When MSP mode is turned on (AT+MSP=1), WSC1-L will collect real-time wind speed **every 5 seconds**. Then it will judge the maximum wind speed in this period according to the wind speed collected in TDC time, and calculate the average wind speed according to the wind speed data collected in TDC time and the number of data groups.
882
883 (% style="color:#037691" %)**AT Command: AT+MSP**
884
885 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
886 |=(% style="width: 158px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 214px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 136px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
887 |(% style="width:158px" %)(((
888 AT+MSP=?
889 )))|(% style="width:214px" %)Query whether MSP mode is on|(% style="width:136px" %)(((
890 0(default)
891
892 OK
893 )))
894 |(% style="width:158px" %)AT+MSP=0|(% style="width:214px" %)Disable the MSP mode|(% style="width:136px" %)OK
895 |(% style="width:158px" %)AT+MSP=1|(% style="width:214px" %)Enable the MSP mode|(% style="width:136px" %)OK
896
897 (% style="color:#037691" %)**Downlink Command: 0X34**
898
899 * Downlink payload: 34 00  ~/~/ Equal to AT+MSP=0
900 * Downlink payload: 34 01  ~/~/ Equal to AT+MSP=1
901
902
903 = 4. Power consumption and battery =
904
905 == 4.1 Total Power Consumption ==
906
907
908 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
909
910
911 == 4.2 Reduce power consumption ==
912
913
914 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
915
916
917 == 4.3 Battery ==
918
919
920 (((
921 All sensors are only power by external power source. If external power source is off. All sensor won't work.
922 )))
923
924 (((
925 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
926 )))
927
928
929 = 5. Main Process Unit WSC1-L =
930
931 == 5.1 Features ==
932
933
934 * Wall Attachable.
935 * LoRaWAN v1.0.3 Class A protocol.
936 * RS485 / Modbus protocol
937 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
938 * AT Commands to change parameters
939 * Remote configure parameters via LoRaWAN Downlink
940 * Firmware upgradable via program port
941 * Powered by external 12v battery
942 * Back up rechargeable 1000mAh battery
943 * IP Rating: IP65
944 * Support default sensors or 3rd party RS485 sensors
945
946 == 5.2 Power Consumption ==
947
948
949 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
950
951
952 == 5.3 Storage & Operation Temperature ==
953
954
955 -20°C to +60°C
956
957
958 == 5.4 Pin Mapping ==
959
960
961 [[image:1656054149793-239.png]]
962
963
964 == 5.5 Mechanical ==
965
966
967 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
968
969
970 == 5.6 Connect to RS485 Sensors ==
971
972
973 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
974
975
976 [[image:1656054389031-379.png]]
977
978
979 Hardware Design for the Converter Board please see:
980
981 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
982
983
984 = 6. Weather Sensors =
985
986 == 6.1 Rain Gauge ~-~- WSS-01 ==
987
988
989 (((
990 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
991 )))
992
993 (((
994 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
995 )))
996
997 (((
998 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
999 )))
1000
1001 (((
1002 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
1003 )))
1004
1005 (((
1006 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
1007 )))
1008
1009
1010 === 6.1.1 Feature ===
1011
1012
1013 * RS485 Rain Gauge
1014 * Small dimension, easy to install
1015 * Vents under funnel, avoid leaf or other things to avoid rain flow.
1016 * ABS enclosure.
1017 * Horizontal adjustable.
1018
1019 === 6.1.2 Specification ===
1020
1021
1022 * Resolution: 0.2mm
1023 * Accuracy: ±3%
1024 * Range: 0 ~~ 100mm
1025 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
1026 * Input Power: DC 5 ~~ 24v
1027 * Interface: RS485
1028 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
1029 * Working Humidity: <100% (no dewing)
1030 * Power Consumption: 4mA @ 12v.
1031
1032 === 6.1.3 Dimension ===
1033
1034
1035 [[image:1656054957406-980.png]]
1036
1037
1038 === 6.1.4 Pin Mapping ===
1039
1040
1041 [[image:1656054972828-692.png]]
1042
1043
1044 === 6.1.5 Installation Notice ===
1045
1046
1047 (((
1048 Do not power on while connect the cables. Double check the wiring before power on.
1049 )))
1050
1051 (((
1052 Installation Photo as reference:
1053 )))
1054
1055
1056 (((
1057 (% style="color:#4472c4" %)** Install on Ground:**
1058 )))
1059
1060 (((
1061 WSS-01 Rain Gauge include screws so can install in ground directly .
1062 )))
1063
1064
1065 (((
1066 (% style="color:#4472c4" %)** Install on pole:**
1067 )))
1068
1069 (((
1070 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
1071 )))
1072
1073 [[image:image-20220624152218-1.png||height="526" width="276"]]
1074
1075 WS-K2: Bracket Kit for Pole installation
1076
1077
1078 WSSC-K2 dimension document, please see:
1079
1080 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
1081
1082
1083 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
1084
1085
1086 [[image:1656055444035-179.png]]
1087
1088
1089 (((
1090 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
1091 )))
1092
1093 (((
1094 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
1095 )))
1096
1097 (((
1098 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
1099 )))
1100
1101
1102 === 6.2.1 Feature ===
1103
1104
1105 * RS485 wind speed / direction sensor
1106 * PC enclosure, resist corrosion
1107
1108 === 6.2.2 Specification ===
1109
1110
1111 * Wind speed range: 0 ~~ 60m/s
1112 * Wind direction range: 0 ~~ 360°
1113 * Start wind speed: ≤0.3 m/s
1114 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1115 * Input Power: DC 5 ~~ 24v
1116 * Interface: RS485
1117 * Working Temperature: -30℃ ~~ 70℃
1118 * Working Humidity: <100% (no dewing)
1119 * Power Consumption: 13mA ~~ 12v.
1120 * Cable Length: 2 meters
1121
1122 === 6.2.3 Dimension ===
1123
1124
1125 [[image:image-20220624152813-2.png]]
1126
1127
1128 === 6.2.4 Pin Mapping ===
1129
1130
1131 [[image:1656056281231-994.png]]
1132
1133
1134 === 6.2.5  Angle Mapping ===
1135
1136
1137 [[image:1656056303845-585.png]]
1138
1139
1140 === 6.2.6  Installation Notice ===
1141
1142
1143 (((
1144 Do not power on while connect the cables. Double check the wiring before power on.
1145 )))
1146
1147 (((
1148 The sensor must be installed with below direction, towards North.
1149
1150
1151 )))
1152
1153 [[image:image-20220624153901-3.png]]
1154
1155
1156 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1157
1158
1159 (((
1160 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1161 )))
1162
1163 (((
1164 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1165 )))
1166
1167 (((
1168 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1169 )))
1170
1171
1172 === 6.3.1 Feature ===
1173
1174
1175 * RS485 CO2, PM2.5, PM10 sensor
1176 * NDIR to measure CO2 with Internal Temperature Compensation
1177 * Laser Beam Scattering to PM2.5 and PM10
1178
1179 === 6.3.2 Specification ===
1180
1181
1182 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1183 * CO2 resolution: 1ppm
1184 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1185 * PM2.5/PM10 resolution: 1μg/m3
1186 * Input Power: DC 7 ~~ 24v
1187 * Preheat time: 3min
1188 * Interface: RS485
1189 * Working Temperature:
1190 ** CO2: 0℃ ~~ 50℃;
1191 ** PM2.5/PM10: -30 ~~ 50℃
1192 * Working Humidity:
1193 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1194 ** CO2: 0 ~~ 95%RH
1195 * Power Consumption: 50mA@ 12v.
1196
1197 === 6.3.3 Dimension ===
1198
1199
1200 [[image:1656056708366-230.png]]
1201
1202
1203 === 6.3.4 Pin Mapping ===
1204
1205
1206 [[image:1656056722648-743.png]]
1207
1208
1209 === 6.3.5 Installation Notice ===
1210
1211
1212 Do not power on while connect the cables. Double check the wiring before power on.
1213
1214
1215 [[image:1656056751153-304.png]]
1216
1217
1218 [[image:1656056766224-773.png]]
1219
1220
1221 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1222
1223
1224 (((
1225 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1226 )))
1227
1228 (((
1229 WSS-04 has auto heating feature, this ensures measurement more reliable.
1230 )))
1231
1232 (((
1233 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1234 )))
1235
1236
1237 === 6.4.1 Feature ===
1238
1239
1240 * RS485 Rain/Snow detect sensor
1241 * Surface heating to dry
1242 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1243
1244 === 6.4.2 Specification ===
1245
1246
1247 * Detect if there is rain or snow
1248 * Input Power: DC 12 ~~ 24v
1249 * Interface: RS485
1250 * Working Temperature: -30℃ ~~ 70℃
1251 * Working Humidity: 10 ~~ 90%RH
1252 * Power Consumption:
1253 ** No heating: 12mA @ 12v,
1254 ** heating: 94ma @ 12v.
1255
1256 === 6.4.3 Dimension ===
1257
1258
1259 [[image:1656056844782-155.png]]
1260
1261
1262 === 6.4.4 Pin Mapping ===
1263
1264
1265 [[image:1656056855590-754.png]]
1266
1267
1268 === 6.4.5 Installation Notice ===
1269
1270
1271 Do not power on while connect the cables. Double check the wiring before power on.
1272
1273 (((
1274 Install with 15°degree.
1275 )))
1276
1277 [[image:1656056873783-780.png]]
1278
1279
1280 [[image:1656056883736-804.png]]
1281
1282
1283 === 6.4.6 Heating ===
1284
1285
1286 (((
1287 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1288 )))
1289
1290
1291 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1292
1293
1294 (((
1295 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1296 )))
1297
1298 (((
1299 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1300 )))
1301
1302
1303 === 6.5.1 Feature ===
1304
1305
1306 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1307
1308 === 6.5.2 Specification ===
1309
1310
1311 * Input Power: DC 12 ~~ 24v
1312 * Interface: RS485
1313 * Temperature Sensor Spec:
1314 ** Range: -30 ~~ 70℃
1315 ** resolution 0.1℃
1316 ** Accuracy: ±0.5℃
1317 * Humidity Sensor Spec:
1318 ** Range: 0 ~~ 100% RH
1319 ** resolution 0.1 %RH
1320 ** Accuracy: 3% RH
1321 * Pressure Sensor Spec:
1322 ** Range: 10 ~~ 1100hPa
1323 ** Resolution: 0.1hPa
1324 ** Accuracy: ±0.1hPa
1325 * Illuminate sensor:
1326 ** Range: 0~~2/20/200kLux
1327 ** Resolution: 10 Lux
1328 ** Accuracy: ±3%FS
1329 * Working Temperature: -30℃ ~~ 70℃
1330 * Working Humidity: 10 ~~ 90%RH
1331 * Power Consumption: 4mA @ 12v
1332
1333 === 6.5.3 Dimension ===
1334
1335
1336 [[image:1656057170639-522.png]]
1337
1338
1339 === 6.5.4 Pin Mapping ===
1340
1341
1342 [[image:1656057181899-910.png]]
1343
1344
1345 === 6.5.5 Installation Notice ===
1346
1347
1348 Do not power on while connect the cables. Double check the wiring before power on.
1349
1350 [[image:1656057199955-514.png]]
1351
1352 [[image:1656057212438-475.png]]
1353
1354
1355 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1356
1357
1358 (((
1359 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1360 )))
1361
1362 (((
1363 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1364 )))
1365
1366 (((
1367 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1368 )))
1369
1370
1371 === 6.6.1 Feature ===
1372
1373
1374 * RS485 Total Solar Radiation sensor
1375 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1376 * Measure Reflected Radiation if sense area towards ground.
1377
1378 === 6.6.2 Specification ===
1379
1380
1381 * Input Power: DC 5 ~~ 24v
1382 * Interface: RS485
1383 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1384 * Measure strength range: 0 ~~ 2000W/m2
1385 * Resolution: 0.1W/m2
1386 * Accuracy: ±3%
1387 * Yearly Stability: ≤±2%
1388 * Cosine response: ≤7% (@ Sun angle 10°)
1389 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1390 * Working Temperature: -40℃ ~~ 70℃
1391 * Working Humidity: 10 ~~ 90%RH
1392 * Power Consumption: 4mA @ 12v
1393
1394 === 6.6.3 Dimension ===
1395
1396
1397 [[image:1656057348695-898.png]]
1398
1399
1400 === 6.6.4 Pin Mapping ===
1401
1402
1403 [[image:1656057359343-744.png]]
1404
1405
1406 === 6.6.5 Installation Notice ===
1407
1408
1409 Do not power on while connect the cables. Double check the wiring before power on.
1410
1411 [[image:1656057369259-804.png]]
1412
1413 [[image:1656057377943-564.png]]
1414
1415
1416 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1417
1418
1419 (((
1420 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1421 )))
1422
1423 (((
1424 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1425 )))
1426
1427 (((
1428 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1429 )))
1430
1431
1432 === 6.7.1 Feature ===
1433
1434
1435 (((
1436 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1437 )))
1438
1439 (((
1440 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1441 )))
1442
1443
1444 === 6.7.2 Specification ===
1445
1446
1447 * Input Power: DC 5 ~~ 24v
1448 * Interface: RS485
1449 * Response Spectrum: 400~~700nm
1450 * Measure range: 0 ~~ 2500μmol/m2•s
1451 * Resolution: 1μmol/m2•s
1452 * Accuracy: ±2%
1453 * Yearly Stability: ≤ ±2%
1454 * Working Temperature: -30℃ ~~ 75℃
1455 * Working Humidity: 10 ~~ 90%RH
1456 * Power Consumption: 3mA @ 12v
1457
1458 === 6.7.3 Dimension ===
1459
1460
1461 [[image:1656057538793-888.png]]
1462
1463
1464 === 6.7.4 Pin Mapping ===
1465
1466
1467 [[image:1656057548116-203.png]]
1468
1469
1470 === 6.7.5 Installation Notice ===
1471
1472
1473 Do not power on while connect the cables. Double check the wiring before power on.
1474
1475 [[image:1656057557191-895.png]]
1476
1477 [[image:1656057565783-251.png]]
1478
1479
1480 = 7. FAQ =
1481
1482 == 7.1 What else do I need to purchase to build Weather Station? ==
1483
1484
1485 Below is the installation photo and structure:
1486
1487
1488 [[image:1656057598349-319.png]]
1489
1490
1491 [[image:1656057608049-693.png]]
1492
1493
1494 == 7.2 How to upgrade firmware for WSC1-L? ==
1495
1496
1497 (((
1498 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1499 )))
1500
1501 (((
1502 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1503 )))
1504
1505
1506 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1507
1508
1509 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1510
1511
1512 == 7.4 Can I add my weather sensors? ==
1513
1514
1515 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1516
1517
1518 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1519
1520
1521 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1522
1523
1524 == 7.6  How to change the data read by the rain gauge? ==
1525
1526
1527 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1528
1529 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1530
1531 **Rainfall query value:**
1532
1533 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1534
1535 4:Current Hourly rainfall: etc 0.2mm
1536
1537 5:Rainfall in last hour: etc 0.2mm
1538
1539 6:24-hour maximum rainfall: etc  10.0mm
1540
1541 8:24-hour minimum rainfall: etc  0.0mm
1542
1543 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1544
1545
1546 = 8. Trouble Shooting =
1547
1548 == 8.1 AT Command input doesn't work ==
1549
1550
1551 (((
1552 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1553 )))
1554
1555
1556 == 8.2  Possible reasons why the device is unresponsive: ==
1557
1558
1559 ~1. Check whether the battery voltage is lower than 2.8V
1560 2. Check whether the jumper of the device is correctly connected
1561
1562 [[image:image-20240330173709-1.png]]
1563
1564
1565 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1566
1567 [[image:image-20240330173724-2.png]]
1568
1569
1570 == 8.3  The rain gauge keeps showing an incorrect value of 102.2 ==
1571
1572 When the rain gauge keeps showing wrong values, it means that the device has exceeded its maximum range.
1573 Customer need to use RS485-USB to reset it
1574
1575 Wiring method:
1576 RS485-USB A<~-~-~-~-~-~-->rain gauge RS485A
1577 RS485-USB B<~-~-~-~-~-~-->rain gauge RS485B
1578
1579
1580 Use the reset command:
1581
1582 06 06 00 37 00 03 79 B2
1583
1584 [[image:image-20250219164620-1.png]]
1585
1586
1587
1588
1589
1590 = 9. Order Info =
1591
1592 == 9.1 Main Process Unit ==
1593
1594
1595 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1596
1597 (% style="color:blue" %)**XX**(%%): The default frequency band
1598
1599 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1600 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1601 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1602 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1603 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1604 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1605 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1606 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1607
1608 == 9.2 Sensors ==
1609
1610
1611 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1612 |=(% style="width: 300px;background-color:#4F81BD;color:white" %)**Sensor Model**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Part Number**
1613 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1614 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1615 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1616 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1617 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1618 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1619 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1620 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1621
1622 = 10. Support =
1623
1624
1625 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1626
1627 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1628
1629 = 11. Appendix I: Field Installation Photo =
1630
1631
1632 [[image:1656058346362-132.png||height="685" width="732"]]
1633
1634 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1635
1636
1637
1638 (% style="color:blue" %)**Wind Speed/Direction**
1639
1640 [[image:1656058373174-421.png||height="356" width="731"]]
1641
1642
1643
1644 (% style="color:blue" %)**Total Solar Radiation sensor**
1645
1646 [[image:1656058397364-282.png||height="453" width="732"]]
1647
1648
1649
1650 (% style="color:blue" %)**PAR Sensor**
1651
1652 [[image:1656058416171-615.png]]
1653
1654
1655
1656 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1657
1658 [[image:1656058441194-827.png||height="672" width="523"]]
1659
1660
1661
1662 (% style="color:blue" %)**Rain / Snow Detect**
1663
1664 [[image:1656058451456-166.png]]
1665
1666
1667
1668 (% style="color:blue" %)**Rain Gauge**
1669
1670 [[image:1656058463455-569.png||height="499" width="550"]]
1671
1672
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0