Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28
29 )))
30
31 (((
32 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
33 )))
34
35 (((
36
37 )))
38
39 (((
40 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
41 )))
42
43 (((
44
45 )))
46
47 (((
48 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
49 )))
50
51
52
53 = 2. How to use =
54
55 == 2.1 Installation ==
56
57 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
58
59 [[image:1656041948552-849.png]]
60
61
62 (% style="color:blue" %)** Wiring:**
63
64 ~1. WSC1-L and sensors all powered by solar power via MPPT
65
66 2. WSC1-L and sensors connect to each other via RS485/Modbus.
67
68 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
69
70
71 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
72
73 [[image:1656042136605-251.png]]
74
75
76 (% style="color:red" %) ** Notice 1:**
77
78 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
79 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
80 * Weather sensors won’t work if solar panel and storage battery fails.
81
82
83
84
85 (% style="color:red" %)** Notice 2:**
86
87 Due to shipment and importation limitation, user is better to purchase below parts locally:
88
89 * Solar Panel
90 * Storage Battery
91 * MPPT Solar Recharger
92 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
93 * Cabinet.
94
95 == 2.2 How it works? ==
96
97 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
98
99
100 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
101
102 [[image:1656042192857-709.png]]
103
104
105 (% style="color:red" %)**Notice:**
106
107 1. WSC1-L will auto scan available weather sensors when power on or reboot.
108 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
109
110
111
112
113 == 2.3 Example to use for LoRaWAN network ==
114
115 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
116
117
118 [[image:1656042612899-422.png]]
119
120
121
122 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
123
124
125 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
126
127 Each WSC1-L is shipped with a sticker with the default device EUI as below:
128
129 [[image:image-20220624115043-1.jpeg]]
130
131
132 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
133
134 **Add APP EUI in the application.**
135
136 [[image:1656042662694-311.png]]
137
138 [[image:1656042673910-429.png]]
139
140
141
142
143 **Choose Manually to add WSC1-L**
144
145 [[image:1656042695755-103.png]]
146
147
148
149 **Add APP KEY and DEV EUI**
150
151 [[image:1656042723199-746.png]]
152
153
154
155
156 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
157
158
159 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
160
161
162
163
164 == 2.4 Uplink Payload ==
165
166 Uplink payloads include two types: Valid Sensor Value and other status / control command.
167
168 * Valid Sensor Value: Use FPORT=2
169 * Other control command: Use FPORT other than 2.
170
171
172
173
174 === 2.4.1 Uplink FPORT~=5, Device Status ===
175
176 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
177
178
179 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
180
181 |**Size (bytes)**|**1**|**2**|**1**|**1**|**2**|**3**
182 |**Value**|[[Sensor Model>>||anchor="HSensorModel:"]]|[[Firmware Version>>||anchor="HFirmwareVersion:"]]|[[Frequency Band>>||anchor="HFrequencyBand:"]]|[[Sub-band>>||anchor="HSub-Band:"]]|[[BAT>>||anchor="HBAT:"]]|[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
183
184 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
185
186
187 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
188
189
190
191 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
192
193 For WSC1-L, this value is 0x0D.
194
195
196
197 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
198
199 0x0100, Means: v1.0.0 version.
200
201
202
203 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
204
205 *0x01: EU868
206
207 *0x02: US915
208
209 *0x03: IN865
210
211 *0x04: AU915
212
213 *0x05: KZ865
214
215 *0x06: RU864
216
217 *0x07: AS923
218
219 *0x08: AS923-1
220
221 *0x09: AS923-2
222
223 *0x0a: AS923-3
224
225
226
227 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
228
229 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
230
231
232
233 ==== (% style="color:#037691" %)**BAT:**(%%) ====
234
235 shows the battery voltage for WSC1-L MCU.
236
237 Ex1: 0x0BD6/1000 = 3.03 V
238
239
240
241 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
242
243 |Byte3|Byte2|Byte1
244
245 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
246
247
248 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
249 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
250 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
251 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
252 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
253 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
254
255 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
256
257 External sensors detected by WSC1-L include :
258
259 custom sensor A1,
260
261 PAR sensor (WSS-07),
262
263 Total Solar Radiation sensor (WSS-06),
264
265 CO2/PM2.5/PM10 (WSS-03),
266
267 Wind Speed/Direction (WSS-02)
268
269
270
271
272 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
273
274 (% style="color:#037691" %)**Downlink:0x26 01**
275
276 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
277
278
279
280
281 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
282
283 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
284
285 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
286
287
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289
290 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 |Type Code|Length (Bytes)|Measured Value
295
296 (% style="color:#4472c4" %)** Sensor Segment Define**:
297
298
299
300 Sensor Type Table:
301
302 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
303 |**Wind Speed**|0x01|(((
304 Speed: 0~60m/s
305
306 Level: 0~17
307 )))|0x03 |(((
308 0x0024/10=3.6m/s
309
310 (0x02FE: No Sensor, 0x02FF: Value Error)
311
312 0x02=2
313
314 (0x14: No Sensor, 0x15: Value Error)
315 )))
316 |**Wind Direction**|0x02|(((
317 Angel: 0~360°
318
319 Direction: 16 positions
320 )))|0x03|(((
321 0x029A/10=66.6°
322
323 (0x0EFE: No Sensor,0x0EFF: Value Error)
324
325 0X03=3(ENE)
326
327 (0x14: No Sensor,0x15: Value Error)
328 )))
329 |**Illumination**|0x03|0~200000Lux|0x02|(((
330 0x04D2 *10=12340Lux
331
332 (0x4EFE: No Sensor,0x4EFF: Value Error)
333 )))
334 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
335 0x00 (00) No Rain or snow detected
336
337 (0x02: No Sensor,0x03: Value Error)
338 )))
339 |**CO2**|0x05|0~5000ppm|0x02|(((
340 0x0378=888ppm
341
342 (0x14FE: No Sensor,0x14FF: Value Error)
343 )))
344 |**Temperature**|0x06|-30℃~70℃|0x02|(((
345 0xFFDD/10=-3.5℃
346
347 (0x02FE: No Sensor,0x02FF: Value Error)
348 )))
349 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
350 |**Pressure**|0x08|10~1100hPa|0x02|(((
351 0x2748/10=1005.6hPa
352
353 (0x00: No Sensor,0x01: Value Error)
354 )))
355 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
356 0x0000/10=0mm /min
357
358 (0x03FE: No Sensor,0x03FF: Value Error)
359 )))
360 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
361 0x0023=35μg/m^^3 ^^
362
363 (0x03FE: No Sensor,0x03FF: Value Error)
364 )))
365 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
366 0x002D=45μg/m^^3 ^^
367
368 (0x03FE: No Sensor,0x03FF: Value Error)
369 )))
370 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
371 0x00B3=179μmol/m^^2^^•s
372
373 (0x09FE: No Sensor,0x9FF: Value Error)
374 )))
375 |(((
376 **Total Solar**
377
378 **Radiation**
379 )))|0x0D|0~2000W/m^^2^^|0x02|(((
380 0x0073/10=11.5W/m^^2^^
381
382 (0x4EFE: No Sensor,0x4EFF: Value Error)
383 )))
384
385 Below is an example payload:
386
387 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
388
389
390 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
391
392 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
393
394 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
395
396
397 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
398
399 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
400
401 Uplink 2: 0D 02 00 73
402
403
404
405
406 === 2.4.3 Decoder in TTN V3 ===
407
408 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
409
410
411 Download decoder for suitable platform from:
412
413 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
414
415 and put as below:
416
417 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
418
419
420
421 == 2.5 Show data on Application Server ==
422
423 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
424
425
426 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
427
428 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
429
430 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
431
432
433 Add TagoIO:
434
435 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
436
437 Authorization:
438
439 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
440
441
442 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
443
444 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
445
446
447
448 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
449
450 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
451
452 * AT Command Connection: See [[FAQ>>||anchor="H"]].
453 * LoRaWAN Downlink instruction for different platforms:
454
455 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
456
457
458 There are two kinds of commands to configure WSC1-L, they are:
459
460 * (% style="color:#4472c4" %)**General Commands**.
461
462 These commands are to configure:
463
464 * General system settings like: uplink interval.
465 * LoRaWAN protocol & radio related command.
466
467 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
468
469 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
470
471 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
472
473
474 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
475
476 These commands only valid for WSC1-L, as below:
477
478
479 == 3.1 Set Transmit Interval Time ==
480
481 Feature: Change LoRaWAN End Node Transmit Interval.
482
483 (% style="color:#037691" %)**AT Command: AT+TDC**
484
485 |**Command Example**|**Function**|**Response**
486 |AT+TDC?|Show current transmit Interval|(((
487 30000
488
489 OK
490
491 the interval is 30000ms = 30s
492 )))
493 |AT+TDC=60000|Set Transmit Interval|(((
494 OK
495
496 Set transmit interval to 60000ms = 60 seconds
497 )))
498
499 (% style="color:#037691" %)**Downlink Command: 0x01**
500
501 Format: Command Code (0x01) followed by 3 bytes time value.
502
503 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
504
505 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
506 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
507
508 == 3.2 Set Emergency Mode ==
509
510 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
511
512
513 (% style="color:#037691" %)**AT Command:**
514
515 |**Command Example**|**Function**|**Response**
516 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
517 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
518
519 (% style="color:#037691" %)**Downlink Command:**
520
521 * 0xE101     Same as: AT+ALARMMOD=1
522 * 0xE100     Same as: AT+ALARMMOD=0
523
524 == 3.3 Add or Delete RS485 Sensor ==
525
526 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
527
528 (% style="color:#037691" %)**AT Command: **
529
530 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
531
532 * Type_Code range: A1 ~~ A4
533 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
534 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
535 * Read_Length: RS485 response frame length supposed to receive. Max can receive
536 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
537 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
538 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
539
540 Example:
541
542 User need to change external sensor use the type code as address code.
543
544 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
545
546 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
547 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
548 | | | | | | | |
549
550 The response frame of the sensor is as follows:
551
552 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
553 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
554 | | | | | | | |
555
556 Then the following parameters should be:
557
558 * Address_Code range: A1
559 * Query_Length: 8
560 * Query_Command: A103000000019CAA
561 * Read_Length: 8
562 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
563 * has_CRC: 1
564 * timeout: 1500 (Fill in the test according to the actual situation)
565
566 So the input command is:
567
568 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
569
570
571 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
572
573 |Type Code|Length (Bytes)|Measured Value
574 |A1|2|0x000A
575
576 Related commands:
577
578 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
579
580 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
581
582
583 (% style="color:#037691" %)**Downlink Command:  **
584
585 **delete custom sensor A1:**
586
587 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
588
589 **Remove all custom sensors**
590
591 * 0xE5FF  
592
593 == 3.4 RS485 Test Command ==
594
595 (% style="color:#037691" %)**AT Command:**
596
597 |**Command Example**|**Function**|**Response**
598 |AT+RSWRITE=xxxxxx|(((
599 Send command to 485 sensor
600
601 Range : no more than 10 bytes
602 )))|OK
603
604 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
605
606 AT+RSWRITE=0103000001840A
607
608
609 (% style="color:#037691" %)**Downlink Command:**
610
611 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
612
613 == 3.5 RS485 response timeout ==
614
615 Feature: Set or get extended time to receive 485 sensor data.
616
617 (% style="color:#037691" %)**AT Command:**
618
619 |**Command Example**|**Function**|**Response**
620 |AT+DTR=1000|(((
621 Set response timeout to:
622
623 Range : 0~~10000
624 )))|OK
625
626 (% style="color:#037691" %)**Downlink Command:**
627
628 Format: Command Code (0xE0) followed by 3 bytes time value.
629
630 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
631
632 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
633 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
634
635 == 3.6 Set Sensor Type ==
636
637 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
638
639 See [[definition>>||anchor="H"]] for the sensor type.
640
641
642 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
643 | |A4|A3|A2|A1| | |
644 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
645 | | |Solar Radiation|PAR|PM10|PM2.5|(((
646 Rain
647
648 Gauge
649 )))|(((
650 Air
651
652 Pressure
653 )))
654 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
655 |Humidity|Temperature|CO2|(((
656 Rain/Snow
657
658 Detect
659 )))|illuminance|(((
660 Wind
661
662 Direction
663 )))|Wind Speed|BAT
664
665 (% style="color:#037691" %)**AT Command:**
666
667 |**Command Example**|**Function**|**Response**
668 |AT+STYPE=80221|Set sensor types|OK
669
670 Eg: The setting command **AT+STYPE=802212** means:
671
672 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
673 |0|0|0|0|1|0|0|0
674 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
675 |0|0|0|0|0|0|1|0
676 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
677 |0|0|1|0|0|0|0|1
678
679 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
680
681
682 (% style="color:#037691" %)**Downlink Command:**
683
684 * 0xE400802212     Same as: AT+STYPE=80221
685
686 (% style="color:red" %)**Note:**
687
688 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
689
690
691
692
693
694 = 4. Power consumption and battery =
695
696 == 4.1 Total Power Consumption ==
697
698 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
699
700
701 == 4.2 Reduce power consumption ==
702
703 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
704
705
706
707 == 4.3 Battery ==
708
709 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
710
711
712 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
713
714
715
716 = 5. Main Process Unit WSC1-L =
717
718 == 5.1 Features ==
719
720 * Wall Attachable.
721 * LoRaWAN v1.0.3 Class A protocol.
722 * RS485 / Modbus protocol
723 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
724 * AT Commands to change parameters
725 * Remote configure parameters via LoRaWAN Downlink
726 * Firmware upgradable via program port
727 * Powered by external 12v battery
728 * Back up rechargeable 1000mAh battery
729 * IP Rating: IP65
730 * Support default sensors or 3rd party RS485 sensors
731
732 == 5.2 Power Consumption ==
733
734 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
735
736
737
738 == 5.3 Storage & Operation Temperature ==
739
740 -20°C to +60°C
741
742
743 == 5.4 Pin Mapping ==
744
745 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
746
747
748 == 5.5 Mechanical ==
749
750 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
751
752
753
754
755 == 5.6 Connect to RS485 Sensors ==
756
757 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
758
759
760 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
761
762
763 Hardware Design for the Converter Board please see:
764
765 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
766
767
768
769
770
771 = 6. Weather Sensors =
772
773 == 6.1 Rain Gauge ~-~- WSS-01 ==
774
775 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
776
777
778 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
779
780 shape to make sure it works smoothly and is easy to clean.
781
782
783 WSS-01 is designed to support the Dragino Weather station solution.
784
785 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
786
787 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
788
789
790 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
791
792 to screw up and adjust the bottom horizontally.
793
794
795 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
796
797
798
799 === 6.1.1 Feature ===
800
801 * RS485 Rain Gauge
802 * Small dimension, easy to install
803 * Vents under funnel, avoid leaf or other things to avoid rain flow.
804 * ABS enclosure.
805 * Horizontal adjustable.
806
807 === 6.1.2 Specification ===
808
809 * Resolution: 0.2mm
810 * Accuracy: ±3%
811 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
812 * Input Power: DC 5~~24v
813 * Interface: RS485
814 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
815 * Working Humidity: <100% (no dewing)
816 * Power Consumption: 4mA @ 12v.
817
818 === 6.1.3 Dimension ===
819
820 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
821
822
823 === 6.1.4 Pin Mapping ===
824
825 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
826
827
828
829
830 === 6.1.5 Installation Notice ===
831
832 Do not power on while connect the cables. Double check the wiring before power on.
833
834 Installation Photo as reference:
835
836
837 (% style="color:#4472c4" %)** Install on Ground:**
838
839 WSS-01 Rain Gauge include screws so can install in ground directly .
840
841
842 (% style="color:#4472c4" %)** Install on pole:**
843
844 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
845
846 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
847
848
849 WS-K2: Bracket Kit for Pole installation:
850
851 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
852
853 WSSC-K2 dimension document, please see:
854
855 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
856
857
858
859 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
860
861 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
862
863 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
864
865
866 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
867
868
869 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
870
871 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
872
873
874 === 6.2.1 Feature ===
875
876 * RS485 wind speed / direction sensor
877 * PC enclosure, resist corrosion
878
879 === 6.2.2 Specification ===
880
881 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
882 * Wind direction range: 0 ~~ 360°
883 * Start wind speed: ≤0.3m/s
884 * Accuracy: ±(0.3+0.03V)m/s , ±1°
885 * Input Power: DC 5~~24v
886 * Interface: RS485
887 * Working Temperature: -30℃~70℃
888 * Working Humidity: <100% (no dewing)
889 * Power Consumption: 13mA ~~ 12v.
890 * Cable Length: 2 meters
891
892 === 6.2.3 Dimension ===
893
894 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
895
896
897 === 6.2.4 Pin Mapping ===
898
899 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
900
901
902 === 6.2.4 Angle Mapping ===
903
904 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
905
906
907 === 6.2.5 Installation Notice ===
908
909 Do not power on while connect the cables. Double check the wiring before power on.
910
911
912 The sensor must be installed with below direction, towards North.
913
914
915 |(((
916 North
917 )))
918
919 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
920
921
922
923
924
925
926
927
928 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
929
930 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
931
932
933 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
934
935
936 WSS-03 is designed to support the Dragino Weather station solution.
937
938 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
939
940 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
941
942
943 === 6.3.1 Feature ===
944
945 * RS485 CO2, PM2.5, PM10 sensor
946 * NDIR to measure CO2 with Internal Temperature Compensation
947 * Laser Beam Scattering to PM2.5 and PM10
948
949 === 6.3.2 Specification ===
950
951 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
952 * CO2 resolution: 1ppm
953 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
954 * PM2.5/PM10 resolution: 1μg/m3
955 * Input Power: DC 7 ~~ 24v
956 * Preheat time: 3min
957 * Interface: RS485
958 * Working Temperature:
959 ** CO2: 0℃~50℃;
960 ** PM2.5/PM10: -30 ~~ 50℃
961 * Working Humidity:
962 ** PM2.5/PM10: 15~80%RH (no dewing)
963 ** CO2: 0~95%RH
964 * Power Consumption: 50mA@ 12v.
965
966 === 6.3.3 Dimension ===
967
968 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
969
970
971 === 6.3.4 Pin Mapping ===
972
973 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
974
975
976 === 6.3.5 Installation Notice ===
977
978 Do not power on while connect the cables. Double check the wiring before power on.
979
980 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
981
982 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
983
984
985
986
987
988
989 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
990
991 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
992
993
994 WSS-04 has auto heating feature, this ensures measurement more reliable.
995
996
997 WSS-04 is designed to support the Dragino Weather station solution.
998
999 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
1000
1001 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1002
1003
1004
1005 === 6.4.1 Feature ===
1006
1007 * RS485 Rain/Snow detect sensor
1008 * Surface heating to dry
1009 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1010
1011 === 6.4.2 Specification ===
1012
1013 * Detect if there is rain or snow
1014 * Input Power: DC 12 ~~ 24v
1015 * Interface: RS485
1016 * Working Temperature: -30℃~70℃
1017 * Working Humidity: 10~90%RH
1018 * Power Consumption:
1019 ** No heating: 12mA @ 12v,
1020 ** heating: 94ma @ 12v.
1021
1022 === 6.4.3 Dimension ===
1023
1024 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1025
1026
1027 === 6.4.4 Pin Mapping ===
1028
1029 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1030
1031
1032 === 6.4.5 Installation Notice ===
1033
1034 Do not power on while connect the cables. Double check the wiring before power on.
1035
1036
1037 Install with 15°degree.
1038
1039 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1040
1041 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1042
1043
1044
1045
1046 === 6.4.6 Heating ===
1047
1048
1049 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1050
1051
1052
1053
1054
1055 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1056
1057 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1058
1059
1060 WSS-05 is designed to support the Dragino Weather station solution.
1061
1062 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1063
1064 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1065
1066
1067 === 6.5.1 Feature ===
1068
1069 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1070
1071 === 6.5.2 Specification ===
1072
1073 * Input Power: DC 12 ~~ 24v
1074 * Interface: RS485
1075 * Temperature Sensor Spec:
1076 ** Range: -30 ~~ 70℃
1077 ** resolution 0.1℃
1078 ** Accuracy: ±0.5℃
1079 * Humidity Sensor Spec:
1080 ** Range: 0 ~~ 100% RH
1081 ** resolution 0.1 %RH
1082 ** Accuracy: 3% RH
1083 * Pressure Sensor Spec:
1084 ** Range: 10~1100hPa
1085 ** Resolution: 0.1hPa
1086 ** Accuracy: ±0.1hPa
1087 * Illuminate sensor:
1088 ** Range: 0~2/20/200kLux
1089 ** Resolution: 10 Lux
1090 ** Accuracy: ±3%FS
1091 * Working Temperature: -30℃~70℃
1092 * Working Humidity: 10~90%RH
1093 * Power Consumption: 4mA @ 12v
1094
1095 === 6.5.3 Dimension ===
1096
1097 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1098
1099
1100 === 6.5.4 Pin Mapping ===
1101
1102 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1103
1104
1105 === 6.5.5 Installation Notice ===
1106
1107 Do not power on while connect the cables. Double check the wiring before power on.
1108
1109
1110
1111 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1112
1113
1114 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1115
1116
1117 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1118
1119 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1120
1121
1122 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1123
1124
1125 WSS-06 is designed to support the Dragino Weather station solution.
1126
1127
1128 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1129
1130 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1131
1132
1133
1134 === 6.6.1 Feature ===
1135
1136 * RS485 Total Solar Radiation sensor
1137 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1138 * Measure Reflected Radiation if sense area towards ground.
1139
1140 === 6.6.2 Specification ===
1141
1142 * Input Power: DC 5 ~~ 24v
1143 * Interface: RS485
1144 * Detect spectrum: 0.3~3μm(300~3000nm)
1145 * Measure strength range: 0~2000W/m2
1146 * Resolution: 0.1W/m2
1147 * Accuracy: ±3%
1148 * Yearly Stability: ≤±2%
1149 * Cosine response: ≤7% (@ Sun angle 10°)
1150 * Temperature Effect: ±2%(-10℃~40℃)
1151 * Working Temperature: -40℃~70℃
1152 * Working Humidity: 10~90%RH
1153 * Power Consumption: 4mA @ 12v
1154
1155 === 6.6.3 Dimension ===
1156
1157 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1158
1159
1160 === 6.6.4 Pin Mapping ===
1161
1162 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1163
1164
1165 === 6.6.5 Installation Notice ===
1166
1167 Do not power on while connect the cables. Double check the wiring before power on.
1168
1169 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1170
1171 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1172
1173
1174 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1175
1176 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1177
1178
1179 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1180
1181
1182
1183 WSS-07 is designed to support the Dragino Weather station solution.
1184
1185
1186 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1187
1188 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1189
1190
1191 === 6.7.1 Feature ===
1192
1193 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1194
1195
1196 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1197
1198
1199 === 6.7.2 Specification ===
1200
1201 * Input Power: DC 5 ~~ 24v
1202 * Interface: RS485
1203 * Response Spectrum: 400~700nm
1204 * Measure range: 0~2500μmol/m2•s
1205 * Resolution: 1μmol/m2•s
1206 * Accuracy: ±2%
1207 * Yearly Stability: ≤±2%
1208 * Working Temperature: -30℃~75℃
1209 * Working Humidity: 10~90%RH
1210 * Power Consumption: 3mA @ 12v
1211
1212 === 6.7.3 Dimension ===
1213
1214 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1215
1216
1217 === 6.7.4 Pin Mapping ===
1218
1219 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1220
1221
1222 === 6.7.5 Installation Notice ===
1223
1224 Do not power on while connect the cables. Double check the wiring before power on.
1225
1226
1227 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1228
1229 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1230
1231
1232 = 7. FAQ =
1233
1234 == 7.1 What else do I need to purchase to build Weather Station? ==
1235
1236 Below is the installation photo and structure:
1237
1238 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1239
1240
1241 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1242
1243
1244
1245
1246 == 7.2 How to upgrade firmware for WSC1-L? ==
1247
1248 Firmware Location & Change log:
1249
1250 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1251
1252
1253 Firmware Upgrade instruction:
1254
1255 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1256
1257
1258 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1259
1260 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1261
1262
1263
1264 == 7.4 Can I add my weather sensors? ==
1265
1266 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1267
1268
1269 = 8. Trouble Shooting =
1270
1271
1272
1273
1274
1275
1276 = 9. Order Info =
1277
1278
1279 == 9.1 Main Process Unit ==
1280
1281 Part Number: **WSC1-L-XX**
1282
1283 **XX**: The default frequency band
1284
1285 * **AS923**: LoRaWAN AS923 band
1286 * **AU915**: LoRaWAN AU915 band
1287 * **EU433**: LoRaWAN EU433 band
1288 * **EU868**: LoRaWAN EU868 band
1289 * **KR920**: LoRaWAN KR920 band
1290 * **US915**: LoRaWAN US915 band
1291 * **IN865**: LoRaWAN IN865 band
1292 * **CN470**: LoRaWAN CN470 band
1293
1294 == 9.2 Sensors ==
1295
1296 |**Sensor Model**|**Part Number**
1297 |**Rain Gauge**|WSS-01
1298 |**Rain Gauge installation Bracket for Pole**|WS-K2
1299 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1300 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1301 |**Rain/Snow Detect Sensor**|WSS-04
1302 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1303 |**Total Solar Radiation Sensor**|WSS-06
1304 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1305
1306 = 10. Support =
1307
1308 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1309 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1310
1311 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1312
1313
1314
1315
1316
1317 = 11. Appendix I: Field Installation Photo =
1318
1319
1320 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1321
1322
1323 **Storage Battery**: 12v,12AH li battery
1324
1325
1326 Wind Speed/Direction.
1327
1328 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1329
1330
1331 Total Solar Radiation sensor
1332
1333 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1334
1335
1336
1337 PAR Sensor
1338
1339 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1340
1341
1342 CO2/PM2.5/PM10 3 in 1 sensor
1343
1344 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1345
1346
1347 Rain / Snow Detect:
1348
1349 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1350
1351
1352 Rain Gauge.
1353
1354 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0