Version 112.9 by Xiaoling on 2024/01/26 11:41

Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:1656035424980-692.png||height="533" width="386"]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 Overview ==
26
27
28 (((
29 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
30 )))
31
32 (((
33 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
34 )))
35
36 (((
37 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
38 )))
39
40 (((
41 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
42 )))
43
44
45 = 2. How to use =
46
47 == 2.1 Installation ==
48
49
50 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
51
52
53 [[image:1656041948552-849.png]]
54
55
56 (% style="color:blue" %)** Wiring:**
57
58 ~1. WSC1-L and sensors all powered by solar power via MPPT
59
60 2. WSC1-L and sensors connect to each other via RS485/Modbus.
61
62 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
63
64
65 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
66
67
68 [[image:1656042136605-251.png]]
69
70
71 (% style="color:red" %)**Notice 1:**
72
73 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
74 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
75 * Weather sensors won't work if solar panel and storage battery fails.
76
77 (% style="color:red" %)**Notice 2:**
78
79 Due to shipment and importation limitation, user is better to purchase below parts locally:
80
81 * Solar Panel
82 * Storage Battery
83 * MPPT Solar Recharger
84 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
85 * Cabinet.
86
87 == 2.2 How it works? ==
88
89
90 (((
91 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
92 )))
93
94
95 (((
96 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
97 )))
98
99 [[image:1656042192857-709.png]]
100
101
102 (% style="color:red" %)**Notice:**
103
104 1. WSC1-L will auto scan available weather sensors when power on or reboot.
105 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
106
107 == 2.3 Example to use for LoRaWAN network ==
108
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112
113 [[image:1656042612899-422.png]]
114
115
116
117 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
118
119
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
121
122 Each WSC1-L is shipped with a sticker with the default device EUI as below:
123
124 [[image:image-20230426084533-1.png||height="231" width="497"]]
125
126
127 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
128
129 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
130
131 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
132
133 **Add APP EUI in the application.**
134
135 [[image:1656042662694-311.png]]
136
137 [[image:1656042673910-429.png]]
138
139
140
141
142 **Choose Manually to add WSC1-L**
143
144 [[image:1656042695755-103.png]]
145
146
147
148 **Add APP KEY and DEV EUI**
149
150 [[image:1656042723199-746.png]]
151
152
153
154 (((
155 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
156 )))
157
158
159 [[image:1656042745346-283.png]]
160
161
162 == 2.4 Uplink Payload ==
163
164
165 Uplink payloads include two types: Valid Sensor Value and other status / control command.
166
167 * Valid Sensor Value: Use FPORT=2
168 * Other control command: Use FPORT other than 2.
169
170 === 2.4.1 Uplink FPORT~=5, Device Status ===
171
172
173 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
174
175
176 (((
177 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
178 )))
179
180 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
181 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 60px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**3**
182 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
183
184 [[image:1656043061044-343.png]]
185
186
187 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
188
189
190 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
191
192 For WSC1-L, this value is 0x0D.
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
201
202 0x01: EU868
203
204 0x02: US915
205
206 0x03: IN865
207
208 0x04: AU915
209
210 0x05: KZ865
211
212 0x06: RU864
213
214 0x07: AS923
215
216 0x08: AS923-1
217
218 0x09: AS923-2
219
220 0x0a: AS923-3
221
222
223 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
224
225 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
226
227
228 ==== (% style="color:#037691" %)**BAT:**(%%) ====
229
230 (((
231 shows the battery voltage for WSC1-L MCU.
232 )))
233
234 (((
235 Ex1: 0x0BD6/1000 = 3.03 V
236 )))
237
238
239 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
240
241 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
242 |Byte3|Byte2|Byte1
243
244 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
245
246 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
247 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:110px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
248 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
249 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
250 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
251 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
252 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
253
254 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
255
256 External sensors detected by WSC1-L include :
257
258 custom sensor A1,
259
260 PAR sensor (WSS-07),
261
262 Total Solar Radiation sensor (WSS-06),
263
264 CO2/PM2.5/PM10 (WSS-03),
265
266 Wind Speed/Direction (WSS-02)
267
268
269 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
270
271 (% style="color:#037691" %)**Downlink:0x26 01**
272
273 [[image:1656049673488-415.png]]
274
275
276 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
277
278
279 (((
280 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
281 )))
282
283 (((
284 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
285 )))
286
287
288 (((
289 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
290 )))
291
292
293 (% style="color:#4472c4" %)** Uplink Payload**:
294
295 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
296 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
297
298 (% style="color:#4472c4" %)** Sensor Segment Define**:
299
300 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
301 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
302
303 (% style="color:#4472c4" %)**Sensor Type Table:**
304
305 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
306 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
307 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
308 Speed: 0 ~~ 60m/s
309 Level: 0 ~~ 17
310 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
311 (((
312 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
313 )))
314
315 (((
316 0x02=2 (0x14: No Sensor, 0x15: Value Error)
317 )))
318 )))
319 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
320 Angel: 0 ~~ 360°
321 Direction: 16 positions
322 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
323 (((
324 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
325 )))
326
327 (((
328 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
329 )))
330 )))
331 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
332 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
333 )))
334 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
335 (((
336 0x00 (00) No Rain or snow detected
337 )))
338
339 (((
340 (0x02: No Sensor,0x03: Value Error)
341 )))
342 )))
343 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
344 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
345 )))
346 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
347 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
348 )))
349 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
350 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
351 )))
352 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
353 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
354 )))
355 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
356 0mm~100mm(Rainfall in the last 24 hours)
357 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
358 (((
359 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
360 )))
361
362 (((
363 (0x03FE: No Sensor,0x03FF: Value Error)
364 )))
365 )))
366 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
367 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
368 )))
369 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
370 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
371 )))
372 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
373 0~2500μmol/m^^2^^•s
374 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
375 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
376 )))
377 |(% style="width:103px" %)(((
378 Total Solar Radiation
379 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
380 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
381 )))
382
383 (((
384 Below is an example payload:  [[image:image-20220624140615-3.png]]
385 )))
386
387
388 (((
389 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
390 )))
391
392 * (((
393 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
394 )))
395
396 (((
397 Uplink 1:  [[image:image-20220624140735-4.png]]
398 )))
399
400
401 (((
402 Uplink 2:  [[image:image-20220624140842-5.png]]
403
404 )))
405
406 * (((
407 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
408 )))
409
410 (((
411 Uplink 1:  [[image:image-20220624141025-6.png]]
412 )))
413
414
415 Uplink 2:  [[image:image-20220624141100-7.png]]
416
417
418 === 2.4.3 Decoder in TTN V3 ===
419
420
421 (((
422 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
423 )))
424
425 (((
426 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
427 )))
428
429
430 (((
431 and put as below:
432 )))
433
434 [[image:1656051152438-578.png]]
435
436 == 2.5 Show data on Application Server ==
437
438
439 (((
440 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
441 )))
442
443 (((
444 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
445 )))
446
447 (((
448 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
449 )))
450
451 [[image:1656051197172-131.png]]
452
453
454
455 **Add TagoIO:**
456
457 [[image:1656051223585-631.png]]
458
459
460
461 **Authorization:**
462
463 [[image:1656051248318-368.png]]
464
465
466
467 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
468
469
470 [[image:1656051277767-168.png]]
471
472
473 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
474
475
476 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
477
478 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
479 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
480
481 There are two kinds of commands to configure WSC1-L, they are:
482
483 * (% style="color:blue" %)**General Commands**.
484
485 These commands are to configure:
486
487 * General system settings like: uplink interval.
488 * LoRaWAN protocol & radio related command.
489
490 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
491
492 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
493
494
495 * (% style="color:blue" %)**Commands special design for WSC1-L**
496
497 These commands only valid for WSC1-L, as below:
498
499
500 == 3.1 Set Transmit Interval Time ==
501
502
503 Feature: Change LoRaWAN End Node Transmit Interval.
504
505 (% style="color:#037691" %)**AT Command: AT+TDC**
506
507 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
508 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
509 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
510 30000
511 OK
512 the interval is 30000ms = 30s
513 )))
514 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
515 OK
516 Set transmit interval to 60000ms = 60 seconds
517 )))
518
519 (% style="color:#037691" %)**Downlink Command: 0x01**
520
521 Format: Command Code (0x01) followed by 3 bytes time value.
522
523 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
524
525 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
526 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
527
528 == 3.2 Set Emergency Mode ==
529
530
531 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
532
533 (% style="color:#037691" %)**AT Command:**
534
535 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
536 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
537 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
538 OK
539
540 )))
541 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
542 OK
543 )))
544
545 (% style="color:#037691" %)**Downlink Command:**
546
547 * 0xE101     Same as: AT+ALARMMOD=1
548 * 0xE100     Same as: AT+ALARMMOD=0
549
550 == 3.3 Add or Delete RS485 Sensor ==
551
552
553 (((
554 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
555 )))
556
557 (((
558 (% style="color:#037691" %)**AT Command: **
559 )))
560
561 (((
562 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
563 )))
564
565 * (((
566 Type_Code range:  A1 ~~ A4
567 )))
568 * (((
569 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
570 )))
571 * (((
572 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
573 )))
574 * (((
575 Read_Length:  RS485 response frame length supposed to receive. Max can receive
576 )))
577 * (((
578 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
579 )))
580 * (((
581 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
582 )))
583 * (((
584 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
585 )))
586
587 (((
588 **Example:**
589 )))
590
591 (((
592 User need to change external sensor use the type code as address code.
593 )))
594
595 (((
596 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
597 )))
598
599 [[image:image-20220624143553-10.png]]
600
601
602 The response frame of the sensor is as follows:
603
604 [[image:image-20220624143618-11.png]]
605
606
607 **Then the following parameters should be:**
608
609 * Address_Code range: A1
610 * Query_Length: 8
611 * Query_Command: A103000000019CAA
612 * Read_Length: 8
613 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
614 * has_CRC: 1
615 * timeout: 1500 (Fill in the test according to the actual situation)
616
617 **So the input command is:**
618
619 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
620
621
622 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
623
624 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
625 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
626 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
627
628 **Related commands:**
629
630 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
631
632 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
633
634
635 (% style="color:#037691" %)**Downlink Command:  **
636
637 **delete custom sensor A1:**
638
639 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
640
641 **Remove all custom sensors**
642
643 * 0xE5FF  
644
645 == 3.4 RS485 Test Command ==
646
647
648 (% style="color:#037691" %)**AT Command:**
649
650 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
651 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
652 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
653 Send command to 485 sensor. Range : no more than 10 bytes
654 )))|(% style="width:85px" %)OK
655
656 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
657
658 AT+RSWRITE=0103000001840A
659
660
661 (% style="color:#037691" %)**Downlink Command:**
662
663 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
664
665 == 3.5 RS485 response timeout ==
666
667
668 Feature: Set or get extended time to receive 485 sensor data.
669
670 (% style="color:#037691" %)**AT Command:**
671
672 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
673 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
674 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
675 Set response timeout to: Range : 0~~10000
676 )))|(% style="width:85px" %)OK
677
678 (% style="color:#037691" %)**Downlink Command:**
679
680 Format: Command Code (0xE0) followed by 3 bytes time value.
681
682 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
683
684 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
685 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
686
687 == 3.6 Set Sensor Type ==
688
689
690 (((
691 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
692 )))
693
694 (((
695 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
696
697 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:520px" %)
698 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
699 | |A4|A3|A2|A1| | |
700 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
701 | | |Solar Radiation|PAR|PM10|PM2.5|(((
702 Rain
703 Gauge
704 )))|(((
705 Air
706 Pressure
707 )))
708 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
709 |Humidity|Temperature|CO2|(((
710 Rain/Snow
711 Detect
712 )))|illuminance|(((
713 Wind
714 Direction
715 )))|Wind Speed|BAT
716 )))
717
718
719 (% style="color:#037691" %)**AT Command:**
720
721 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:377px" %)
722 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 132px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
723 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
724
725 Eg: The setting command **AT+STYPE=80221** means:
726
727 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:495px" %)
728 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
729 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
730 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
731 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
732 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
733 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
734
735 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
736
737
738 (% style="color:#037691" %)**Downlink Command:**
739
740 * 0xE400080221  Same as: AT+STYPE=80221
741
742 (% style="color:red" %)**Note:**
743
744 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
745
746
747 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
748
749
750 (% style="color:#037691" %)**AT Command:**
751
752 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
753 |=(% style="width: 172px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 175px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
754 |(% style="width:161px" %)(((
755 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
756 )))|(% style="width:184px" %)(((
757 Set the registers read by the rain gauge
758 )))|(% style="width:85px" %)OK
759
760 (% style="color:#037691" %)**Downlink Command:**
761
762 * 0x1703  Same as: AT+RAINFALLSWITCH=3
763
764 3: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
765
766 4: Hourly rainfall: 0.2mm
767
768 5: Rainfall in last hour: 0.2mm
769
770 6: 24-hour maximum rainfall 10.0mm
771
772 8: 24-hour minimum rainfall:0.0mm
773
774 10: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
775
776
777 = 4. Power consumption and battery =
778
779 == 4.1 Total Power Consumption ==
780
781
782 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
783
784
785 == 4.2 Reduce power consumption ==
786
787
788 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
789
790
791 == 4.3 Battery ==
792
793
794 (((
795 All sensors are only power by external power source. If external power source is off. All sensor won't work.
796 )))
797
798 (((
799 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
800 )))
801
802
803 = 5. Main Process Unit WSC1-L =
804
805 == 5.1 Features ==
806
807
808 * Wall Attachable.
809 * LoRaWAN v1.0.3 Class A protocol.
810 * RS485 / Modbus protocol
811 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
812 * AT Commands to change parameters
813 * Remote configure parameters via LoRaWAN Downlink
814 * Firmware upgradable via program port
815 * Powered by external 12v battery
816 * Back up rechargeable 1000mAh battery
817 * IP Rating: IP65
818 * Support default sensors or 3rd party RS485 sensors
819
820 == 5.2 Power Consumption ==
821
822
823 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
824
825
826 == 5.3 Storage & Operation Temperature ==
827
828
829 -20°C to +60°C
830
831
832 == 5.4 Pin Mapping ==
833
834
835 [[image:1656054149793-239.png]]
836
837
838 == 5.5 Mechanical ==
839
840
841 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
842
843
844 == 5.6 Connect to RS485 Sensors ==
845
846
847 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
848
849
850 [[image:1656054389031-379.png]]
851
852
853 Hardware Design for the Converter Board please see:
854
855 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
856
857
858 = 6. Weather Sensors =
859
860 == 6.1 Rain Gauge ~-~- WSS-01 ==
861
862
863 (((
864 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
865 )))
866
867 (((
868 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
869 )))
870
871 (((
872 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
873 )))
874
875 (((
876 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
877 )))
878
879 (((
880 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
881 )))
882
883
884 === 6.1.1 Feature ===
885
886
887 * RS485 Rain Gauge
888 * Small dimension, easy to install
889 * Vents under funnel, avoid leaf or other things to avoid rain flow.
890 * ABS enclosure.
891 * Horizontal adjustable.
892
893 === 6.1.2 Specification ===
894
895
896 * Resolution: 0.2mm
897 * Accuracy: ±3%
898 * Range: 0 ~~ 100mm
899 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
900 * Input Power: DC 5 ~~ 24v
901 * Interface: RS485
902 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
903 * Working Humidity: <100% (no dewing)
904 * Power Consumption: 4mA @ 12v.
905
906 === 6.1.3 Dimension ===
907
908
909 [[image:1656054957406-980.png]]
910
911
912 === 6.1.4 Pin Mapping ===
913
914
915 [[image:1656054972828-692.png]]
916
917
918 === 6.1.5 Installation Notice ===
919
920
921 (((
922 Do not power on while connect the cables. Double check the wiring before power on.
923 )))
924
925 (((
926 Installation Photo as reference:
927 )))
928
929
930 (((
931 (% style="color:#4472c4" %)** Install on Ground:**
932 )))
933
934 (((
935 WSS-01 Rain Gauge include screws so can install in ground directly .
936 )))
937
938
939 (((
940 (% style="color:#4472c4" %)** Install on pole:**
941 )))
942
943 (((
944 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
945 )))
946
947 [[image:image-20220624152218-1.png||height="526" width="276"]]
948
949 WS-K2: Bracket Kit for Pole installation
950
951
952 WSSC-K2 dimension document, please see:
953
954 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
955
956
957 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
958
959
960 [[image:1656055444035-179.png]]
961
962
963 (((
964 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
965 )))
966
967 (((
968 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
969 )))
970
971 (((
972 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
973 )))
974
975
976 === 6.2.1 Feature ===
977
978
979 * RS485 wind speed / direction sensor
980 * PC enclosure, resist corrosion
981
982 === 6.2.2 Specification ===
983
984
985 * Wind speed range: 0 ~~ 60m/s
986 * Wind direction range: 0 ~~ 360°
987 * Start wind speed: ≤0.3 m/s
988 * Accuracy: ±(0.3+0.03V) m/s , ±1°
989 * Input Power: DC 5 ~~ 24v
990 * Interface: RS485
991 * Working Temperature: -30℃ ~~ 70℃
992 * Working Humidity: <100% (no dewing)
993 * Power Consumption: 13mA ~~ 12v.
994 * Cable Length: 2 meters
995
996 === 6.2.3 Dimension ===
997
998
999 [[image:image-20220624152813-2.png]]
1000
1001
1002 === 6.2.4 Pin Mapping ===
1003
1004
1005 [[image:1656056281231-994.png]]
1006
1007
1008 === 6.2.5  Angle Mapping ===
1009
1010
1011 [[image:1656056303845-585.png]]
1012
1013
1014 === 6.2.6  Installation Notice ===
1015
1016
1017 (((
1018 Do not power on while connect the cables. Double check the wiring before power on.
1019 )))
1020
1021 (((
1022 The sensor must be installed with below direction, towards North.
1023
1024
1025 )))
1026
1027 [[image:image-20220624153901-3.png]]
1028
1029
1030 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1031
1032
1033 (((
1034 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1035 )))
1036
1037 (((
1038 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1039 )))
1040
1041 (((
1042 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1043 )))
1044
1045
1046 === 6.3.1 Feature ===
1047
1048
1049 * RS485 CO2, PM2.5, PM10 sensor
1050 * NDIR to measure CO2 with Internal Temperature Compensation
1051 * Laser Beam Scattering to PM2.5 and PM10
1052
1053 === 6.3.2 Specification ===
1054
1055
1056 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1057 * CO2 resolution: 1ppm
1058 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1059 * PM2.5/PM10 resolution: 1μg/m3
1060 * Input Power: DC 7 ~~ 24v
1061 * Preheat time: 3min
1062 * Interface: RS485
1063 * Working Temperature:
1064 ** CO2: 0℃ ~~ 50℃;
1065 ** PM2.5/PM10: -30 ~~ 50℃
1066 * Working Humidity:
1067 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1068 ** CO2: 0 ~~ 95%RH
1069 * Power Consumption: 50mA@ 12v.
1070
1071 === 6.3.3 Dimension ===
1072
1073
1074 [[image:1656056708366-230.png]]
1075
1076
1077 === 6.3.4 Pin Mapping ===
1078
1079
1080 [[image:1656056722648-743.png]]
1081
1082
1083 === 6.3.5 Installation Notice ===
1084
1085
1086 Do not power on while connect the cables. Double check the wiring before power on.
1087
1088
1089 [[image:1656056751153-304.png]]
1090
1091
1092 [[image:1656056766224-773.png]]
1093
1094
1095 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1096
1097
1098 (((
1099 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1100 )))
1101
1102 (((
1103 WSS-04 has auto heating feature, this ensures measurement more reliable.
1104 )))
1105
1106 (((
1107 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1108 )))
1109
1110
1111 === 6.4.1 Feature ===
1112
1113
1114 * RS485 Rain/Snow detect sensor
1115 * Surface heating to dry
1116 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1117
1118 === 6.4.2 Specification ===
1119
1120
1121 * Detect if there is rain or snow
1122 * Input Power: DC 12 ~~ 24v
1123 * Interface: RS485
1124 * Working Temperature: -30℃ ~~ 70℃
1125 * Working Humidity: 10 ~~ 90%RH
1126 * Power Consumption:
1127 ** No heating: 12mA @ 12v,
1128 ** heating: 94ma @ 12v.
1129
1130 === 6.4.3 Dimension ===
1131
1132
1133 [[image:1656056844782-155.png]]
1134
1135
1136 === 6.4.4 Pin Mapping ===
1137
1138
1139 [[image:1656056855590-754.png]]
1140
1141
1142 === 6.4.5 Installation Notice ===
1143
1144
1145 Do not power on while connect the cables. Double check the wiring before power on.
1146
1147 (((
1148 Install with 15°degree.
1149 )))
1150
1151 [[image:1656056873783-780.png]]
1152
1153
1154 [[image:1656056883736-804.png]]
1155
1156
1157 === 6.4.6 Heating ===
1158
1159
1160 (((
1161 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1162 )))
1163
1164
1165 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1166
1167
1168 (((
1169 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1170 )))
1171
1172 (((
1173 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1174 )))
1175
1176
1177 === 6.5.1 Feature ===
1178
1179
1180 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1181
1182 === 6.5.2 Specification ===
1183
1184
1185 * Input Power: DC 12 ~~ 24v
1186 * Interface: RS485
1187 * Temperature Sensor Spec:
1188 ** Range: -30 ~~ 70℃
1189 ** resolution 0.1℃
1190 ** Accuracy: ±0.5℃
1191 * Humidity Sensor Spec:
1192 ** Range: 0 ~~ 100% RH
1193 ** resolution 0.1 %RH
1194 ** Accuracy: 3% RH
1195 * Pressure Sensor Spec:
1196 ** Range: 10 ~~ 1100hPa
1197 ** Resolution: 0.1hPa
1198 ** Accuracy: ±0.1hPa
1199 * Illuminate sensor:
1200 ** Range: 0~~2/20/200kLux
1201 ** Resolution: 10 Lux
1202 ** Accuracy: ±3%FS
1203 * Working Temperature: -30℃ ~~ 70℃
1204 * Working Humidity: 10 ~~ 90%RH
1205 * Power Consumption: 4mA @ 12v
1206
1207 === 6.5.3 Dimension ===
1208
1209
1210 [[image:1656057170639-522.png]]
1211
1212
1213 === 6.5.4 Pin Mapping ===
1214
1215
1216 [[image:1656057181899-910.png]]
1217
1218
1219 === 6.5.5 Installation Notice ===
1220
1221
1222 Do not power on while connect the cables. Double check the wiring before power on.
1223
1224 [[image:1656057199955-514.png]]
1225
1226
1227 [[image:1656057212438-475.png]]
1228
1229
1230 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1231
1232
1233 (((
1234 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1235 )))
1236
1237 (((
1238 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1239 )))
1240
1241 (((
1242 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1243 )))
1244
1245
1246 === 6.6.1 Feature ===
1247
1248
1249 * RS485 Total Solar Radiation sensor
1250 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1251 * Measure Reflected Radiation if sense area towards ground.
1252
1253 === 6.6.2 Specification ===
1254
1255
1256 * Input Power: DC 5 ~~ 24v
1257 * Interface: RS485
1258 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1259 * Measure strength range: 0 ~~ 2000W/m2
1260 * Resolution: 0.1W/m2
1261 * Accuracy: ±3%
1262 * Yearly Stability: ≤±2%
1263 * Cosine response: ≤7% (@ Sun angle 10°)
1264 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1265 * Working Temperature: -40℃ ~~ 70℃
1266 * Working Humidity: 10 ~~ 90%RH
1267 * Power Consumption: 4mA @ 12v
1268
1269 === 6.6.3 Dimension ===
1270
1271
1272 [[image:1656057348695-898.png]]
1273
1274
1275 === 6.6.4 Pin Mapping ===
1276
1277
1278 [[image:1656057359343-744.png]]
1279
1280
1281 === 6.6.5 Installation Notice ===
1282
1283
1284 Do not power on while connect the cables. Double check the wiring before power on.
1285
1286
1287 [[image:1656057369259-804.png]]
1288
1289
1290 [[image:1656057377943-564.png]]
1291
1292
1293 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1294
1295
1296 (((
1297 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1298 )))
1299
1300 (((
1301 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1302 )))
1303
1304 (((
1305 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1306 )))
1307
1308
1309 === 6.7.1 Feature ===
1310
1311
1312 (((
1313 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1314 )))
1315
1316 (((
1317 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1318 )))
1319
1320
1321 === 6.7.2 Specification ===
1322
1323
1324 * Input Power: DC 5 ~~ 24v
1325 * Interface: RS485
1326 * Response Spectrum: 400~~700nm
1327 * Measure range: 0 ~~ 2500μmol/m2•s
1328 * Resolution: 1μmol/m2•s
1329 * Accuracy: ±2%
1330 * Yearly Stability: ≤ ±2%
1331 * Working Temperature: -30℃ ~~ 75℃
1332 * Working Humidity: 10 ~~ 90%RH
1333 * Power Consumption: 3mA @ 12v
1334
1335 === 6.7.3 Dimension ===
1336
1337
1338 [[image:1656057538793-888.png]]
1339
1340
1341 === 6.7.4 Pin Mapping ===
1342
1343
1344 [[image:1656057548116-203.png]]
1345
1346
1347 === 6.7.5 Installation Notice ===
1348
1349
1350 Do not power on while connect the cables. Double check the wiring before power on.
1351
1352
1353 [[image:1656057557191-895.png]]
1354
1355
1356 [[image:1656057565783-251.png]]
1357
1358
1359 = 7. FAQ =
1360
1361 == 7.1 What else do I need to purchase to build Weather Station? ==
1362
1363
1364 Below is the installation photo and structure:
1365
1366
1367 [[image:1656057598349-319.png]]
1368
1369
1370 [[image:1656057608049-693.png]]
1371
1372
1373 == 7.2 How to upgrade firmware for WSC1-L? ==
1374
1375
1376 (((
1377 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1378 )))
1379
1380 (((
1381 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1382 )))
1383
1384
1385 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1386
1387
1388 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1389
1390
1391 == 7.4 Can I add my weather sensors? ==
1392
1393
1394 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1395
1396
1397 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1398
1399
1400 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1401
1402
1403 == 7.6  How to change the data read by the rain gauge? ==
1404
1405
1406 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1407
1408 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1409
1410 **Rainfall query value:**
1411
1412 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1413
1414 4:Current Hourly rainfall: etc 0.2mm
1415
1416 5:Rainfall in last hour:etc 0.2mm
1417
1418 6:24-hour maximum rainfall etc  10.0mm
1419
1420 8:24-hour minimum rainfall:etc  0.0mm
1421
1422 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1423
1424 = 8. Trouble Shooting =
1425
1426 == 8.1 AT Command input doesn't work ==
1427
1428
1429 (((
1430 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1431 )))
1432
1433
1434 = 9. Order Info =
1435
1436 == 9.1 Main Process Unit ==
1437
1438
1439 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1440
1441 (% style="color:blue" %)**XX**(%%): The default frequency band
1442
1443 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1444 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1445 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1446 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1447 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1448 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1449 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1450 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1451
1452 == 9.2 Sensors ==
1453
1454
1455 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1456 |=(% style="width: 300px;background-color:#4F81BD;color:white" %)**Sensor Model**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Part Number**
1457 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1458 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1459 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1460 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1461 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1462 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1463 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1464 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1465
1466 = 10. Support =
1467
1468
1469 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1470
1471 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1472
1473 = 11. Appendix I: Field Installation Photo =
1474
1475
1476 [[image:1656058346362-132.png||height="685" width="732"]]
1477
1478 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1479
1480
1481
1482 (% style="color:blue" %)**Wind Speed/Direction**
1483
1484 [[image:1656058373174-421.png||height="356" width="731"]]
1485
1486
1487
1488 (% style="color:blue" %)**Total Solar Radiation sensor**
1489
1490 [[image:1656058397364-282.png||height="453" width="732"]]
1491
1492
1493
1494 (% style="color:blue" %)**PAR Sensor**
1495
1496 [[image:1656058416171-615.png]]
1497
1498
1499
1500 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1501
1502 [[image:1656058441194-827.png||height="672" width="523"]]
1503
1504
1505
1506 (% style="color:blue" %)**Rain / Snow Detect**
1507
1508 [[image:1656058451456-166.png]]
1509
1510
1511
1512 (% style="color:blue" %)**Rain Gauge**
1513
1514 [[image:1656058463455-569.png||height="499" width="550"]]
1515
1516
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0