Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
300 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:75px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
301 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
302 (((
303 Speed: 0~60m/s
304 )))
305
306 (((
307 Level: 0~17
308 )))
309 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
310 (((
311 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
312 )))
313
314 (((
315 0x02=2 (0x14: No Sensor, 0x15: Value Error)
316 )))
317 )))
318 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
319 (((
320 Angel: 0~360°
321 )))
322
323 (((
324 Direction: 16 positions
325 )))
326 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
327 (((
328 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
329 )))
330
331 (((
332 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
333 )))
334 )))
335 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
336 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
337 )))
338 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
339 (((
340 0x00 (00) No Rain or snow detected
341 )))
342
343 (((
344 (0x02: No Sensor,0x03: Value Error)
345 )))
346 )))
347 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
348 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
349 )))
350 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
352 )))
353 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
354 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
355 )))
356 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
357 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
358 )))
359 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
360 0mm~100mm(Rainfall in the last 24 hours)
361 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 (((
363 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
364 )))
365
366 (((
367 (0x03FE: No Sensor,0x03FF: Value Error)
368 )))
369 )))
370 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
371 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
372 )))
373 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
374 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
375 )))
376 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
377 0~2500μmol/m^^2^^•s
378 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
379 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
380 )))
381 |(% style="width:103px" %)(((
382 Total Solar
383
384 Radiation
385 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
386 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
387 )))
388
389 (((
390 Below is an example payload:  [[image:image-20220624140615-3.png]]
391 )))
392
393 (((
394
395 )))
396
397 (((
398 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
399 )))
400
401 * (((
402 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
403 )))
404
405 (((
406 Uplink 1:  [[image:image-20220624140735-4.png]]
407 )))
408
409
410 (((
411 Uplink 2:  [[image:image-20220624140842-5.png]]
412
413 )))
414
415 * (((
416 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
417 )))
418
419 (((
420 Uplink 1:  [[image:image-20220624141025-6.png]]
421 )))
422
423
424 Uplink 2:  [[image:image-20220624141100-7.png]]
425
426
427 === 2.4.3 Decoder in TTN V3 ===
428
429
430 (((
431 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
432 )))
433
434 (((
435 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 )))
437
438
439 (((
440 and put as below:
441 )))
442
443 [[image:1656051152438-578.png]]
444
445
446 == 2.5 Show data on Application Server ==
447
448
449 (((
450 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
451 )))
452
453 (((
454 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
455 )))
456
457 (((
458 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
459 )))
460
461 [[image:1656051197172-131.png]]
462
463
464
465 **Add TagoIO:**
466
467 [[image:1656051223585-631.png]]
468
469
470
471 **Authorization:**
472
473 [[image:1656051248318-368.png]]
474
475
476
477 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
478
479
480 [[image:1656051277767-168.png]]
481
482
483 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
484
485
486 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
487
488 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
489 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
490
491 There are two kinds of commands to configure WSC1-L, they are:
492
493 * (% style="color:#4472c4" %)**General Commands**.
494
495 These commands are to configure:
496
497 * General system settings like: uplink interval.
498 * LoRaWAN protocol & radio related command.
499
500 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
501
502 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
503
504
505 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
506
507 These commands only valid for WSC1-L, as below:
508
509
510 == 3.1 Set Transmit Interval Time ==
511
512
513 Feature: Change LoRaWAN End Node Transmit Interval.
514
515 (% style="color:#037691" %)**AT Command: AT+TDC**
516
517 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
518 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
519 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
520 30000
521 OK
522 the interval is 30000ms = 30s
523 )))
524 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
525 OK
526 Set transmit interval to 60000ms = 60 seconds
527 )))
528
529 (% style="color:#037691" %)**Downlink Command: 0x01**
530
531 Format: Command Code (0x01) followed by 3 bytes time value.
532
533 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
534
535 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
536 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
537
538 == 3.2 Set Emergency Mode ==
539
540
541 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
542
543 (% style="color:#037691" %)**AT Command:**
544
545 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:465.818px" %)
546 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:224px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:84px" %)**Response**
547 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
548 OK
549
550 )))
551 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
552 OK
553 )))
554
555 (% style="color:#037691" %)**Downlink Command:**
556
557 * 0xE101     Same as: AT+ALARMMOD=1
558 * 0xE100     Same as: AT+ALARMMOD=0
559
560 == 3.3 Add or Delete RS485 Sensor ==
561
562
563 (((
564 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
565 )))
566
567 (((
568 (% style="color:#037691" %)**AT Command: **
569 )))
570
571 (((
572 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
573 )))
574
575 * (((
576 Type_Code range:  A1 ~~ A4
577 )))
578 * (((
579 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
580 )))
581 * (((
582 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
583 )))
584 * (((
585 Read_Length:  RS485 response frame length supposed to receive. Max can receive
586 )))
587 * (((
588 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
589 )))
590 * (((
591 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
592 )))
593 * (((
594 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
595 )))
596
597 (((
598 **Example:**
599 )))
600
601 (((
602 User need to change external sensor use the type code as address code.
603 )))
604
605 (((
606 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
607 )))
608
609 [[image:image-20220624143553-10.png]]
610
611
612 The response frame of the sensor is as follows:
613
614 [[image:image-20220624143618-11.png]]
615
616
617 **Then the following parameters should be:**
618
619 * Address_Code range: A1
620 * Query_Length: 8
621 * Query_Command: A103000000019CAA
622 * Read_Length: 8
623 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
624 * has_CRC: 1
625 * timeout: 1500 (Fill in the test according to the actual situation)
626
627 **So the input command is:**
628
629 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
630
631
632 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
633
634 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
635 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
636 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
637
638 **Related commands:**
639
640 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
641
642 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
643
644
645 (% style="color:#037691" %)**Downlink Command:  **
646
647 **delete custom sensor A1:**
648
649 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
650
651 **Remove all custom sensors**
652
653 * 0xE5FF  
654
655 == 3.4 RS485 Test Command ==
656
657
658 (% style="color:#037691" %)**AT Command:**
659
660 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:474px" %)
661 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 228px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
662 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
663 (((
664 Send command to 485 sensor
665 )))
666
667 (((
668 Range : no more than 10 bytes
669 )))
670 )))|(% style="width:85px" %)OK
671
672 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
673
674 AT+RSWRITE=0103000001840A
675
676
677 (% style="color:#037691" %)**Downlink Command:**
678
679 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
680
681 == 3.5 RS485 response timeout ==
682
683
684 Feature: Set or get extended time to receive 485 sensor data.
685
686 (% style="color:#037691" %)**AT Command:**
687
688 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
689 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
690 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
691 (((
692 (((
693 Set response timeout to:
694 )))
695 )))
696
697 (((
698 (((
699 Range : 0~~10000
700 )))
701 )))
702 )))|(% style="width:85px" %)OK
703
704 (% style="color:#037691" %)**Downlink Command:**
705
706 Format: Command Code (0xE0) followed by 3 bytes time value.
707
708 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
709
710 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
711 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
712
713 == 3.6 Set Sensor Type ==
714
715
716 (((
717 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
718 )))
719
720 (((
721 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
722
723 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
724 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
725 | |A4|A3|A2|A1| | |
726 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
727 | | |Solar Radiation|PAR|PM10|PM2.5|(((
728 Rain
729 Gauge
730 )))|(((
731 Air
732 Pressure
733 )))
734 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
735 |Humidity|Temperature|CO2|(((
736 Rain/Snow
737 Detect
738 )))|illuminance|(((
739 Wind
740 Direction
741 )))|Wind Speed|BAT
742 )))
743
744
745 (% style="color:#037691" %)**AT Command:**
746
747 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
748 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
749 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
750
751 Eg: The setting command **AT+STYPE=80221** means:
752
753 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
754 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
755 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
756 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
757 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
758 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
759 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
760
761 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
762
763
764 (% style="color:#037691" %)**Downlink Command:**
765
766 * 0xE400080221  Same as: AT+STYPE=80221
767
768 (% style="color:red" %)**Note:**
769
770 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
771
772
773 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
774
775
776 (% style="color:#037691" %)**AT Command:**
777
778 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
779 |=(% style="width: 161px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 184px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
780 |(% style="width:161px" %)(((
781 AT+RAINFALLSWITCH=1
782
783 (Range: 1~~10)
784 )))|(% style="width:184px" %)(((
785 (((
786 (((
787 Set the registers read by the rain gauge
788 )))
789 )))
790 )))|(% style="width:85px" %)OK
791
792 (% style="color:#037691" %)**Downlink Command:**
793
794 * 0x1701  Same as: AT+RAINFALLSWITCH=1
795
796
797
798 = 4. Power consumption and battery =
799
800 == 4.1 Total Power Consumption ==
801
802
803 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
804
805
806 == 4.2 Reduce power consumption ==
807
808
809 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
810
811
812 == 4.3 Battery ==
813
814
815 (((
816 All sensors are only power by external power source. If external power source is off. All sensor won't work.
817 )))
818
819 (((
820 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
821 )))
822
823
824 = 5. Main Process Unit WSC1-L =
825
826 == 5.1 Features ==
827
828
829 * Wall Attachable.
830 * LoRaWAN v1.0.3 Class A protocol.
831 * RS485 / Modbus protocol
832 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
833 * AT Commands to change parameters
834 * Remote configure parameters via LoRaWAN Downlink
835 * Firmware upgradable via program port
836 * Powered by external 12v battery
837 * Back up rechargeable 1000mAh battery
838 * IP Rating: IP65
839 * Support default sensors or 3rd party RS485 sensors
840
841 == 5.2 Power Consumption ==
842
843
844 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
845
846
847 == 5.3 Storage & Operation Temperature ==
848
849
850 -20°C to +60°C
851
852
853 == 5.4 Pin Mapping ==
854
855
856 [[image:1656054149793-239.png]]
857
858
859 == 5.5 Mechanical ==
860
861
862 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
863
864
865 == 5.6 Connect to RS485 Sensors ==
866
867
868 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
869
870
871 [[image:1656054389031-379.png]]
872
873
874 Hardware Design for the Converter Board please see:
875
876 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
877
878
879 = 6. Weather Sensors =
880
881 == 6.1 Rain Gauge ~-~- WSS-01 ==
882
883
884 (((
885 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
886 )))
887
888 (((
889 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
890 )))
891
892 (((
893 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
894 )))
895
896 (((
897 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
898 )))
899
900 (((
901 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
902 )))
903
904
905 === 6.1.1 Feature ===
906
907
908 * RS485 Rain Gauge
909 * Small dimension, easy to install
910 * Vents under funnel, avoid leaf or other things to avoid rain flow.
911 * ABS enclosure.
912 * Horizontal adjustable.
913
914 === 6.1.2 Specification ===
915
916
917 * Resolution: 0.2mm
918 * Accuracy: ±3%
919 * Range: 0 ~~ 100mm
920 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
921 * Input Power: DC 5~~24v
922 * Interface: RS485
923 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
924 * Working Humidity: <100% (no dewing)
925 * Power Consumption: 4mA @ 12v.
926
927 === 6.1.3 Dimension ===
928
929
930 [[image:1656054957406-980.png]]
931
932
933 === 6.1.4 Pin Mapping ===
934
935
936 [[image:1656054972828-692.png]]
937
938
939 === 6.1.5 Installation Notice ===
940
941
942 (((
943 Do not power on while connect the cables. Double check the wiring before power on.
944 )))
945
946 (((
947 Installation Photo as reference:
948 )))
949
950
951 (((
952 (% style="color:#4472c4" %)** Install on Ground:**
953 )))
954
955 (((
956 WSS-01 Rain Gauge include screws so can install in ground directly .
957 )))
958
959
960 (((
961 (% style="color:#4472c4" %)** Install on pole:**
962 )))
963
964 (((
965 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
966 )))
967
968 [[image:image-20220624152218-1.png||height="526" width="276"]]
969
970 WS-K2: Bracket Kit for Pole installation
971
972
973 WSSC-K2 dimension document, please see:
974
975 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
976
977
978 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
979
980
981 [[image:1656055444035-179.png]]
982
983
984 (((
985 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
986 )))
987
988 (((
989 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
990 )))
991
992 (((
993 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
994 )))
995
996
997 === 6.2.1 Feature ===
998
999
1000 * RS485 wind speed / direction sensor
1001 * PC enclosure, resist corrosion
1002
1003 === 6.2.2 Specification ===
1004
1005
1006 * Wind speed range: 0 ~~ 60m/s
1007 * Wind direction range: 0 ~~ 360°
1008 * Start wind speed: ≤0.3m/s
1009 * Accuracy: ±(0.3+0.03V)m/s , ±1°
1010 * Input Power: DC 5~~24v
1011 * Interface: RS485
1012 * Working Temperature: -30℃~70℃
1013 * Working Humidity: <100% (no dewing)
1014 * Power Consumption: 13mA ~~ 12v.
1015 * Cable Length: 2 meters
1016
1017 === 6.2.3 Dimension ===
1018
1019
1020 [[image:image-20220624152813-2.png]]
1021
1022
1023 === 6.2.4 Pin Mapping ===
1024
1025
1026 [[image:1656056281231-994.png]]
1027
1028
1029 === 6.2.5  Angle Mapping ===
1030
1031
1032 [[image:1656056303845-585.png]]
1033
1034
1035 === 6.2.6  Installation Notice ===
1036
1037
1038 (((
1039 Do not power on while connect the cables. Double check the wiring before power on.
1040 )))
1041
1042 (((
1043 The sensor must be installed with below direction, towards North.
1044
1045
1046 )))
1047
1048 [[image:image-20220624153901-3.png]]
1049
1050
1051 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1052
1053
1054 (((
1055 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1056 )))
1057
1058 (((
1059 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1060 )))
1061
1062 (((
1063 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1064 )))
1065
1066
1067 === 6.3.1 Feature ===
1068
1069
1070 * RS485 CO2, PM2.5, PM10 sensor
1071 * NDIR to measure CO2 with Internal Temperature Compensation
1072 * Laser Beam Scattering to PM2.5 and PM10
1073
1074 === 6.3.2 Specification ===
1075
1076
1077 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1078 * CO2 resolution: 1ppm
1079 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1080 * PM2.5/PM10 resolution: 1μg/m3
1081 * Input Power: DC 7 ~~ 24v
1082 * Preheat time: 3min
1083 * Interface: RS485
1084 * Working Temperature:
1085 ** CO2: 0℃~50℃;
1086 ** PM2.5/PM10: -30 ~~ 50℃
1087 * Working Humidity:
1088 ** PM2.5/PM10: 15~80%RH (no dewing)
1089 ** CO2: 0~95%RH
1090 * Power Consumption: 50mA@ 12v.
1091
1092 === 6.3.3 Dimension ===
1093
1094
1095 [[image:1656056708366-230.png]]
1096
1097
1098 === 6.3.4 Pin Mapping ===
1099
1100
1101 [[image:1656056722648-743.png]]
1102
1103
1104 === 6.3.5 Installation Notice ===
1105
1106
1107 Do not power on while connect the cables. Double check the wiring before power on.
1108
1109
1110 [[image:1656056751153-304.png]]
1111
1112
1113 [[image:1656056766224-773.png]]
1114
1115
1116 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1117
1118
1119 (((
1120 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1121 )))
1122
1123 (((
1124 WSS-04 has auto heating feature, this ensures measurement more reliable.
1125 )))
1126
1127 (((
1128 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1129 )))
1130
1131
1132 === 6.4.1 Feature ===
1133
1134
1135 * RS485 Rain/Snow detect sensor
1136 * Surface heating to dry
1137 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1138
1139 === 6.4.2 Specification ===
1140
1141
1142 * Detect if there is rain or snow
1143 * Input Power: DC 12 ~~ 24v
1144 * Interface: RS485
1145 * Working Temperature: -30℃~70℃
1146 * Working Humidity: 10~90%RH
1147 * Power Consumption:
1148 ** No heating: 12mA @ 12v,
1149 ** heating: 94ma @ 12v.
1150
1151 === 6.4.3 Dimension ===
1152
1153
1154 [[image:1656056844782-155.png]]
1155
1156
1157 === 6.4.4 Pin Mapping ===
1158
1159
1160 [[image:1656056855590-754.png]]
1161
1162
1163 === 6.4.5 Installation Notice ===
1164
1165
1166 Do not power on while connect the cables. Double check the wiring before power on.
1167
1168 (((
1169 Install with 15°degree.
1170 )))
1171
1172 [[image:1656056873783-780.png]]
1173
1174
1175 [[image:1656056883736-804.png]]
1176
1177
1178 === 6.4.6 Heating ===
1179
1180
1181 (((
1182 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1183 )))
1184
1185
1186 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1187
1188
1189 (((
1190 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1191 )))
1192
1193 (((
1194 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1195 )))
1196
1197
1198 === 6.5.1 Feature ===
1199
1200
1201 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1202
1203 === 6.5.2 Specification ===
1204
1205
1206 * Input Power: DC 12 ~~ 24v
1207 * Interface: RS485
1208 * Temperature Sensor Spec:
1209 ** Range: -30 ~~ 70℃
1210 ** resolution 0.1℃
1211 ** Accuracy: ±0.5℃
1212 * Humidity Sensor Spec:
1213 ** Range: 0 ~~ 100% RH
1214 ** resolution 0.1 %RH
1215 ** Accuracy: 3% RH
1216 * Pressure Sensor Spec:
1217 ** Range: 10~1100hPa
1218 ** Resolution: 0.1hPa
1219 ** Accuracy: ±0.1hPa
1220 * Illuminate sensor:
1221 ** Range: 0~2/20/200kLux
1222 ** Resolution: 10 Lux
1223 ** Accuracy: ±3%FS
1224 * Working Temperature: -30℃~70℃
1225 * Working Humidity: 10~90%RH
1226 * Power Consumption: 4mA @ 12v
1227
1228 === 6.5.3 Dimension ===
1229
1230
1231 [[image:1656057170639-522.png]]
1232
1233
1234 === 6.5.4 Pin Mapping ===
1235
1236
1237 [[image:1656057181899-910.png]]
1238
1239
1240 === 6.5.5 Installation Notice ===
1241
1242
1243 Do not power on while connect the cables. Double check the wiring before power on.
1244
1245 [[image:1656057199955-514.png]]
1246
1247
1248 [[image:1656057212438-475.png]]
1249
1250
1251 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1252
1253
1254 (((
1255 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1256 )))
1257
1258 (((
1259 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1260 )))
1261
1262 (((
1263 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1264 )))
1265
1266
1267 === 6.6.1 Feature ===
1268
1269
1270 * RS485 Total Solar Radiation sensor
1271 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1272 * Measure Reflected Radiation if sense area towards ground.
1273
1274 === 6.6.2 Specification ===
1275
1276
1277 * Input Power: DC 5 ~~ 24v
1278 * Interface: RS485
1279 * Detect spectrum: 0.3~3μm(300~3000nm)
1280 * Measure strength range: 0~2000W/m2
1281 * Resolution: 0.1W/m2
1282 * Accuracy: ±3%
1283 * Yearly Stability: ≤±2%
1284 * Cosine response: ≤7% (@ Sun angle 10°)
1285 * Temperature Effect: ±2%(-10℃~40℃)
1286 * Working Temperature: -40℃~70℃
1287 * Working Humidity: 10~90%RH
1288 * Power Consumption: 4mA @ 12v
1289
1290 === 6.6.3 Dimension ===
1291
1292
1293 [[image:1656057348695-898.png]]
1294
1295
1296 === 6.6.4 Pin Mapping ===
1297
1298
1299 [[image:1656057359343-744.png]]
1300
1301
1302 === 6.6.5 Installation Notice ===
1303
1304
1305 Do not power on while connect the cables. Double check the wiring before power on.
1306
1307
1308 [[image:1656057369259-804.png]]
1309
1310
1311 [[image:1656057377943-564.png]]
1312
1313
1314 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1315
1316
1317 (((
1318 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1319 )))
1320
1321 (((
1322 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1323 )))
1324
1325 (((
1326 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1327 )))
1328
1329
1330 === 6.7.1 Feature ===
1331
1332
1333 (((
1334 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1335 )))
1336
1337 (((
1338 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1339 )))
1340
1341
1342 === 6.7.2 Specification ===
1343
1344
1345 * Input Power: DC 5 ~~ 24v
1346 * Interface: RS485
1347 * Response Spectrum: 400~700nm
1348 * Measure range: 0~2500μmol/m2•s
1349 * Resolution: 1μmol/m2•s
1350 * Accuracy: ±2%
1351 * Yearly Stability: ≤±2%
1352 * Working Temperature: -30℃~75℃
1353 * Working Humidity: 10~90%RH
1354 * Power Consumption: 3mA @ 12v
1355
1356 === 6.7.3 Dimension ===
1357
1358
1359 [[image:1656057538793-888.png]]
1360
1361
1362 === 6.7.4 Pin Mapping ===
1363
1364
1365 [[image:1656057548116-203.png]]
1366
1367
1368 === 6.7.5 Installation Notice ===
1369
1370
1371 Do not power on while connect the cables. Double check the wiring before power on.
1372
1373
1374 [[image:1656057557191-895.png]]
1375
1376
1377 [[image:1656057565783-251.png]]
1378
1379
1380 = 7. FAQ =
1381
1382 == 7.1 What else do I need to purchase to build Weather Station? ==
1383
1384
1385 Below is the installation photo and structure:
1386
1387
1388 [[image:1656057598349-319.png]]
1389
1390
1391 [[image:1656057608049-693.png]]
1392
1393
1394 == 7.2 How to upgrade firmware for WSC1-L? ==
1395
1396
1397 (((
1398 Firmware Location & Change log:
1399
1400 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1401 )))
1402
1403
1404 (((
1405 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1406 )))
1407
1408
1409 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1410
1411
1412 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1413
1414
1415 == 7.4 Can I add my weather sensors? ==
1416
1417
1418 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1419
1420
1421 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1422
1423
1424 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1425
1426
1427 = 8. Trouble Shooting =
1428
1429 == 8.1 AT Command input doesn't work ==
1430
1431
1432 (((
1433 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1434 )))
1435
1436
1437 = 9. Order Info =
1438
1439 == 9.1 Main Process Unit ==
1440
1441
1442 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1443
1444 (% style="color:blue" %)**XX**(%%): The default frequency band
1445
1446 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1447 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1448 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1449 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1450 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1451 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1452 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1453 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1454
1455 == 9.2 Sensors ==
1456
1457
1458 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1459 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1460 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1461 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1462 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1463 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1464 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1465 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1466 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1467 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1468
1469 = 10. Support =
1470
1471
1472 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1473
1474 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1475
1476 = 11. Appendix I: Field Installation Photo =
1477
1478
1479 [[image:1656058346362-132.png||height="685" width="732"]]
1480
1481 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1482
1483
1484
1485 (% style="color:blue" %)**Wind Speed/Direction**
1486
1487 [[image:1656058373174-421.png||height="356" width="731"]]
1488
1489
1490
1491 (% style="color:blue" %)**Total Solar Radiation sensor**
1492
1493 [[image:1656058397364-282.png||height="453" width="732"]]
1494
1495
1496
1497 (% style="color:blue" %)**PAR Sensor**
1498
1499 [[image:1656058416171-615.png]]
1500
1501
1502
1503 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1504
1505 [[image:1656058441194-827.png||height="672" width="523"]]
1506
1507
1508
1509 (% style="color:blue" %)**Rain / Snow Detect**
1510
1511 [[image:1656058451456-166.png]]
1512
1513
1514
1515 (% style="color:blue" %)**Rain Gauge**
1516
1517 [[image:1656058463455-569.png||height="499" width="550"]]
1518
1519
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0