Version 105.30 by Xiaoling on 2023/06/16 09:54

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84
85 == 2.2 How it works? ==
86
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107
108 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110
111 [[image:1656042612899-422.png]]
112
113
114
115 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
116
117
118 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
119
120 Each WSC1-L is shipped with a sticker with the default device EUI as below:
121
122 [[image:image-20230426084533-1.png||height="231" width="497"]]
123
124
125 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
126
127 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
128
129 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
130
131 **Add APP EUI in the application.**
132
133 [[image:1656042662694-311.png]]
134
135 [[image:1656042673910-429.png]]
136
137
138
139
140 **Choose Manually to add WSC1-L**
141
142 [[image:1656042695755-103.png]]
143
144
145
146 **Add APP KEY and DEV EUI**
147
148 [[image:1656042723199-746.png]]
149
150
151
152 (((
153 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
154 )))
155
156
157 [[image:1656042745346-283.png]]
158
159
160 == 2.4 Uplink Payload ==
161
162
163 Uplink payloads include two types: Valid Sensor Value and other status / control command.
164
165 * Valid Sensor Value: Use FPORT=2
166 * Other control command: Use FPORT other than 2.
167
168
169
170
171 === 2.4.1 Uplink FPORT~=5, Device Status ===
172
173
174 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
175
176
177 (((
178 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
179 )))
180
181 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
182 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
183 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
184
185 [[image:1656043061044-343.png]]
186
187
188 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
189
190
191 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
192
193 For WSC1-L, this value is 0x0D.
194
195
196 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
197
198 0x0100, Means: v1.0.0 version.
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 0x01: EU868
204
205 0x02: US915
206
207 0x03: IN865
208
209 0x04: AU915
210
211 0x05: KZ865
212
213 0x06: RU864
214
215 0x07: AS923
216
217 0x08: AS923-1
218
219 0x09: AS923-2
220
221 0x0a: AS923-3
222
223
224 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
225
226 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
227
228
229 ==== (% style="color:#037691" %)**BAT:**(%%) ====
230
231 (((
232 shows the battery voltage for WSC1-L MCU.
233 )))
234
235 (((
236 Ex1: 0x0BD6/1000 = 3.03 V
237 )))
238
239
240 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
241
242 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
243 |Byte3|Byte2|Byte1
244
245 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
246
247 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
248 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
249 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
250 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
251 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
252 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
253 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
254
255 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
256
257 External sensors detected by WSC1-L include :
258
259 custom sensor A1,
260
261 PAR sensor (WSS-07),
262
263 Total Solar Radiation sensor (WSS-06),
264
265 CO2/PM2.5/PM10 (WSS-03),
266
267 Wind Speed/Direction (WSS-02)
268
269
270 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
271
272 (% style="color:#037691" %)**Downlink:0x26 01**
273
274 [[image:1656049673488-415.png]]
275
276
277 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
278
279
280 (((
281 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
282 )))
283
284 (((
285 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
286 )))
287
288
289 (((
290 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
291 )))
292
293
294 (% style="color:#4472c4" %)** Uplink Payload**:
295
296 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
297 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
298
299 (% style="color:#4472c4" %)** Sensor Segment Define**:
300
301 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
302 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
303
304 (% style="color:#4472c4" %)**Sensor Type Table:**
305
306 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
307 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:65px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:78px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
308 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
309 Speed: 0 ~~ 60m/s
310 Level: 0 ~~ 17
311 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
312 (((
313 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
314 )))
315
316 (((
317 0x02=2 (0x14: No Sensor, 0x15: Value Error)
318 )))
319 )))
320 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
321 Angel: 0 ~~ 360°
322 Direction: 16 positions
323 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
324 (((
325 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
326 )))
327
328 (((
329 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
330 )))
331 )))
332 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
333 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
334 )))
335 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
336 (((
337 0x00 (00) No Rain or snow detected
338 )))
339
340 (((
341 (0x02: No Sensor,0x03: Value Error)
342 )))
343 )))
344 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
345 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
346 )))
347 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
348 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
349 )))
350 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
352 )))
353 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
354 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
355 )))
356 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
357 0mm~100mm(Rainfall in the last 24 hours)
358 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
359 (((
360 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
361 )))
362
363 (((
364 (0x03FE: No Sensor,0x03FF: Value Error)
365 )))
366 )))
367 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
368 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
369 )))
370 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
371 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
372 )))
373 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
374 0~2500μmol/m^^2^^•s
375 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
376 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
377 )))
378 |(% style="width:103px" %)(((
379 Total Solar Radiation
380 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
381 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
382 )))
383
384 (((
385 Below is an example payload:  [[image:image-20220624140615-3.png]]
386 )))
387
388
389 (((
390 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
391 )))
392
393 * (((
394 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
395 )))
396
397 (((
398 Uplink 1:  [[image:image-20220624140735-4.png]]
399 )))
400
401
402 (((
403 Uplink 2:  [[image:image-20220624140842-5.png]]
404
405 )))
406
407 * (((
408 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
409 )))
410
411 (((
412 Uplink 1:  [[image:image-20220624141025-6.png]]
413 )))
414
415
416 Uplink 2:  [[image:image-20220624141100-7.png]]
417
418
419 === 2.4.3 Decoder in TTN V3 ===
420
421
422 (((
423 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
424 )))
425
426 (((
427 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
428 )))
429
430
431 (((
432 and put as below:
433 )))
434
435 [[image:1656051152438-578.png]]
436
437
438 == 2.5 Show data on Application Server ==
439
440
441 (((
442 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
443 )))
444
445 (((
446 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
447 )))
448
449 (((
450 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
451 )))
452
453 [[image:1656051197172-131.png]]
454
455
456
457 **Add TagoIO:**
458
459 [[image:1656051223585-631.png]]
460
461
462
463 **Authorization:**
464
465 [[image:1656051248318-368.png]]
466
467
468
469 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
470
471
472 [[image:1656051277767-168.png]]
473
474
475 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
476
477
478 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
479
480 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
481 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
482
483 There are two kinds of commands to configure WSC1-L, they are:
484
485 * (% style="color:blue" %)**General Commands**.
486
487 These commands are to configure:
488
489 * General system settings like: uplink interval.
490 * LoRaWAN protocol & radio related command.
491
492 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
493
494 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
495
496
497 * (% style="color:blue" %)**Commands special design for WSC1-L**
498
499 These commands only valid for WSC1-L, as below:
500
501
502 == 3.1 Set Transmit Interval Time ==
503
504
505 Feature: Change LoRaWAN End Node Transmit Interval.
506
507 (% style="color:#037691" %)**AT Command: AT+TDC**
508
509 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
510 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
511 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
512 30000
513 OK
514 the interval is 30000ms = 30s
515 )))
516 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
517 OK
518 Set transmit interval to 60000ms = 60 seconds
519 )))
520
521 (% style="color:#037691" %)**Downlink Command: 0x01**
522
523 Format: Command Code (0x01) followed by 3 bytes time value.
524
525 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
526
527 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
528 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
529
530
531
532
533 == 3.2 Set Emergency Mode ==
534
535
536 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
537
538 (% style="color:#037691" %)**AT Command:**
539
540 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
541 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
542 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
543 OK
544
545 )))
546 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
547 OK
548 )))
549
550 (% style="color:#037691" %)**Downlink Command:**
551
552 * 0xE101     Same as: AT+ALARMMOD=1
553 * 0xE100     Same as: AT+ALARMMOD=0
554
555
556
557
558 == 3.3 Add or Delete RS485 Sensor ==
559
560
561 (((
562 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
563 )))
564
565 (((
566 (% style="color:#037691" %)**AT Command: **
567 )))
568
569 (((
570 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
571 )))
572
573 * (((
574 Type_Code range:  A1 ~~ A4
575 )))
576 * (((
577 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
578 )))
579 * (((
580 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
581 )))
582 * (((
583 Read_Length:  RS485 response frame length supposed to receive. Max can receive
584 )))
585 * (((
586 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
587 )))
588 * (((
589 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
590 )))
591 * (((
592 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
593 )))
594
595 (((
596 **Example:**
597 )))
598
599 (((
600 User need to change external sensor use the type code as address code.
601 )))
602
603 (((
604 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
605 )))
606
607 [[image:image-20220624143553-10.png]]
608
609
610 The response frame of the sensor is as follows:
611
612 [[image:image-20220624143618-11.png]]
613
614
615 **Then the following parameters should be:**
616
617 * Address_Code range: A1
618 * Query_Length: 8
619 * Query_Command: A103000000019CAA
620 * Read_Length: 8
621 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
622 * has_CRC: 1
623 * timeout: 1500 (Fill in the test according to the actual situation)
624
625 **So the input command is:**
626
627 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
628
629
630 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
631
632 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
633 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
634 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
635
636 **Related commands:**
637
638 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
639
640 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
641
642
643 (% style="color:#037691" %)**Downlink Command:  **
644
645 **delete custom sensor A1:**
646
647 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
648
649 **Remove all custom sensors**
650
651 * 0xE5FF  
652
653
654
655
656 == 3.4 RS485 Test Command ==
657
658
659 (% style="color:#037691" %)**AT Command:**
660
661 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
662 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
663 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
664 Send command to 485 sensor. Range : no more than 10 bytes
665 )))|(% style="width:85px" %)OK
666
667 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
668
669 AT+RSWRITE=0103000001840A
670
671
672 (% style="color:#037691" %)**Downlink Command:**
673
674 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
675
676
677
678
679 == 3.5 RS485 response timeout ==
680
681
682 Feature: Set or get extended time to receive 485 sensor data.
683
684 (% style="color:#037691" %)**AT Command:**
685
686 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
687 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
688 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
689 Set response timeout to: Range : 0~~10000
690 )))|(% style="width:85px" %)OK
691
692 (% style="color:#037691" %)**Downlink Command:**
693
694 Format: Command Code (0xE0) followed by 3 bytes time value.
695
696 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
697
698 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
699 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
700
701
702
703
704 == 3.6 Set Sensor Type ==
705
706
707 (((
708 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
709 )))
710
711 (((
712 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
713
714 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
715 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
716 | |A4|A3|A2|A1| | |
717 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
718 | | |Solar Radiation|PAR|PM10|PM2.5|(((
719 Rain
720 Gauge
721 )))|(((
722 Air
723 Pressure
724 )))
725 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
726 |Humidity|Temperature|CO2|(((
727 Rain/Snow
728 Detect
729 )))|illuminance|(((
730 Wind
731 Direction
732 )))|Wind Speed|BAT
733 )))
734
735
736 (% style="color:#037691" %)**AT Command:**
737
738 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
739 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
740 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
741
742 Eg: The setting command **AT+STYPE=80221** means:
743
744 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
745 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
746 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
747 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
748 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
749 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
750 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
751
752 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
753
754
755 (% style="color:#037691" %)**Downlink Command:**
756
757 * 0xE400080221  Same as: AT+STYPE=80221
758
759 (% style="color:red" %)**Note:**
760
761 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
762
763
764 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
765
766
767 (% style="color:#037691" %)**AT Command:**
768
769 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
770 |=(% style="width: 172px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 175px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
771 |(% style="width:161px" %)(((
772 AT+RAINFALLSWITCH=1(Range: 1~~10)
773 )))|(% style="width:184px" %)(((
774 Set the registers read by the rain gauge
775 )))|(% style="width:85px" %)OK
776
777 (% style="color:#037691" %)**Downlink Command:**
778
779 * 0x1701  Same as: AT+RAINFALLSWITCH=1
780
781
782
783
784 = 4. Power consumption and battery =
785
786 == 4.1 Total Power Consumption ==
787
788
789 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
790
791
792 == 4.2 Reduce power consumption ==
793
794
795 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
796
797
798 == 4.3 Battery ==
799
800
801 (((
802 All sensors are only power by external power source. If external power source is off. All sensor won't work.
803 )))
804
805 (((
806 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
807 )))
808
809
810 = 5. Main Process Unit WSC1-L =
811
812 == 5.1 Features ==
813
814
815 * Wall Attachable.
816 * LoRaWAN v1.0.3 Class A protocol.
817 * RS485 / Modbus protocol
818 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
819 * AT Commands to change parameters
820 * Remote configure parameters via LoRaWAN Downlink
821 * Firmware upgradable via program port
822 * Powered by external 12v battery
823 * Back up rechargeable 1000mAh battery
824 * IP Rating: IP65
825 * Support default sensors or 3rd party RS485 sensors
826
827
828
829
830 == 5.2 Power Consumption ==
831
832
833 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
834
835
836 == 5.3 Storage & Operation Temperature ==
837
838
839 -20°C to +60°C
840
841
842 == 5.4 Pin Mapping ==
843
844
845 [[image:1656054149793-239.png]]
846
847
848 == 5.5 Mechanical ==
849
850
851 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
852
853
854 == 5.6 Connect to RS485 Sensors ==
855
856
857 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
858
859
860 [[image:1656054389031-379.png]]
861
862
863 Hardware Design for the Converter Board please see:
864
865 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
866
867
868 = 6. Weather Sensors =
869
870 == 6.1 Rain Gauge ~-~- WSS-01 ==
871
872
873 (((
874 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
875 )))
876
877 (((
878 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
879 )))
880
881 (((
882 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
883 )))
884
885 (((
886 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
887 )))
888
889 (((
890 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
891 )))
892
893
894 === 6.1.1 Feature ===
895
896
897 * RS485 Rain Gauge
898 * Small dimension, easy to install
899 * Vents under funnel, avoid leaf or other things to avoid rain flow.
900 * ABS enclosure.
901 * Horizontal adjustable.
902
903
904
905
906 === 6.1.2 Specification ===
907
908
909 * Resolution: 0.2mm
910 * Accuracy: ±3%
911 * Range: 0 ~~ 100mm
912 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
913 * Input Power: DC 5 ~~ 24v
914 * Interface: RS485
915 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
916 * Working Humidity: <100% (no dewing)
917 * Power Consumption: 4mA @ 12v.
918
919
920
921
922 === 6.1.3 Dimension ===
923
924
925 [[image:1656054957406-980.png]]
926
927
928 === 6.1.4 Pin Mapping ===
929
930
931 [[image:1656054972828-692.png]]
932
933
934 === 6.1.5 Installation Notice ===
935
936
937 (((
938 Do not power on while connect the cables. Double check the wiring before power on.
939 )))
940
941 (((
942 Installation Photo as reference:
943 )))
944
945
946 (((
947 (% style="color:#4472c4" %)** Install on Ground:**
948 )))
949
950 (((
951 WSS-01 Rain Gauge include screws so can install in ground directly .
952 )))
953
954
955 (((
956 (% style="color:#4472c4" %)** Install on pole:**
957 )))
958
959 (((
960 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
961 )))
962
963 [[image:image-20220624152218-1.png||height="526" width="276"]]
964
965 WS-K2: Bracket Kit for Pole installation
966
967
968 WSSC-K2 dimension document, please see:
969
970 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
971
972
973 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
974
975
976 [[image:1656055444035-179.png]]
977
978
979 (((
980 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
981 )))
982
983 (((
984 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
985 )))
986
987 (((
988 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
989 )))
990
991
992 === 6.2.1 Feature ===
993
994
995 * RS485 wind speed / direction sensor
996 * PC enclosure, resist corrosion
997
998
999
1000
1001 === 6.2.2 Specification ===
1002
1003
1004 * Wind speed range: 0 ~~ 60m/s
1005 * Wind direction range: 0 ~~ 360°
1006 * Start wind speed: ≤0.3 m/s
1007 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1008 * Input Power: DC 5 ~~ 24v
1009 * Interface: RS485
1010 * Working Temperature: -30℃ ~~ 70℃
1011 * Working Humidity: <100% (no dewing)
1012 * Power Consumption: 13mA ~~ 12v.
1013 * Cable Length: 2 meters
1014
1015
1016
1017
1018 === 6.2.3 Dimension ===
1019
1020
1021 [[image:image-20220624152813-2.png]]
1022
1023
1024 === 6.2.4 Pin Mapping ===
1025
1026
1027 [[image:1656056281231-994.png]]
1028
1029
1030 === 6.2.5  Angle Mapping ===
1031
1032
1033 [[image:1656056303845-585.png]]
1034
1035
1036 === 6.2.6  Installation Notice ===
1037
1038
1039 (((
1040 Do not power on while connect the cables. Double check the wiring before power on.
1041 )))
1042
1043 (((
1044 The sensor must be installed with below direction, towards North.
1045
1046
1047 )))
1048
1049 [[image:image-20220624153901-3.png]]
1050
1051
1052 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1053
1054
1055 (((
1056 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1057 )))
1058
1059 (((
1060 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1061 )))
1062
1063 (((
1064 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1065 )))
1066
1067
1068 === 6.3.1 Feature ===
1069
1070
1071 * RS485 CO2, PM2.5, PM10 sensor
1072 * NDIR to measure CO2 with Internal Temperature Compensation
1073 * Laser Beam Scattering to PM2.5 and PM10
1074
1075
1076
1077
1078 === 6.3.2 Specification ===
1079
1080
1081 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1082 * CO2 resolution: 1ppm
1083 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1084 * PM2.5/PM10 resolution: 1μg/m3
1085 * Input Power: DC 7 ~~ 24v
1086 * Preheat time: 3min
1087 * Interface: RS485
1088 * Working Temperature:
1089 ** CO2: 0℃ ~~ 50℃;
1090 ** PM2.5/PM10: -30 ~~ 50℃
1091 * Working Humidity:
1092 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1093 ** CO2: 0 ~~ 95%RH
1094 * Power Consumption: 50mA@ 12v.
1095
1096
1097
1098
1099 === 6.3.3 Dimension ===
1100
1101
1102 [[image:1656056708366-230.png]]
1103
1104
1105 === 6.3.4 Pin Mapping ===
1106
1107
1108 [[image:1656056722648-743.png]]
1109
1110
1111 === 6.3.5 Installation Notice ===
1112
1113
1114 Do not power on while connect the cables. Double check the wiring before power on.
1115
1116
1117 [[image:1656056751153-304.png]]
1118
1119
1120 [[image:1656056766224-773.png]]
1121
1122
1123 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1124
1125
1126 (((
1127 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1128 )))
1129
1130 (((
1131 WSS-04 has auto heating feature, this ensures measurement more reliable.
1132 )))
1133
1134 (((
1135 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1136 )))
1137
1138
1139 === 6.4.1 Feature ===
1140
1141
1142 * RS485 Rain/Snow detect sensor
1143 * Surface heating to dry
1144 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1145
1146
1147
1148
1149 === 6.4.2 Specification ===
1150
1151
1152 * Detect if there is rain or snow
1153 * Input Power: DC 12 ~~ 24v
1154 * Interface: RS485
1155 * Working Temperature: -30℃ ~~ 70℃
1156 * Working Humidity: 10 ~~ 90%RH
1157 * Power Consumption:
1158 ** No heating: 12mA @ 12v,
1159 ** heating: 94ma @ 12v.
1160
1161
1162
1163
1164 === 6.4.3 Dimension ===
1165
1166
1167 [[image:1656056844782-155.png]]
1168
1169
1170 === 6.4.4 Pin Mapping ===
1171
1172
1173 [[image:1656056855590-754.png]]
1174
1175
1176 === 6.4.5 Installation Notice ===
1177
1178
1179 Do not power on while connect the cables. Double check the wiring before power on.
1180
1181 (((
1182 Install with 15°degree.
1183 )))
1184
1185 [[image:1656056873783-780.png]]
1186
1187
1188 [[image:1656056883736-804.png]]
1189
1190
1191 === 6.4.6 Heating ===
1192
1193
1194 (((
1195 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1196 )))
1197
1198
1199 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1200
1201
1202 (((
1203 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1204 )))
1205
1206 (((
1207 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1208 )))
1209
1210
1211 === 6.5.1 Feature ===
1212
1213
1214 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1215
1216
1217
1218
1219 === 6.5.2 Specification ===
1220
1221
1222 * Input Power: DC 12 ~~ 24v
1223 * Interface: RS485
1224 * Temperature Sensor Spec:
1225 ** Range: -30 ~~ 70℃
1226 ** resolution 0.1℃
1227 ** Accuracy: ±0.5℃
1228 * Humidity Sensor Spec:
1229 ** Range: 0 ~~ 100% RH
1230 ** resolution 0.1 %RH
1231 ** Accuracy: 3% RH
1232 * Pressure Sensor Spec:
1233 ** Range: 10 ~~ 1100hPa
1234 ** Resolution: 0.1hPa
1235 ** Accuracy: ±0.1hPa
1236 * Illuminate sensor:
1237 ** Range: 0~~2/20/200kLux
1238 ** Resolution: 10 Lux
1239 ** Accuracy: ±3%FS
1240 * Working Temperature: -30℃ ~~ 70℃
1241 * Working Humidity: 10 ~~ 90%RH
1242 * Power Consumption: 4mA @ 12v
1243
1244
1245
1246
1247 === 6.5.3 Dimension ===
1248
1249
1250 [[image:1656057170639-522.png]]
1251
1252
1253 === 6.5.4 Pin Mapping ===
1254
1255
1256 [[image:1656057181899-910.png]]
1257
1258
1259 === 6.5.5 Installation Notice ===
1260
1261
1262 Do not power on while connect the cables. Double check the wiring before power on.
1263
1264 [[image:1656057199955-514.png]]
1265
1266
1267 [[image:1656057212438-475.png]]
1268
1269
1270 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1271
1272
1273 (((
1274 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1275 )))
1276
1277 (((
1278 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1279 )))
1280
1281 (((
1282 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1283 )))
1284
1285
1286 === 6.6.1 Feature ===
1287
1288
1289 * RS485 Total Solar Radiation sensor
1290 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1291 * Measure Reflected Radiation if sense area towards ground.
1292
1293
1294
1295
1296 === 6.6.2 Specification ===
1297
1298
1299 * Input Power: DC 5 ~~ 24v
1300 * Interface: RS485
1301 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1302 * Measure strength range: 0 ~~ 2000W/m2
1303 * Resolution: 0.1W/m2
1304 * Accuracy: ±3%
1305 * Yearly Stability: ≤±2%
1306 * Cosine response: ≤7% (@ Sun angle 10°)
1307 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1308 * Working Temperature: -40℃ ~~ 70℃
1309 * Working Humidity: 10 ~~ 90%RH
1310 * Power Consumption: 4mA @ 12v
1311
1312
1313
1314
1315 === 6.6.3 Dimension ===
1316
1317
1318 [[image:1656057348695-898.png]]
1319
1320
1321 === 6.6.4 Pin Mapping ===
1322
1323
1324 [[image:1656057359343-744.png]]
1325
1326
1327 === 6.6.5 Installation Notice ===
1328
1329
1330 Do not power on while connect the cables. Double check the wiring before power on.
1331
1332
1333 [[image:1656057369259-804.png]]
1334
1335
1336 [[image:1656057377943-564.png]]
1337
1338
1339 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1340
1341
1342 (((
1343 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1344 )))
1345
1346 (((
1347 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1348 )))
1349
1350 (((
1351 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1352 )))
1353
1354
1355 === 6.7.1 Feature ===
1356
1357
1358 (((
1359 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1360 )))
1361
1362 (((
1363 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1364 )))
1365
1366
1367 === 6.7.2 Specification ===
1368
1369
1370 * Input Power: DC 5 ~~ 24v
1371 * Interface: RS485
1372 * Response Spectrum: 400~~700nm
1373 * Measure range: 0 ~~ 2500μmol/m2•s
1374 * Resolution: 1μmol/m2•s
1375 * Accuracy: ±2%
1376 * Yearly Stability: ≤ ±2%
1377 * Working Temperature: -30℃ ~~ 75℃
1378 * Working Humidity: 10 ~~ 90%RH
1379 * Power Consumption: 3mA @ 12v
1380
1381
1382
1383
1384 === 6.7.3 Dimension ===
1385
1386
1387 [[image:1656057538793-888.png]]
1388
1389
1390 === 6.7.4 Pin Mapping ===
1391
1392
1393 [[image:1656057548116-203.png]]
1394
1395
1396 === 6.7.5 Installation Notice ===
1397
1398
1399 Do not power on while connect the cables. Double check the wiring before power on.
1400
1401
1402 [[image:1656057557191-895.png]]
1403
1404
1405 [[image:1656057565783-251.png]]
1406
1407
1408 = 7. FAQ =
1409
1410 == 7.1 What else do I need to purchase to build Weather Station? ==
1411
1412
1413 Below is the installation photo and structure:
1414
1415
1416 [[image:1656057598349-319.png]]
1417
1418
1419 [[image:1656057608049-693.png]]
1420
1421
1422 == 7.2 How to upgrade firmware for WSC1-L? ==
1423
1424
1425 (((
1426 Firmware Location & Change log:
1427
1428 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1429 )))
1430
1431
1432 (((
1433 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1434 )))
1435
1436
1437 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1438
1439
1440 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1441
1442
1443 == 7.4 Can I add my weather sensors? ==
1444
1445
1446 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1447
1448
1449 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1450
1451
1452 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1453
1454
1455 = 8. Trouble Shooting =
1456
1457 == 8.1 AT Command input doesn't work ==
1458
1459
1460 (((
1461 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1462 )))
1463
1464
1465 = 9. Order Info =
1466
1467 == 9.1 Main Process Unit ==
1468
1469
1470 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1471
1472 (% style="color:blue" %)**XX**(%%): The default frequency band
1473
1474 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1475 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1476 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1477 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1478 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1479 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1480 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1481 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1482
1483
1484
1485
1486 == 9.2 Sensors ==
1487
1488
1489 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1490 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1491 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1492 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1493 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1494 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1495 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1496 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1497 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1498 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1499
1500
1501
1502
1503 = 10. Support =
1504
1505
1506 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1507
1508 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1509
1510
1511
1512
1513 = 11. Appendix I: Field Installation Photo =
1514
1515
1516 [[image:1656058346362-132.png||height="685" width="732"]]
1517
1518 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1519
1520
1521
1522 (% style="color:blue" %)**Wind Speed/Direction**
1523
1524 [[image:1656058373174-421.png||height="356" width="731"]]
1525
1526
1527
1528 (% style="color:blue" %)**Total Solar Radiation sensor**
1529
1530 [[image:1656058397364-282.png||height="453" width="732"]]
1531
1532
1533
1534 (% style="color:blue" %)**PAR Sensor**
1535
1536 [[image:1656058416171-615.png]]
1537
1538
1539
1540 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1541
1542 [[image:1656058441194-827.png||height="672" width="523"]]
1543
1544
1545
1546 (% style="color:blue" %)**Rain / Snow Detect**
1547
1548 [[image:1656058451456-166.png]]
1549
1550
1551
1552 (% style="color:blue" %)**Rain Gauge**
1553
1554 [[image:1656058463455-569.png||height="499" width="550"]]
1555
1556