Version 105.27 by Xiaoling on 2023/06/16 09:44

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 0x01: EU868
197
198 0x02: US915
199
200 0x03: IN865
201
202 0x04: AU915
203
204 0x05: KZ865
205
206 0x06: RU864
207
208 0x07: AS923
209
210 0x08: AS923-1
211
212 0x09: AS923-2
213
214 0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
300 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:65px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:78px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
301 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
302 Speed: 0 ~~ 60m/s
303 Level: 0 ~~ 17
304 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
305 (((
306 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
307 )))
308
309 (((
310 0x02=2 (0x14: No Sensor, 0x15: Value Error)
311 )))
312 )))
313 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
314 Angel: 0 ~~ 360°
315 Direction: 16 positions
316 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
317 (((
318 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
319 )))
320
321 (((
322 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
323 )))
324 )))
325 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
326 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
327 )))
328 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
329 (((
330 0x00 (00) No Rain or snow detected
331 )))
332
333 (((
334 (0x02: No Sensor,0x03: Value Error)
335 )))
336 )))
337 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
338 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
339 )))
340 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
341 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
342 )))
343 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
344 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
345 )))
346 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
347 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
348 )))
349 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
350 0mm~100mm(Rainfall in the last 24 hours)
351 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
352 (((
353 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
354 )))
355
356 (((
357 (0x03FE: No Sensor,0x03FF: Value Error)
358 )))
359 )))
360 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
361 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
362 )))
363 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
364 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
365 )))
366 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
367 0~2500μmol/m^^2^^•s
368 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
369 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
370 )))
371 |(% style="width:103px" %)(((
372 Total Solar Radiation
373 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
374 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
375 )))
376
377 (((
378 Below is an example payload:  [[image:image-20220624140615-3.png]]
379 )))
380
381
382 (((
383 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
384 )))
385
386 * (((
387 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
388 )))
389
390 (((
391 Uplink 1:  [[image:image-20220624140735-4.png]]
392 )))
393
394
395 (((
396 Uplink 2:  [[image:image-20220624140842-5.png]]
397
398 )))
399
400 * (((
401 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
402 )))
403
404 (((
405 Uplink 1:  [[image:image-20220624141025-6.png]]
406 )))
407
408
409 Uplink 2:  [[image:image-20220624141100-7.png]]
410
411
412 === 2.4.3 Decoder in TTN V3 ===
413
414
415 (((
416 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
417 )))
418
419 (((
420 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
421 )))
422
423
424 (((
425 and put as below:
426 )))
427
428 [[image:1656051152438-578.png]]
429
430
431 == 2.5 Show data on Application Server ==
432
433
434 (((
435 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
436 )))
437
438 (((
439 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
440 )))
441
442 (((
443 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
444 )))
445
446 [[image:1656051197172-131.png]]
447
448
449
450 **Add TagoIO:**
451
452 [[image:1656051223585-631.png]]
453
454
455
456 **Authorization:**
457
458 [[image:1656051248318-368.png]]
459
460
461
462 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
463
464
465 [[image:1656051277767-168.png]]
466
467
468 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
469
470
471 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
472
473 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
474 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
475
476 There are two kinds of commands to configure WSC1-L, they are:
477
478 * (% style="color:#4472c4" %)**General Commands**.
479
480 These commands are to configure:
481
482 * General system settings like: uplink interval.
483 * LoRaWAN protocol & radio related command.
484
485 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
486
487 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
488
489
490 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
491
492 These commands only valid for WSC1-L, as below:
493
494
495 == 3.1 Set Transmit Interval Time ==
496
497
498 Feature: Change LoRaWAN End Node Transmit Interval.
499
500 (% style="color:#037691" %)**AT Command: AT+TDC**
501
502 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
503 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
504 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
505 30000
506 OK
507 the interval is 30000ms = 30s
508 )))
509 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
510 OK
511 Set transmit interval to 60000ms = 60 seconds
512 )))
513
514 (% style="color:#037691" %)**Downlink Command: 0x01**
515
516 Format: Command Code (0x01) followed by 3 bytes time value.
517
518 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
519
520 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
521 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
522
523
524
525
526 == 3.2 Set Emergency Mode ==
527
528
529 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
530
531 (% style="color:#037691" %)**AT Command:**
532
533 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
534 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
535 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
536 OK
537
538 )))
539 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
540 OK
541 )))
542
543 (% style="color:#037691" %)**Downlink Command:**
544
545 * 0xE101     Same as: AT+ALARMMOD=1
546 * 0xE100     Same as: AT+ALARMMOD=0
547
548
549
550
551 == 3.3 Add or Delete RS485 Sensor ==
552
553
554 (((
555 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
556 )))
557
558 (((
559 (% style="color:#037691" %)**AT Command: **
560 )))
561
562 (((
563 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
564 )))
565
566 * (((
567 Type_Code range:  A1 ~~ A4
568 )))
569 * (((
570 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
571 )))
572 * (((
573 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
574 )))
575 * (((
576 Read_Length:  RS485 response frame length supposed to receive. Max can receive
577 )))
578 * (((
579 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
580 )))
581 * (((
582 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
583 )))
584 * (((
585 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
586 )))
587
588 (((
589 **Example:**
590 )))
591
592 (((
593 User need to change external sensor use the type code as address code.
594 )))
595
596 (((
597 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
598 )))
599
600 [[image:image-20220624143553-10.png]]
601
602
603 The response frame of the sensor is as follows:
604
605 [[image:image-20220624143618-11.png]]
606
607
608 **Then the following parameters should be:**
609
610 * Address_Code range: A1
611 * Query_Length: 8
612 * Query_Command: A103000000019CAA
613 * Read_Length: 8
614 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
615 * has_CRC: 1
616 * timeout: 1500 (Fill in the test according to the actual situation)
617
618 **So the input command is:**
619
620 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
621
622
623 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
624
625 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
626 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
627 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
628
629 **Related commands:**
630
631 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
632
633 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
634
635
636 (% style="color:#037691" %)**Downlink Command:  **
637
638 **delete custom sensor A1:**
639
640 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
641
642 **Remove all custom sensors**
643
644 * 0xE5FF  
645
646
647
648
649
650 == 3.4 RS485 Test Command ==
651
652
653 (% style="color:#037691" %)**AT Command:**
654
655 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
656 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
657 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
658 Send command to 485 sensor. Range : no more than 10 bytes
659 )))|(% style="width:85px" %)OK
660
661 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
662
663 AT+RSWRITE=0103000001840A
664
665
666 (% style="color:#037691" %)**Downlink Command:**
667
668 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
669
670
671
672
673
674 == 3.5 RS485 response timeout ==
675
676
677 Feature: Set or get extended time to receive 485 sensor data.
678
679 (% style="color:#037691" %)**AT Command:**
680
681 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
682 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
683 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
684 Set response timeout to: Range : 0~~10000
685 )))|(% style="width:85px" %)OK
686
687 (% style="color:#037691" %)**Downlink Command:**
688
689 Format: Command Code (0xE0) followed by 3 bytes time value.
690
691 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
692
693 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
694 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
695
696
697
698
699
700 == 3.6 Set Sensor Type ==
701
702
703 (((
704 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
705 )))
706
707 (((
708 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
709
710 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
711 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
712 | |A4|A3|A2|A1| | |
713 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
714 | | |Solar Radiation|PAR|PM10|PM2.5|(((
715 Rain
716 Gauge
717 )))|(((
718 Air
719 Pressure
720 )))
721 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
722 |Humidity|Temperature|CO2|(((
723 Rain/Snow
724 Detect
725 )))|illuminance|(((
726 Wind
727 Direction
728 )))|Wind Speed|BAT
729 )))
730
731
732 (% style="color:#037691" %)**AT Command:**
733
734 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
735 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
736 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
737
738 Eg: The setting command **AT+STYPE=80221** means:
739
740 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
741 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
742 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
743 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
744 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
745 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
746 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
747
748 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
749
750
751 (% style="color:#037691" %)**Downlink Command:**
752
753 * 0xE400080221  Same as: AT+STYPE=80221
754
755 (% style="color:red" %)**Note:**
756
757 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
758
759
760 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
761
762
763 (% style="color:#037691" %)**AT Command:**
764
765 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
766 |=(% style="width: 172px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 175px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
767 |(% style="width:161px" %)(((
768 AT+RAINFALLSWITCH=1(Range: 1~~10)
769 )))|(% style="width:184px" %)(((
770 Set the registers read by the rain gauge
771 )))|(% style="width:85px" %)OK
772
773 (% style="color:#037691" %)**Downlink Command:**
774
775 * 0x1701  Same as: AT+RAINFALLSWITCH=1
776
777
778
779 = 4. Power consumption and battery =
780
781 == 4.1 Total Power Consumption ==
782
783
784 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
785
786
787 == 4.2 Reduce power consumption ==
788
789
790 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
791
792
793 == 4.3 Battery ==
794
795
796 (((
797 All sensors are only power by external power source. If external power source is off. All sensor won't work.
798 )))
799
800 (((
801 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
802 )))
803
804
805 = 5. Main Process Unit WSC1-L =
806
807 == 5.1 Features ==
808
809
810 * Wall Attachable.
811 * LoRaWAN v1.0.3 Class A protocol.
812 * RS485 / Modbus protocol
813 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
814 * AT Commands to change parameters
815 * Remote configure parameters via LoRaWAN Downlink
816 * Firmware upgradable via program port
817 * Powered by external 12v battery
818 * Back up rechargeable 1000mAh battery
819 * IP Rating: IP65
820 * Support default sensors or 3rd party RS485 sensors
821
822
823
824
825
826 == 5.2 Power Consumption ==
827
828
829 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
830
831
832 == 5.3 Storage & Operation Temperature ==
833
834
835 -20°C to +60°C
836
837
838 == 5.4 Pin Mapping ==
839
840
841 [[image:1656054149793-239.png]]
842
843
844 == 5.5 Mechanical ==
845
846
847 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
848
849
850 == 5.6 Connect to RS485 Sensors ==
851
852
853 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
854
855
856 [[image:1656054389031-379.png]]
857
858
859 Hardware Design for the Converter Board please see:
860
861 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
862
863
864 = 6. Weather Sensors =
865
866 == 6.1 Rain Gauge ~-~- WSS-01 ==
867
868
869 (((
870 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
871 )))
872
873 (((
874 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
875 )))
876
877 (((
878 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
879 )))
880
881 (((
882 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
883 )))
884
885 (((
886 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
887 )))
888
889
890 === 6.1.1 Feature ===
891
892
893 * RS485 Rain Gauge
894 * Small dimension, easy to install
895 * Vents under funnel, avoid leaf or other things to avoid rain flow.
896 * ABS enclosure.
897 * Horizontal adjustable.
898
899
900
901
902
903 === 6.1.2 Specification ===
904
905
906 * Resolution: 0.2mm
907 * Accuracy: ±3%
908 * Range: 0 ~~ 100mm
909 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
910 * Input Power: DC 5 ~~ 24v
911 * Interface: RS485
912 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
913 * Working Humidity: <100% (no dewing)
914 * Power Consumption: 4mA @ 12v.
915
916
917
918
919 === 6.1.3 Dimension ===
920
921
922 [[image:1656054957406-980.png]]
923
924
925 === 6.1.4 Pin Mapping ===
926
927
928 [[image:1656054972828-692.png]]
929
930
931 === 6.1.5 Installation Notice ===
932
933
934 (((
935 Do not power on while connect the cables. Double check the wiring before power on.
936 )))
937
938 (((
939 Installation Photo as reference:
940 )))
941
942
943 (((
944 (% style="color:#4472c4" %)** Install on Ground:**
945 )))
946
947 (((
948 WSS-01 Rain Gauge include screws so can install in ground directly .
949 )))
950
951
952 (((
953 (% style="color:#4472c4" %)** Install on pole:**
954 )))
955
956 (((
957 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
958 )))
959
960 [[image:image-20220624152218-1.png||height="526" width="276"]]
961
962 WS-K2: Bracket Kit for Pole installation
963
964
965 WSSC-K2 dimension document, please see:
966
967 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
968
969
970 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
971
972
973 [[image:1656055444035-179.png]]
974
975
976 (((
977 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
978 )))
979
980 (((
981 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
982 )))
983
984 (((
985 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
986 )))
987
988
989 === 6.2.1 Feature ===
990
991
992 * RS485 wind speed / direction sensor
993 * PC enclosure, resist corrosion
994
995
996
997
998
999 === 6.2.2 Specification ===
1000
1001
1002 * Wind speed range: 0 ~~ 60m/s
1003 * Wind direction range: 0 ~~ 360°
1004 * Start wind speed: ≤0.3 m/s
1005 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1006 * Input Power: DC 5 ~~ 24v
1007 * Interface: RS485
1008 * Working Temperature: -30℃ ~~ 70℃
1009 * Working Humidity: <100% (no dewing)
1010 * Power Consumption: 13mA ~~ 12v.
1011 * Cable Length: 2 meters
1012
1013
1014
1015
1016
1017 === 6.2.3 Dimension ===
1018
1019
1020 [[image:image-20220624152813-2.png]]
1021
1022
1023 === 6.2.4 Pin Mapping ===
1024
1025
1026 [[image:1656056281231-994.png]]
1027
1028
1029 === 6.2.5  Angle Mapping ===
1030
1031
1032 [[image:1656056303845-585.png]]
1033
1034
1035 === 6.2.6  Installation Notice ===
1036
1037
1038 (((
1039 Do not power on while connect the cables. Double check the wiring before power on.
1040 )))
1041
1042 (((
1043 The sensor must be installed with below direction, towards North.
1044
1045
1046 )))
1047
1048 [[image:image-20220624153901-3.png]]
1049
1050
1051 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1052
1053
1054 (((
1055 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1056 )))
1057
1058 (((
1059 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1060 )))
1061
1062 (((
1063 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1064 )))
1065
1066
1067 === 6.3.1 Feature ===
1068
1069
1070 * RS485 CO2, PM2.5, PM10 sensor
1071 * NDIR to measure CO2 with Internal Temperature Compensation
1072 * Laser Beam Scattering to PM2.5 and PM10
1073
1074
1075
1076
1077 === 6.3.2 Specification ===
1078
1079
1080 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1081 * CO2 resolution: 1ppm
1082 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1083 * PM2.5/PM10 resolution: 1μg/m3
1084 * Input Power: DC 7 ~~ 24v
1085 * Preheat time: 3min
1086 * Interface: RS485
1087 * Working Temperature:
1088 ** CO2: 0℃ ~~ 50℃;
1089 ** PM2.5/PM10: -30 ~~ 50℃
1090 * Working Humidity:
1091 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1092 ** CO2: 0 ~~ 95%RH
1093 * Power Consumption: 50mA@ 12v.
1094
1095
1096
1097
1098
1099 === 6.3.3 Dimension ===
1100
1101
1102 [[image:1656056708366-230.png]]
1103
1104
1105 === 6.3.4 Pin Mapping ===
1106
1107
1108 [[image:1656056722648-743.png]]
1109
1110
1111 === 6.3.5 Installation Notice ===
1112
1113
1114 Do not power on while connect the cables. Double check the wiring before power on.
1115
1116
1117 [[image:1656056751153-304.png]]
1118
1119
1120 [[image:1656056766224-773.png]]
1121
1122
1123 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1124
1125
1126 (((
1127 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1128 )))
1129
1130 (((
1131 WSS-04 has auto heating feature, this ensures measurement more reliable.
1132 )))
1133
1134 (((
1135 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1136 )))
1137
1138
1139 === 6.4.1 Feature ===
1140
1141
1142 * RS485 Rain/Snow detect sensor
1143 * Surface heating to dry
1144 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1145
1146
1147
1148
1149 === 6.4.2 Specification ===
1150
1151
1152 * Detect if there is rain or snow
1153 * Input Power: DC 12 ~~ 24v
1154 * Interface: RS485
1155 * Working Temperature: -30℃ ~~ 70℃
1156 * Working Humidity: 10 ~~ 90%RH
1157 * Power Consumption:
1158 ** No heating: 12mA @ 12v,
1159 ** heating: 94ma @ 12v.
1160
1161
1162
1163
1164 === 6.4.3 Dimension ===
1165
1166
1167 [[image:1656056844782-155.png]]
1168
1169
1170 === 6.4.4 Pin Mapping ===
1171
1172
1173 [[image:1656056855590-754.png]]
1174
1175
1176 === 6.4.5 Installation Notice ===
1177
1178
1179 Do not power on while connect the cables. Double check the wiring before power on.
1180
1181 (((
1182 Install with 15°degree.
1183 )))
1184
1185 [[image:1656056873783-780.png]]
1186
1187
1188 [[image:1656056883736-804.png]]
1189
1190
1191 === 6.4.6 Heating ===
1192
1193
1194 (((
1195 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1196 )))
1197
1198
1199 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1200
1201
1202 (((
1203 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1204 )))
1205
1206 (((
1207 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1208 )))
1209
1210
1211 === 6.5.1 Feature ===
1212
1213
1214 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1215
1216
1217
1218
1219 === 6.5.2 Specification ===
1220
1221
1222 * Input Power: DC 12 ~~ 24v
1223 * Interface: RS485
1224 * Temperature Sensor Spec:
1225 ** Range: -30 ~~ 70℃
1226 ** resolution 0.1℃
1227 ** Accuracy: ±0.5℃
1228 * Humidity Sensor Spec:
1229 ** Range: 0 ~~ 100% RH
1230 ** resolution 0.1 %RH
1231 ** Accuracy: 3% RH
1232 * Pressure Sensor Spec:
1233 ** Range: 10 ~~ 1100hPa
1234 ** Resolution: 0.1hPa
1235 ** Accuracy: ±0.1hPa
1236 * Illuminate sensor:
1237 ** Range: 0~~2/20/200kLux
1238 ** Resolution: 10 Lux
1239 ** Accuracy: ±3%FS
1240 * Working Temperature: -30℃ ~~ 70℃
1241 * Working Humidity: 10 ~~ 90%RH
1242 * Power Consumption: 4mA @ 12v
1243
1244
1245
1246
1247 === 6.5.3 Dimension ===
1248
1249
1250 [[image:1656057170639-522.png]]
1251
1252
1253 === 6.5.4 Pin Mapping ===
1254
1255
1256 [[image:1656057181899-910.png]]
1257
1258
1259 === 6.5.5 Installation Notice ===
1260
1261
1262 Do not power on while connect the cables. Double check the wiring before power on.
1263
1264 [[image:1656057199955-514.png]]
1265
1266
1267 [[image:1656057212438-475.png]]
1268
1269
1270 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1271
1272
1273 (((
1274 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1275 )))
1276
1277 (((
1278 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1279 )))
1280
1281 (((
1282 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1283 )))
1284
1285
1286 === 6.6.1 Feature ===
1287
1288
1289 * RS485 Total Solar Radiation sensor
1290 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1291 * Measure Reflected Radiation if sense area towards ground.
1292
1293
1294
1295
1296
1297 === 6.6.2 Specification ===
1298
1299
1300 * Input Power: DC 5 ~~ 24v
1301 * Interface: RS485
1302 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1303 * Measure strength range: 0 ~~ 2000W/m2
1304 * Resolution: 0.1W/m2
1305 * Accuracy: ±3%
1306 * Yearly Stability: ≤±2%
1307 * Cosine response: ≤7% (@ Sun angle 10°)
1308 * Temperature Effect: ±2%(-10℃ ~~ 40℃)
1309 * Working Temperature: -40℃ ~~ 70℃
1310 * Working Humidity: 10 ~~ 90%RH
1311 * Power Consumption: 4mA @ 12v
1312
1313
1314
1315
1316
1317 === 6.6.3 Dimension ===
1318
1319
1320 [[image:1656057348695-898.png]]
1321
1322
1323 === 6.6.4 Pin Mapping ===
1324
1325
1326 [[image:1656057359343-744.png]]
1327
1328
1329 === 6.6.5 Installation Notice ===
1330
1331
1332 Do not power on while connect the cables. Double check the wiring before power on.
1333
1334
1335 [[image:1656057369259-804.png]]
1336
1337
1338 [[image:1656057377943-564.png]]
1339
1340
1341 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1342
1343
1344 (((
1345 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1346 )))
1347
1348 (((
1349 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1350 )))
1351
1352 (((
1353 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1354 )))
1355
1356
1357 === 6.7.1 Feature ===
1358
1359
1360 (((
1361 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1362 )))
1363
1364 (((
1365 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1366 )))
1367
1368
1369 === 6.7.2 Specification ===
1370
1371
1372 * Input Power: DC 5 ~~ 24v
1373 * Interface: RS485
1374 * Response Spectrum: 400~~700nm
1375 * Measure range: 0 ~~ 2500μmol/m2•s
1376 * Resolution: 1μmol/m2•s
1377 * Accuracy: ±2%
1378 * Yearly Stability: ≤ ±2%
1379 * Working Temperature: -30℃ ~~ 75℃
1380 * Working Humidity: 10 ~~ 90%RH
1381 * Power Consumption: 3mA @ 12v
1382
1383
1384
1385
1386 === 6.7.3 Dimension ===
1387
1388
1389 [[image:1656057538793-888.png]]
1390
1391
1392 === 6.7.4 Pin Mapping ===
1393
1394
1395 [[image:1656057548116-203.png]]
1396
1397
1398 === 6.7.5 Installation Notice ===
1399
1400
1401 Do not power on while connect the cables. Double check the wiring before power on.
1402
1403
1404 [[image:1656057557191-895.png]]
1405
1406
1407 [[image:1656057565783-251.png]]
1408
1409
1410 = 7. FAQ =
1411
1412 == 7.1 What else do I need to purchase to build Weather Station? ==
1413
1414
1415 Below is the installation photo and structure:
1416
1417
1418 [[image:1656057598349-319.png]]
1419
1420
1421 [[image:1656057608049-693.png]]
1422
1423
1424 == 7.2 How to upgrade firmware for WSC1-L? ==
1425
1426
1427 (((
1428 Firmware Location & Change log:
1429
1430 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1431 )))
1432
1433
1434 (((
1435 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1436 )))
1437
1438
1439 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1440
1441
1442 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1443
1444
1445 == 7.4 Can I add my weather sensors? ==
1446
1447
1448 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1449
1450
1451 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1452
1453
1454 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1455
1456
1457 = 8. Trouble Shooting =
1458
1459 == 8.1 AT Command input doesn't work ==
1460
1461
1462 (((
1463 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1464 )))
1465
1466
1467 = 9. Order Info =
1468
1469 == 9.1 Main Process Unit ==
1470
1471
1472 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1473
1474 (% style="color:blue" %)**XX**(%%): The default frequency band
1475
1476 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1477 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1478 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1479 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1480 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1481 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1482 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1483 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1484
1485 == 9.2 Sensors ==
1486
1487
1488 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1489 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1490 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1491 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1492 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1493 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1494 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1495 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1496 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1497 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1498
1499 = 10. Support =
1500
1501
1502 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1503
1504 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1505
1506 = 11. Appendix I: Field Installation Photo =
1507
1508
1509 [[image:1656058346362-132.png||height="685" width="732"]]
1510
1511 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1512
1513
1514
1515 (% style="color:blue" %)**Wind Speed/Direction**
1516
1517 [[image:1656058373174-421.png||height="356" width="731"]]
1518
1519
1520
1521 (% style="color:blue" %)**Total Solar Radiation sensor**
1522
1523 [[image:1656058397364-282.png||height="453" width="732"]]
1524
1525
1526
1527 (% style="color:blue" %)**PAR Sensor**
1528
1529 [[image:1656058416171-615.png]]
1530
1531
1532
1533 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1534
1535 [[image:1656058441194-827.png||height="672" width="523"]]
1536
1537
1538
1539 (% style="color:blue" %)**Rain / Snow Detect**
1540
1541 [[image:1656058451456-166.png]]
1542
1543
1544
1545 (% style="color:blue" %)**Rain Gauge**
1546
1547 [[image:1656058463455-569.png||height="499" width="550"]]
1548
1549
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0