Version 105.25 by Xiaoling on 2023/06/16 09:40

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 0x01: EU868
197
198 0x02: US915
199
200 0x03: IN865
201
202 0x04: AU915
203
204 0x05: KZ865
205
206 0x06: RU864
207
208 0x07: AS923
209
210 0x08: AS923-1
211
212 0x09: AS923-2
213
214 0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
300 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:65px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:78px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
301 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
302 (((
303 Speed: 0 ~~ 60m/s
304 )))
305
306 (((
307 Level: 0 ~~ 17
308 )))
309 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
310 (((
311 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
312 )))
313
314 (((
315 0x02=2 (0x14: No Sensor, 0x15: Value Error)
316 )))
317 )))
318 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
319 (((
320 Angel: 0 ~~ 360°
321 )))
322
323 (((
324 Direction: 16 positions
325 )))
326 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
327 (((
328 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
329 )))
330
331 (((
332 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
333 )))
334 )))
335 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
336 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
337 )))
338 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
339 (((
340 0x00 (00) No Rain or snow detected
341 )))
342
343 (((
344 (0x02: No Sensor,0x03: Value Error)
345 )))
346 )))
347 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
348 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
349 )))
350 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
352 )))
353 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
354 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
355 )))
356 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
357 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
358 )))
359 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
360 0mm~100mm(Rainfall in the last 24 hours)
361 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 (((
363 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
364 )))
365
366 (((
367 (0x03FE: No Sensor,0x03FF: Value Error)
368 )))
369 )))
370 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
371 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
372 )))
373 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
374 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
375 )))
376 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
377 0~2500μmol/m^^2^^•s
378 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
379 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
380 )))
381 |(% style="width:103px" %)(((
382 Total Solar Radiation
383 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
384 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
385 )))
386
387 (((
388 Below is an example payload:  [[image:image-20220624140615-3.png]]
389 )))
390
391
392 (((
393 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
394 )))
395
396 * (((
397 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
398 )))
399
400 (((
401 Uplink 1:  [[image:image-20220624140735-4.png]]
402 )))
403
404
405 (((
406 Uplink 2:  [[image:image-20220624140842-5.png]]
407
408 )))
409
410 * (((
411 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
412 )))
413
414 (((
415 Uplink 1:  [[image:image-20220624141025-6.png]]
416 )))
417
418
419 Uplink 2:  [[image:image-20220624141100-7.png]]
420
421
422 === 2.4.3 Decoder in TTN V3 ===
423
424
425 (((
426 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
427 )))
428
429 (((
430 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
431 )))
432
433
434 (((
435 and put as below:
436 )))
437
438 [[image:1656051152438-578.png]]
439
440
441 == 2.5 Show data on Application Server ==
442
443
444 (((
445 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
446 )))
447
448 (((
449 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
450 )))
451
452 (((
453 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
454 )))
455
456 [[image:1656051197172-131.png]]
457
458
459
460 **Add TagoIO:**
461
462 [[image:1656051223585-631.png]]
463
464
465
466 **Authorization:**
467
468 [[image:1656051248318-368.png]]
469
470
471
472 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
473
474
475 [[image:1656051277767-168.png]]
476
477
478 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
479
480
481 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
482
483 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
484 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
485
486 There are two kinds of commands to configure WSC1-L, they are:
487
488 * (% style="color:#4472c4" %)**General Commands**.
489
490 These commands are to configure:
491
492 * General system settings like: uplink interval.
493 * LoRaWAN protocol & radio related command.
494
495 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
496
497 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
498
499
500 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
501
502 These commands only valid for WSC1-L, as below:
503
504
505 == 3.1 Set Transmit Interval Time ==
506
507
508 Feature: Change LoRaWAN End Node Transmit Interval.
509
510 (% style="color:#037691" %)**AT Command: AT+TDC**
511
512 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
513 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
514 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
515 30000
516 OK
517 the interval is 30000ms = 30s
518 )))
519 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
520 OK
521 Set transmit interval to 60000ms = 60 seconds
522 )))
523
524 (% style="color:#037691" %)**Downlink Command: 0x01**
525
526 Format: Command Code (0x01) followed by 3 bytes time value.
527
528 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
529
530 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
531 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
532
533
534
535
536 == 3.2 Set Emergency Mode ==
537
538
539 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
540
541 (% style="color:#037691" %)**AT Command:**
542
543 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
544 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
545 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
546 OK
547
548 )))
549 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
550 OK
551 )))
552
553 (% style="color:#037691" %)**Downlink Command:**
554
555 * 0xE101     Same as: AT+ALARMMOD=1
556 * 0xE100     Same as: AT+ALARMMOD=0
557
558
559
560
561 == 3.3 Add or Delete RS485 Sensor ==
562
563
564 (((
565 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
566 )))
567
568 (((
569 (% style="color:#037691" %)**AT Command: **
570 )))
571
572 (((
573 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
574 )))
575
576 * (((
577 Type_Code range:  A1 ~~ A4
578 )))
579 * (((
580 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
581 )))
582 * (((
583 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
584 )))
585 * (((
586 Read_Length:  RS485 response frame length supposed to receive. Max can receive
587 )))
588 * (((
589 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
590 )))
591 * (((
592 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
593 )))
594 * (((
595 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
596 )))
597
598 (((
599 **Example:**
600 )))
601
602 (((
603 User need to change external sensor use the type code as address code.
604 )))
605
606 (((
607 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
608 )))
609
610 [[image:image-20220624143553-10.png]]
611
612
613 The response frame of the sensor is as follows:
614
615 [[image:image-20220624143618-11.png]]
616
617
618 **Then the following parameters should be:**
619
620 * Address_Code range: A1
621 * Query_Length: 8
622 * Query_Command: A103000000019CAA
623 * Read_Length: 8
624 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
625 * has_CRC: 1
626 * timeout: 1500 (Fill in the test according to the actual situation)
627
628 **So the input command is:**
629
630 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
631
632
633 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
634
635 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
636 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
637 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
638
639 **Related commands:**
640
641 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
642
643 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
644
645
646 (% style="color:#037691" %)**Downlink Command:  **
647
648 **delete custom sensor A1:**
649
650 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
651
652 **Remove all custom sensors**
653
654 * 0xE5FF  
655
656
657
658
659
660 == 3.4 RS485 Test Command ==
661
662
663 (% style="color:#037691" %)**AT Command:**
664
665 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
666 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
667 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
668 Send command to 485 sensor. Range : no more than 10 bytes
669 )))|(% style="width:85px" %)OK
670
671 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
672
673 AT+RSWRITE=0103000001840A
674
675
676 (% style="color:#037691" %)**Downlink Command:**
677
678 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
679
680
681
682
683
684 == 3.5 RS485 response timeout ==
685
686
687 Feature: Set or get extended time to receive 485 sensor data.
688
689 (% style="color:#037691" %)**AT Command:**
690
691 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
692 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
693 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
694 Set response timeout to: Range : 0~~10000
695 )))|(% style="width:85px" %)OK
696
697 (% style="color:#037691" %)**Downlink Command:**
698
699 Format: Command Code (0xE0) followed by 3 bytes time value.
700
701 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
702
703 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
704 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
705
706
707
708
709
710 == 3.6 Set Sensor Type ==
711
712
713 (((
714 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
715 )))
716
717 (((
718 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
719
720 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
721 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
722 | |A4|A3|A2|A1| | |
723 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
724 | | |Solar Radiation|PAR|PM10|PM2.5|(((
725 Rain
726 Gauge
727 )))|(((
728 Air
729 Pressure
730 )))
731 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
732 |Humidity|Temperature|CO2|(((
733 Rain/Snow
734 Detect
735 )))|illuminance|(((
736 Wind
737 Direction
738 )))|Wind Speed|BAT
739 )))
740
741
742 (% style="color:#037691" %)**AT Command:**
743
744 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
745 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
746 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
747
748 Eg: The setting command **AT+STYPE=80221** means:
749
750 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
751 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
752 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
753 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
754 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
755 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
756 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
757
758 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
759
760
761 (% style="color:#037691" %)**Downlink Command:**
762
763 * 0xE400080221  Same as: AT+STYPE=80221
764
765 (% style="color:red" %)**Note:**
766
767 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
768
769
770 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
771
772
773 (% style="color:#037691" %)**AT Command:**
774
775 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
776 |=(% style="width: 172px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 175px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
777 |(% style="width:161px" %)(((
778 AT+RAINFALLSWITCH=1(Range: 1~~10)
779 )))|(% style="width:184px" %)(((
780 Set the registers read by the rain gauge
781 )))|(% style="width:85px" %)OK
782
783 (% style="color:#037691" %)**Downlink Command:**
784
785 * 0x1701  Same as: AT+RAINFALLSWITCH=1
786
787
788
789 = 4. Power consumption and battery =
790
791 == 4.1 Total Power Consumption ==
792
793
794 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
795
796
797 == 4.2 Reduce power consumption ==
798
799
800 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
801
802
803 == 4.3 Battery ==
804
805
806 (((
807 All sensors are only power by external power source. If external power source is off. All sensor won't work.
808 )))
809
810 (((
811 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
812 )))
813
814
815 = 5. Main Process Unit WSC1-L =
816
817 == 5.1 Features ==
818
819
820 * Wall Attachable.
821 * LoRaWAN v1.0.3 Class A protocol.
822 * RS485 / Modbus protocol
823 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
824 * AT Commands to change parameters
825 * Remote configure parameters via LoRaWAN Downlink
826 * Firmware upgradable via program port
827 * Powered by external 12v battery
828 * Back up rechargeable 1000mAh battery
829 * IP Rating: IP65
830 * Support default sensors or 3rd party RS485 sensors
831
832
833
834
835
836 == 5.2 Power Consumption ==
837
838
839 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
840
841
842 == 5.3 Storage & Operation Temperature ==
843
844
845 -20°C to +60°C
846
847
848 == 5.4 Pin Mapping ==
849
850
851 [[image:1656054149793-239.png]]
852
853
854 == 5.5 Mechanical ==
855
856
857 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
858
859
860 == 5.6 Connect to RS485 Sensors ==
861
862
863 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
864
865
866 [[image:1656054389031-379.png]]
867
868
869 Hardware Design for the Converter Board please see:
870
871 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
872
873
874 = 6. Weather Sensors =
875
876 == 6.1 Rain Gauge ~-~- WSS-01 ==
877
878
879 (((
880 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
881 )))
882
883 (((
884 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
885 )))
886
887 (((
888 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
889 )))
890
891 (((
892 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
893 )))
894
895 (((
896 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
897 )))
898
899
900 === 6.1.1 Feature ===
901
902
903 * RS485 Rain Gauge
904 * Small dimension, easy to install
905 * Vents under funnel, avoid leaf or other things to avoid rain flow.
906 * ABS enclosure.
907 * Horizontal adjustable.
908
909
910
911
912
913 === 6.1.2 Specification ===
914
915
916 * Resolution: 0.2mm
917 * Accuracy: ±3%
918 * Range: 0 ~~ 100mm
919 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
920 * Input Power: DC 5 ~~ 24v
921 * Interface: RS485
922 * Working Temperature: 0℃ ~~ 70℃ ( incorrect below 0 degree, because water become ICE)
923 * Working Humidity: <100% (no dewing)
924 * Power Consumption: 4mA @ 12v.
925
926
927
928
929 === 6.1.3 Dimension ===
930
931
932 [[image:1656054957406-980.png]]
933
934
935 === 6.1.4 Pin Mapping ===
936
937
938 [[image:1656054972828-692.png]]
939
940
941 === 6.1.5 Installation Notice ===
942
943
944 (((
945 Do not power on while connect the cables. Double check the wiring before power on.
946 )))
947
948 (((
949 Installation Photo as reference:
950 )))
951
952
953 (((
954 (% style="color:#4472c4" %)** Install on Ground:**
955 )))
956
957 (((
958 WSS-01 Rain Gauge include screws so can install in ground directly .
959 )))
960
961
962 (((
963 (% style="color:#4472c4" %)** Install on pole:**
964 )))
965
966 (((
967 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
968 )))
969
970 [[image:image-20220624152218-1.png||height="526" width="276"]]
971
972 WS-K2: Bracket Kit for Pole installation
973
974
975 WSSC-K2 dimension document, please see:
976
977 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
978
979
980 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
981
982
983 [[image:1656055444035-179.png]]
984
985
986 (((
987 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
988 )))
989
990 (((
991 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
992 )))
993
994 (((
995 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
996 )))
997
998
999 === 6.2.1 Feature ===
1000
1001
1002 * RS485 wind speed / direction sensor
1003 * PC enclosure, resist corrosion
1004
1005
1006
1007
1008
1009 === 6.2.2 Specification ===
1010
1011
1012 * Wind speed range: 0 ~~ 60m/s
1013 * Wind direction range: 0 ~~ 360°
1014 * Start wind speed: ≤0.3 m/s
1015 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1016 * Input Power: DC 5 ~~ 24v
1017 * Interface: RS485
1018 * Working Temperature: -30℃ ~~ 70℃
1019 * Working Humidity: <100% (no dewing)
1020 * Power Consumption: 13mA ~~ 12v.
1021 * Cable Length: 2 meters
1022
1023
1024
1025
1026
1027 === 6.2.3 Dimension ===
1028
1029
1030 [[image:image-20220624152813-2.png]]
1031
1032
1033 === 6.2.4 Pin Mapping ===
1034
1035
1036 [[image:1656056281231-994.png]]
1037
1038
1039 === 6.2.5  Angle Mapping ===
1040
1041
1042 [[image:1656056303845-585.png]]
1043
1044
1045 === 6.2.6  Installation Notice ===
1046
1047
1048 (((
1049 Do not power on while connect the cables. Double check the wiring before power on.
1050 )))
1051
1052 (((
1053 The sensor must be installed with below direction, towards North.
1054
1055
1056 )))
1057
1058 [[image:image-20220624153901-3.png]]
1059
1060
1061 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1062
1063
1064 (((
1065 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1066 )))
1067
1068 (((
1069 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1070 )))
1071
1072 (((
1073 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1074 )))
1075
1076
1077 === 6.3.1 Feature ===
1078
1079
1080 * RS485 CO2, PM2.5, PM10 sensor
1081 * NDIR to measure CO2 with Internal Temperature Compensation
1082 * Laser Beam Scattering to PM2.5 and PM10
1083
1084
1085
1086
1087 === 6.3.2 Specification ===
1088
1089
1090 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1091 * CO2 resolution: 1ppm
1092 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1093 * PM2.5/PM10 resolution: 1μg/m3
1094 * Input Power: DC 7 ~~ 24v
1095 * Preheat time: 3min
1096 * Interface: RS485
1097 * Working Temperature:
1098 ** CO2: 0℃ ~~ 50℃;
1099 ** PM2.5/PM10: -30 ~~ 50℃
1100 * Working Humidity:
1101 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1102 ** CO2: 0 ~~ 95%RH
1103 * Power Consumption: 50mA@ 12v.
1104
1105
1106
1107
1108
1109 === 6.3.3 Dimension ===
1110
1111
1112 [[image:1656056708366-230.png]]
1113
1114
1115 === 6.3.4 Pin Mapping ===
1116
1117
1118 [[image:1656056722648-743.png]]
1119
1120
1121 === 6.3.5 Installation Notice ===
1122
1123
1124 Do not power on while connect the cables. Double check the wiring before power on.
1125
1126
1127 [[image:1656056751153-304.png]]
1128
1129
1130 [[image:1656056766224-773.png]]
1131
1132
1133 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1134
1135
1136 (((
1137 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1138 )))
1139
1140 (((
1141 WSS-04 has auto heating feature, this ensures measurement more reliable.
1142 )))
1143
1144 (((
1145 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1146 )))
1147
1148
1149 === 6.4.1 Feature ===
1150
1151
1152 * RS485 Rain/Snow detect sensor
1153 * Surface heating to dry
1154 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1155
1156
1157
1158
1159 === 6.4.2 Specification ===
1160
1161
1162 * Detect if there is rain or snow
1163 * Input Power: DC 12 ~~ 24v
1164 * Interface: RS485
1165 * Working Temperature: -30℃ ~~ 70℃
1166 * Working Humidity: 10 ~~ 90%RH
1167 * Power Consumption:
1168 ** No heating: 12mA @ 12v,
1169 ** heating: 94ma @ 12v.
1170
1171
1172
1173
1174 === 6.4.3 Dimension ===
1175
1176
1177 [[image:1656056844782-155.png]]
1178
1179
1180 === 6.4.4 Pin Mapping ===
1181
1182
1183 [[image:1656056855590-754.png]]
1184
1185
1186 === 6.4.5 Installation Notice ===
1187
1188
1189 Do not power on while connect the cables. Double check the wiring before power on.
1190
1191 (((
1192 Install with 15°degree.
1193 )))
1194
1195 [[image:1656056873783-780.png]]
1196
1197
1198 [[image:1656056883736-804.png]]
1199
1200
1201 === 6.4.6 Heating ===
1202
1203
1204 (((
1205 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1206 )))
1207
1208
1209 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1210
1211
1212 (((
1213 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1214 )))
1215
1216 (((
1217 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1218 )))
1219
1220
1221 === 6.5.1 Feature ===
1222
1223
1224 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1225
1226
1227
1228
1229 === 6.5.2 Specification ===
1230
1231
1232 * Input Power: DC 12 ~~ 24v
1233 * Interface: RS485
1234 * Temperature Sensor Spec:
1235 ** Range: -30 ~~ 70℃
1236 ** resolution 0.1℃
1237 ** Accuracy: ±0.5℃
1238 * Humidity Sensor Spec:
1239 ** Range: 0 ~~ 100% RH
1240 ** resolution 0.1 %RH
1241 ** Accuracy: 3% RH
1242 * Pressure Sensor Spec:
1243 ** Range: 10 ~~ 1100hPa
1244 ** Resolution: 0.1hPa
1245 ** Accuracy: ±0.1hPa
1246 * Illuminate sensor:
1247 ** Range: 0~~2/20/200kLux
1248 ** Resolution: 10 Lux
1249 ** Accuracy: ±3%FS
1250 * Working Temperature: -30℃ ~~ 70℃
1251 * Working Humidity: 10 ~~ 90%RH
1252 * Power Consumption: 4mA @ 12v
1253
1254
1255
1256
1257 === 6.5.3 Dimension ===
1258
1259
1260 [[image:1656057170639-522.png]]
1261
1262
1263 === 6.5.4 Pin Mapping ===
1264
1265
1266 [[image:1656057181899-910.png]]
1267
1268
1269 === 6.5.5 Installation Notice ===
1270
1271
1272 Do not power on while connect the cables. Double check the wiring before power on.
1273
1274 [[image:1656057199955-514.png]]
1275
1276
1277 [[image:1656057212438-475.png]]
1278
1279
1280 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1281
1282
1283 (((
1284 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1285 )))
1286
1287 (((
1288 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1289 )))
1290
1291 (((
1292 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1293 )))
1294
1295
1296 === 6.6.1 Feature ===
1297
1298
1299 * RS485 Total Solar Radiation sensor
1300 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1301 * Measure Reflected Radiation if sense area towards ground.
1302
1303
1304
1305
1306
1307 === 6.6.2 Specification ===
1308
1309
1310 * Input Power: DC 5 ~~ 24v
1311 * Interface: RS485
1312 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1313 * Measure strength range: 0 ~~ 2000W/m2
1314 * Resolution: 0.1W/m2
1315 * Accuracy: ±3%
1316 * Yearly Stability: ≤±2%
1317 * Cosine response: ≤7% (@ Sun angle 10°)
1318 * Temperature Effect: ±2%(-10℃ ~~ 40℃)
1319 * Working Temperature: -40℃ ~~ 70℃
1320 * Working Humidity: 10 ~~ 90%RH
1321 * Power Consumption: 4mA @ 12v
1322
1323
1324
1325
1326
1327 === 6.6.3 Dimension ===
1328
1329
1330 [[image:1656057348695-898.png]]
1331
1332
1333 === 6.6.4 Pin Mapping ===
1334
1335
1336 [[image:1656057359343-744.png]]
1337
1338
1339 === 6.6.5 Installation Notice ===
1340
1341
1342 Do not power on while connect the cables. Double check the wiring before power on.
1343
1344
1345 [[image:1656057369259-804.png]]
1346
1347
1348 [[image:1656057377943-564.png]]
1349
1350
1351 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1352
1353
1354 (((
1355 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1356 )))
1357
1358 (((
1359 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1360 )))
1361
1362 (((
1363 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1364 )))
1365
1366
1367 === 6.7.1 Feature ===
1368
1369
1370 (((
1371 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1372 )))
1373
1374 (((
1375 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1376 )))
1377
1378
1379 === 6.7.2 Specification ===
1380
1381
1382 * Input Power: DC 5 ~~ 24v
1383 * Interface: RS485
1384 * Response Spectrum: 400~~700nm
1385 * Measure range: 0 ~~ 2500μmol/m2•s
1386 * Resolution: 1μmol/m2•s
1387 * Accuracy: ±2%
1388 * Yearly Stability: ≤ ±2%
1389 * Working Temperature: -30℃ ~~ 75℃
1390 * Working Humidity: 10 ~~ 90%RH
1391 * Power Consumption: 3mA @ 12v
1392
1393
1394
1395
1396 === 6.7.3 Dimension ===
1397
1398
1399 [[image:1656057538793-888.png]]
1400
1401
1402 === 6.7.4 Pin Mapping ===
1403
1404
1405 [[image:1656057548116-203.png]]
1406
1407
1408 === 6.7.5 Installation Notice ===
1409
1410
1411 Do not power on while connect the cables. Double check the wiring before power on.
1412
1413
1414 [[image:1656057557191-895.png]]
1415
1416
1417 [[image:1656057565783-251.png]]
1418
1419
1420 = 7. FAQ =
1421
1422 == 7.1 What else do I need to purchase to build Weather Station? ==
1423
1424
1425 Below is the installation photo and structure:
1426
1427
1428 [[image:1656057598349-319.png]]
1429
1430
1431 [[image:1656057608049-693.png]]
1432
1433
1434 == 7.2 How to upgrade firmware for WSC1-L? ==
1435
1436
1437 (((
1438 Firmware Location & Change log:
1439
1440 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1441 )))
1442
1443
1444 (((
1445 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1446 )))
1447
1448
1449 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1450
1451
1452 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1453
1454
1455 == 7.4 Can I add my weather sensors? ==
1456
1457
1458 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1459
1460
1461 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1462
1463
1464 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1465
1466
1467 = 8. Trouble Shooting =
1468
1469 == 8.1 AT Command input doesn't work ==
1470
1471
1472 (((
1473 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1474 )))
1475
1476
1477 = 9. Order Info =
1478
1479 == 9.1 Main Process Unit ==
1480
1481
1482 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1483
1484 (% style="color:blue" %)**XX**(%%): The default frequency band
1485
1486 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1487 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1488 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1489 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1490 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1491 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1492 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1493 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1494
1495 == 9.2 Sensors ==
1496
1497
1498 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1499 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1500 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1501 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1502 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1503 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1504 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1505 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1506 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1507 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1508
1509 = 10. Support =
1510
1511
1512 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1513
1514 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1515
1516 = 11. Appendix I: Field Installation Photo =
1517
1518
1519 [[image:1656058346362-132.png||height="685" width="732"]]
1520
1521 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1522
1523
1524
1525 (% style="color:blue" %)**Wind Speed/Direction**
1526
1527 [[image:1656058373174-421.png||height="356" width="731"]]
1528
1529
1530
1531 (% style="color:blue" %)**Total Solar Radiation sensor**
1532
1533 [[image:1656058397364-282.png||height="453" width="732"]]
1534
1535
1536
1537 (% style="color:blue" %)**PAR Sensor**
1538
1539 [[image:1656058416171-615.png]]
1540
1541
1542
1543 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1544
1545 [[image:1656058441194-827.png||height="672" width="523"]]
1546
1547
1548
1549 (% style="color:blue" %)**Rain / Snow Detect**
1550
1551 [[image:1656058451456-166.png]]
1552
1553
1554
1555 (% style="color:blue" %)**Rain Gauge**
1556
1557 [[image:1656058463455-569.png||height="499" width="550"]]
1558
1559
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0