Version 105.22 by Xiaoling on 2023/06/16 09:31

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 0x01: EU868
197
198 0x02: US915
199
200 0x03: IN865
201
202 0x04: AU915
203
204 0x05: KZ865
205
206 0x06: RU864
207
208 0x07: AS923
209
210 0x08: AS923-1
211
212 0x09: AS923-2
213
214 0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
300 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:75px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
301 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
302 (((
303 Speed: 0~60m/s
304 )))
305
306 (((
307 Level: 0~17
308 )))
309 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
310 (((
311 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
312 )))
313
314 (((
315 0x02=2 (0x14: No Sensor, 0x15: Value Error)
316 )))
317 )))
318 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
319 (((
320 Angel: 0~360°
321 )))
322
323 (((
324 Direction: 16 positions
325 )))
326 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
327 (((
328 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
329 )))
330
331 (((
332 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
333 )))
334 )))
335 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
336 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
337 )))
338 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
339 (((
340 0x00 (00) No Rain or snow detected
341 )))
342
343 (((
344 (0x02: No Sensor,0x03: Value Error)
345 )))
346 )))
347 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
348 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
349 )))
350 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
352 )))
353 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
354 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
355 )))
356 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
357 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
358 )))
359 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
360 0mm~100mm(Rainfall in the last 24 hours)
361 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 (((
363 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
364 )))
365
366 (((
367 (0x03FE: No Sensor,0x03FF: Value Error)
368 )))
369 )))
370 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
371 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
372 )))
373 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
374 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
375 )))
376 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
377 0~2500μmol/m^^2^^•s
378 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
379 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
380 )))
381 |(% style="width:103px" %)(((
382 Total Solar
383
384 Radiation
385 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
386 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
387 )))
388
389 (((
390 Below is an example payload:  [[image:image-20220624140615-3.png]]
391 )))
392
393 (((
394
395 )))
396
397 (((
398 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
399 )))
400
401 * (((
402 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
403 )))
404
405 (((
406 Uplink 1:  [[image:image-20220624140735-4.png]]
407 )))
408
409
410 (((
411 Uplink 2:  [[image:image-20220624140842-5.png]]
412
413 )))
414
415 * (((
416 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
417 )))
418
419 (((
420 Uplink 1:  [[image:image-20220624141025-6.png]]
421 )))
422
423
424 Uplink 2:  [[image:image-20220624141100-7.png]]
425
426
427 === 2.4.3 Decoder in TTN V3 ===
428
429
430 (((
431 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
432 )))
433
434 (((
435 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 )))
437
438
439 (((
440 and put as below:
441 )))
442
443 [[image:1656051152438-578.png]]
444
445
446 == 2.5 Show data on Application Server ==
447
448
449 (((
450 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
451 )))
452
453 (((
454 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
455 )))
456
457 (((
458 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
459 )))
460
461 [[image:1656051197172-131.png]]
462
463
464
465 **Add TagoIO:**
466
467 [[image:1656051223585-631.png]]
468
469
470
471 **Authorization:**
472
473 [[image:1656051248318-368.png]]
474
475
476
477 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
478
479
480 [[image:1656051277767-168.png]]
481
482
483 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
484
485
486 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
487
488 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
489 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
490
491 There are two kinds of commands to configure WSC1-L, they are:
492
493 * (% style="color:#4472c4" %)**General Commands**.
494
495 These commands are to configure:
496
497 * General system settings like: uplink interval.
498 * LoRaWAN protocol & radio related command.
499
500 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
501
502 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
503
504
505 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
506
507 These commands only valid for WSC1-L, as below:
508
509
510 == 3.1 Set Transmit Interval Time ==
511
512
513 Feature: Change LoRaWAN End Node Transmit Interval.
514
515 (% style="color:#037691" %)**AT Command: AT+TDC**
516
517 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
518 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
519 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
520 30000
521 OK
522 the interval is 30000ms = 30s
523 )))
524 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
525 OK
526 Set transmit interval to 60000ms = 60 seconds
527 )))
528
529 (% style="color:#037691" %)**Downlink Command: 0x01**
530
531 Format: Command Code (0x01) followed by 3 bytes time value.
532
533 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
534
535 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
536 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
537
538
539
540
541 == 3.2 Set Emergency Mode ==
542
543
544 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
545
546 (% style="color:#037691" %)**AT Command:**
547
548 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
549 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
550 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
551 OK
552
553 )))
554 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
555 OK
556 )))
557
558 (% style="color:#037691" %)**Downlink Command:**
559
560 * 0xE101     Same as: AT+ALARMMOD=1
561 * 0xE100     Same as: AT+ALARMMOD=0
562
563
564
565
566 == 3.3 Add or Delete RS485 Sensor ==
567
568
569 (((
570 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
571 )))
572
573 (((
574 (% style="color:#037691" %)**AT Command: **
575 )))
576
577 (((
578 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
579 )))
580
581 * (((
582 Type_Code range:  A1 ~~ A4
583 )))
584 * (((
585 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
586 )))
587 * (((
588 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
589 )))
590 * (((
591 Read_Length:  RS485 response frame length supposed to receive. Max can receive
592 )))
593 * (((
594 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
595 )))
596 * (((
597 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
598 )))
599 * (((
600 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
601 )))
602
603 (((
604 **Example:**
605 )))
606
607 (((
608 User need to change external sensor use the type code as address code.
609 )))
610
611 (((
612 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
613 )))
614
615 [[image:image-20220624143553-10.png]]
616
617
618 The response frame of the sensor is as follows:
619
620 [[image:image-20220624143618-11.png]]
621
622
623 **Then the following parameters should be:**
624
625 * Address_Code range: A1
626 * Query_Length: 8
627 * Query_Command: A103000000019CAA
628 * Read_Length: 8
629 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
630 * has_CRC: 1
631 * timeout: 1500 (Fill in the test according to the actual situation)
632
633 **So the input command is:**
634
635 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
636
637
638 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
639
640 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
641 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
642 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
643
644 **Related commands:**
645
646 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
647
648 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
649
650
651 (% style="color:#037691" %)**Downlink Command:  **
652
653 **delete custom sensor A1:**
654
655 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
656
657 **Remove all custom sensors**
658
659 * 0xE5FF  
660
661
662
663
664
665 == 3.4 RS485 Test Command ==
666
667
668 (% style="color:#037691" %)**AT Command:**
669
670 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
671 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
672 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
673 Send command to 485 sensor. Range : no more than 10 bytes
674 )))|(% style="width:85px" %)OK
675
676 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
677
678 AT+RSWRITE=0103000001840A
679
680
681 (% style="color:#037691" %)**Downlink Command:**
682
683 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
684
685
686
687
688
689 == 3.5 RS485 response timeout ==
690
691
692 Feature: Set or get extended time to receive 485 sensor data.
693
694 (% style="color:#037691" %)**AT Command:**
695
696 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
697 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
698 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
699 Set response timeout to: Range : 0~~10000
700 )))|(% style="width:85px" %)OK
701
702 (% style="color:#037691" %)**Downlink Command:**
703
704 Format: Command Code (0xE0) followed by 3 bytes time value.
705
706 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
707
708 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
709 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
710
711
712
713
714
715 == 3.6 Set Sensor Type ==
716
717
718 (((
719 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
720 )))
721
722 (((
723 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
724
725 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
726 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
727 | |A4|A3|A2|A1| | |
728 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
729 | | |Solar Radiation|PAR|PM10|PM2.5|(((
730 Rain
731 Gauge
732 )))|(((
733 Air
734 Pressure
735 )))
736 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
737 |Humidity|Temperature|CO2|(((
738 Rain/Snow
739 Detect
740 )))|illuminance|(((
741 Wind
742 Direction
743 )))|Wind Speed|BAT
744 )))
745
746
747 (% style="color:#037691" %)**AT Command:**
748
749 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
750 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
751 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
752
753 Eg: The setting command **AT+STYPE=80221** means:
754
755 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
756 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
757 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
758 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
759 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
760 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
761 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
762
763 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
764
765
766 (% style="color:#037691" %)**Downlink Command:**
767
768 * 0xE400080221  Same as: AT+STYPE=80221
769
770 (% style="color:red" %)**Note:**
771
772 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
773
774
775 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
776
777
778 (% style="color:#037691" %)**AT Command:**
779
780 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
781 |=(% style="width: 172px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 175px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
782 |(% style="width:161px" %)(((
783 AT+RAINFALLSWITCH=1(Range: 1~~10)
784 )))|(% style="width:184px" %)(((
785 Set the registers read by the rain gauge
786 )))|(% style="width:85px" %)OK
787
788 (% style="color:#037691" %)**Downlink Command:**
789
790 * 0x1701  Same as: AT+RAINFALLSWITCH=1
791
792
793
794 = 4. Power consumption and battery =
795
796 == 4.1 Total Power Consumption ==
797
798
799 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
800
801
802 == 4.2 Reduce power consumption ==
803
804
805 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
806
807
808 == 4.3 Battery ==
809
810
811 (((
812 All sensors are only power by external power source. If external power source is off. All sensor won't work.
813 )))
814
815 (((
816 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
817 )))
818
819
820 = 5. Main Process Unit WSC1-L =
821
822 == 5.1 Features ==
823
824
825 * Wall Attachable.
826 * LoRaWAN v1.0.3 Class A protocol.
827 * RS485 / Modbus protocol
828 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
829 * AT Commands to change parameters
830 * Remote configure parameters via LoRaWAN Downlink
831 * Firmware upgradable via program port
832 * Powered by external 12v battery
833 * Back up rechargeable 1000mAh battery
834 * IP Rating: IP65
835 * Support default sensors or 3rd party RS485 sensors
836
837 == 5.2 Power Consumption ==
838
839
840 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
841
842
843 == 5.3 Storage & Operation Temperature ==
844
845
846 -20°C to +60°C
847
848
849 == 5.4 Pin Mapping ==
850
851
852 [[image:1656054149793-239.png]]
853
854
855 == 5.5 Mechanical ==
856
857
858 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
859
860
861 == 5.6 Connect to RS485 Sensors ==
862
863
864 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
865
866
867 [[image:1656054389031-379.png]]
868
869
870 Hardware Design for the Converter Board please see:
871
872 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
873
874
875 = 6. Weather Sensors =
876
877 == 6.1 Rain Gauge ~-~- WSS-01 ==
878
879
880 (((
881 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
882 )))
883
884 (((
885 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
886 )))
887
888 (((
889 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
890 )))
891
892 (((
893 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
894 )))
895
896 (((
897 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
898 )))
899
900
901 === 6.1.1 Feature ===
902
903
904 * RS485 Rain Gauge
905 * Small dimension, easy to install
906 * Vents under funnel, avoid leaf or other things to avoid rain flow.
907 * ABS enclosure.
908 * Horizontal adjustable.
909
910 === 6.1.2 Specification ===
911
912
913 * Resolution: 0.2mm
914 * Accuracy: ±3%
915 * Range: 0 ~~ 100mm
916 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
917 * Input Power: DC 5~~24v
918 * Interface: RS485
919 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
920 * Working Humidity: <100% (no dewing)
921 * Power Consumption: 4mA @ 12v.
922
923 === 6.1.3 Dimension ===
924
925
926 [[image:1656054957406-980.png]]
927
928
929 === 6.1.4 Pin Mapping ===
930
931
932 [[image:1656054972828-692.png]]
933
934
935 === 6.1.5 Installation Notice ===
936
937
938 (((
939 Do not power on while connect the cables. Double check the wiring before power on.
940 )))
941
942 (((
943 Installation Photo as reference:
944 )))
945
946
947 (((
948 (% style="color:#4472c4" %)** Install on Ground:**
949 )))
950
951 (((
952 WSS-01 Rain Gauge include screws so can install in ground directly .
953 )))
954
955
956 (((
957 (% style="color:#4472c4" %)** Install on pole:**
958 )))
959
960 (((
961 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
962 )))
963
964 [[image:image-20220624152218-1.png||height="526" width="276"]]
965
966 WS-K2: Bracket Kit for Pole installation
967
968
969 WSSC-K2 dimension document, please see:
970
971 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
972
973
974 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
975
976
977 [[image:1656055444035-179.png]]
978
979
980 (((
981 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
982 )))
983
984 (((
985 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
986 )))
987
988 (((
989 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
990 )))
991
992
993 === 6.2.1 Feature ===
994
995
996 * RS485 wind speed / direction sensor
997 * PC enclosure, resist corrosion
998
999
1000
1001
1002
1003 === 6.2.2 Specification ===
1004
1005
1006 * Wind speed range: 0 ~~ 60m/s
1007 * Wind direction range: 0 ~~ 360°
1008 * Start wind speed: ≤0.3 m/s
1009 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1010 * Input Power: DC 5 ~~ 24v
1011 * Interface: RS485
1012 * Working Temperature: -30℃ ~~ 70℃
1013 * Working Humidity: <100% (no dewing)
1014 * Power Consumption: 13mA ~~ 12v.
1015 * Cable Length: 2 meters
1016
1017
1018
1019
1020
1021 === 6.2.3 Dimension ===
1022
1023
1024 [[image:image-20220624152813-2.png]]
1025
1026
1027 === 6.2.4 Pin Mapping ===
1028
1029
1030 [[image:1656056281231-994.png]]
1031
1032
1033 === 6.2.5  Angle Mapping ===
1034
1035
1036 [[image:1656056303845-585.png]]
1037
1038
1039 === 6.2.6  Installation Notice ===
1040
1041
1042 (((
1043 Do not power on while connect the cables. Double check the wiring before power on.
1044 )))
1045
1046 (((
1047 The sensor must be installed with below direction, towards North.
1048
1049
1050 )))
1051
1052 [[image:image-20220624153901-3.png]]
1053
1054
1055 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1056
1057
1058 (((
1059 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1060 )))
1061
1062 (((
1063 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1064 )))
1065
1066 (((
1067 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1068 )))
1069
1070
1071 === 6.3.1 Feature ===
1072
1073
1074 * RS485 CO2, PM2.5, PM10 sensor
1075 * NDIR to measure CO2 with Internal Temperature Compensation
1076 * Laser Beam Scattering to PM2.5 and PM10
1077
1078
1079
1080
1081 === 6.3.2 Specification ===
1082
1083
1084 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1085 * CO2 resolution: 1ppm
1086 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1087 * PM2.5/PM10 resolution: 1μg/m3
1088 * Input Power: DC 7 ~~ 24v
1089 * Preheat time: 3min
1090 * Interface: RS485
1091 * Working Temperature:
1092 ** CO2: 0℃ ~~ 50℃;
1093 ** PM2.5/PM10: -30 ~~ 50℃
1094 * Working Humidity:
1095 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1096 ** CO2: 0 ~~ 95%RH
1097 * Power Consumption: 50mA@ 12v.
1098
1099
1100
1101
1102
1103 === 6.3.3 Dimension ===
1104
1105
1106 [[image:1656056708366-230.png]]
1107
1108
1109 === 6.3.4 Pin Mapping ===
1110
1111
1112 [[image:1656056722648-743.png]]
1113
1114
1115 === 6.3.5 Installation Notice ===
1116
1117
1118 Do not power on while connect the cables. Double check the wiring before power on.
1119
1120
1121 [[image:1656056751153-304.png]]
1122
1123
1124 [[image:1656056766224-773.png]]
1125
1126
1127 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1128
1129
1130 (((
1131 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1132 )))
1133
1134 (((
1135 WSS-04 has auto heating feature, this ensures measurement more reliable.
1136 )))
1137
1138 (((
1139 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1140 )))
1141
1142
1143 === 6.4.1 Feature ===
1144
1145
1146 * RS485 Rain/Snow detect sensor
1147 * Surface heating to dry
1148 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1149
1150
1151
1152
1153 === 6.4.2 Specification ===
1154
1155
1156 * Detect if there is rain or snow
1157 * Input Power: DC 12 ~~ 24v
1158 * Interface: RS485
1159 * Working Temperature: -30℃ ~~ 70℃
1160 * Working Humidity: 10 ~~ 90%RH
1161 * Power Consumption:
1162 ** No heating: 12mA @ 12v,
1163 ** heating: 94ma @ 12v.
1164
1165
1166
1167
1168 === 6.4.3 Dimension ===
1169
1170
1171 [[image:1656056844782-155.png]]
1172
1173
1174 === 6.4.4 Pin Mapping ===
1175
1176
1177 [[image:1656056855590-754.png]]
1178
1179
1180 === 6.4.5 Installation Notice ===
1181
1182
1183 Do not power on while connect the cables. Double check the wiring before power on.
1184
1185 (((
1186 Install with 15°degree.
1187 )))
1188
1189 [[image:1656056873783-780.png]]
1190
1191
1192 [[image:1656056883736-804.png]]
1193
1194
1195 === 6.4.6 Heating ===
1196
1197
1198 (((
1199 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1200 )))
1201
1202
1203 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1204
1205
1206 (((
1207 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1208 )))
1209
1210 (((
1211 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1212 )))
1213
1214
1215 === 6.5.1 Feature ===
1216
1217
1218 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1219
1220
1221
1222
1223 === 6.5.2 Specification ===
1224
1225
1226 * Input Power: DC 12 ~~ 24v
1227 * Interface: RS485
1228 * Temperature Sensor Spec:
1229 ** Range: -30 ~~ 70℃
1230 ** resolution 0.1℃
1231 ** Accuracy: ±0.5℃
1232 * Humidity Sensor Spec:
1233 ** Range: 0 ~~ 100% RH
1234 ** resolution 0.1 %RH
1235 ** Accuracy: 3% RH
1236 * Pressure Sensor Spec:
1237 ** Range: 10 ~~ 1100hPa
1238 ** Resolution: 0.1hPa
1239 ** Accuracy: ±0.1hPa
1240 * Illuminate sensor:
1241 ** Range: 0~~2/20/200kLux
1242 ** Resolution: 10 Lux
1243 ** Accuracy: ±3%FS
1244 * Working Temperature: -30℃ ~~ 70℃
1245 * Working Humidity: 10 ~~ 90%RH
1246 * Power Consumption: 4mA @ 12v
1247
1248
1249
1250
1251 === 6.5.3 Dimension ===
1252
1253
1254 [[image:1656057170639-522.png]]
1255
1256
1257 === 6.5.4 Pin Mapping ===
1258
1259
1260 [[image:1656057181899-910.png]]
1261
1262
1263 === 6.5.5 Installation Notice ===
1264
1265
1266 Do not power on while connect the cables. Double check the wiring before power on.
1267
1268 [[image:1656057199955-514.png]]
1269
1270
1271 [[image:1656057212438-475.png]]
1272
1273
1274 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1275
1276
1277 (((
1278 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1279 )))
1280
1281 (((
1282 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1283 )))
1284
1285 (((
1286 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1287 )))
1288
1289
1290 === 6.6.1 Feature ===
1291
1292
1293 * RS485 Total Solar Radiation sensor
1294 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1295 * Measure Reflected Radiation if sense area towards ground.
1296
1297
1298
1299
1300
1301 === 6.6.2 Specification ===
1302
1303
1304 * Input Power: DC 5 ~~ 24v
1305 * Interface: RS485
1306 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1307 * Measure strength range: 0 ~~ 2000W/m2
1308 * Resolution: 0.1W/m2
1309 * Accuracy: ±3%
1310 * Yearly Stability: ≤±2%
1311 * Cosine response: ≤7% (@ Sun angle 10°)
1312 * Temperature Effect: ±2%(-10℃ ~~ 40℃)
1313 * Working Temperature: -40℃ ~~ 70℃
1314 * Working Humidity: 10 ~~ 90%RH
1315 * Power Consumption: 4mA @ 12v
1316
1317
1318
1319
1320
1321 === 6.6.3 Dimension ===
1322
1323
1324 [[image:1656057348695-898.png]]
1325
1326
1327 === 6.6.4 Pin Mapping ===
1328
1329
1330 [[image:1656057359343-744.png]]
1331
1332
1333 === 6.6.5 Installation Notice ===
1334
1335
1336 Do not power on while connect the cables. Double check the wiring before power on.
1337
1338
1339 [[image:1656057369259-804.png]]
1340
1341
1342 [[image:1656057377943-564.png]]
1343
1344
1345 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1346
1347
1348 (((
1349 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1350 )))
1351
1352 (((
1353 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1354 )))
1355
1356 (((
1357 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1358 )))
1359
1360
1361 === 6.7.1 Feature ===
1362
1363
1364 (((
1365 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1366 )))
1367
1368 (((
1369 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1370 )))
1371
1372
1373 === 6.7.2 Specification ===
1374
1375
1376 * Input Power: DC 5 ~~ 24v
1377 * Interface: RS485
1378 * Response Spectrum: 400~~700nm
1379 * Measure range: 0 ~~ 2500μmol/m2•s
1380 * Resolution: 1μmol/m2•s
1381 * Accuracy: ±2%
1382 * Yearly Stability: ≤ ±2%
1383 * Working Temperature: -30℃ ~~ 75℃
1384 * Working Humidity: 10 ~~ 90%RH
1385 * Power Consumption: 3mA @ 12v
1386
1387
1388
1389
1390 === 6.7.3 Dimension ===
1391
1392
1393 [[image:1656057538793-888.png]]
1394
1395
1396 === 6.7.4 Pin Mapping ===
1397
1398
1399 [[image:1656057548116-203.png]]
1400
1401
1402 === 6.7.5 Installation Notice ===
1403
1404
1405 Do not power on while connect the cables. Double check the wiring before power on.
1406
1407
1408 [[image:1656057557191-895.png]]
1409
1410
1411 [[image:1656057565783-251.png]]
1412
1413
1414 = 7. FAQ =
1415
1416 == 7.1 What else do I need to purchase to build Weather Station? ==
1417
1418
1419 Below is the installation photo and structure:
1420
1421
1422 [[image:1656057598349-319.png]]
1423
1424
1425 [[image:1656057608049-693.png]]
1426
1427
1428 == 7.2 How to upgrade firmware for WSC1-L? ==
1429
1430
1431 (((
1432 Firmware Location & Change log:
1433
1434 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1435 )))
1436
1437
1438 (((
1439 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1440 )))
1441
1442
1443 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1444
1445
1446 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1447
1448
1449 == 7.4 Can I add my weather sensors? ==
1450
1451
1452 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1453
1454
1455 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1456
1457
1458 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1459
1460
1461 = 8. Trouble Shooting =
1462
1463 == 8.1 AT Command input doesn't work ==
1464
1465
1466 (((
1467 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1468 )))
1469
1470
1471 = 9. Order Info =
1472
1473 == 9.1 Main Process Unit ==
1474
1475
1476 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1477
1478 (% style="color:blue" %)**XX**(%%): The default frequency band
1479
1480 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1481 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1482 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1483 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1484 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1485 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1486 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1487 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1488
1489 == 9.2 Sensors ==
1490
1491
1492 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1493 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1494 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1495 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1496 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1497 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1498 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1499 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1500 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1501 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1502
1503 = 10. Support =
1504
1505
1506 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1507
1508 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1509
1510 = 11. Appendix I: Field Installation Photo =
1511
1512
1513 [[image:1656058346362-132.png||height="685" width="732"]]
1514
1515 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1516
1517
1518
1519 (% style="color:blue" %)**Wind Speed/Direction**
1520
1521 [[image:1656058373174-421.png||height="356" width="731"]]
1522
1523
1524
1525 (% style="color:blue" %)**Total Solar Radiation sensor**
1526
1527 [[image:1656058397364-282.png||height="453" width="732"]]
1528
1529
1530
1531 (% style="color:blue" %)**PAR Sensor**
1532
1533 [[image:1656058416171-615.png]]
1534
1535
1536
1537 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1538
1539 [[image:1656058441194-827.png||height="672" width="523"]]
1540
1541
1542
1543 (% style="color:blue" %)**Rain / Snow Detect**
1544
1545 [[image:1656058451456-166.png]]
1546
1547
1548
1549 (% style="color:blue" %)**Rain Gauge**
1550
1551 [[image:1656058463455-569.png||height="499" width="550"]]
1552
1553
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0