Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 0x01: EU868
197
198 0x02: US915
199
200 0x03: IN865
201
202 0x04: AU915
203
204 0x05: KZ865
205
206 0x06: RU864
207
208 0x07: AS923
209
210 0x08: AS923-1
211
212 0x09: AS923-2
213
214 0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
300 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:75px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
301 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
302 (((
303 Speed: 0~60m/s
304 )))
305
306 (((
307 Level: 0~17
308 )))
309 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
310 (((
311 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
312 )))
313
314 (((
315 0x02=2 (0x14: No Sensor, 0x15: Value Error)
316 )))
317 )))
318 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
319 (((
320 Angel: 0~360°
321 )))
322
323 (((
324 Direction: 16 positions
325 )))
326 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
327 (((
328 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
329 )))
330
331 (((
332 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
333 )))
334 )))
335 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
336 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
337 )))
338 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
339 (((
340 0x00 (00) No Rain or snow detected
341 )))
342
343 (((
344 (0x02: No Sensor,0x03: Value Error)
345 )))
346 )))
347 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
348 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
349 )))
350 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
352 )))
353 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
354 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
355 )))
356 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
357 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
358 )))
359 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
360 0mm~100mm(Rainfall in the last 24 hours)
361 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 (((
363 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
364 )))
365
366 (((
367 (0x03FE: No Sensor,0x03FF: Value Error)
368 )))
369 )))
370 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
371 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
372 )))
373 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
374 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
375 )))
376 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
377 0~2500μmol/m^^2^^•s
378 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
379 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
380 )))
381 |(% style="width:103px" %)(((
382 Total Solar
383
384 Radiation
385 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
386 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
387 )))
388
389 (((
390 Below is an example payload:  [[image:image-20220624140615-3.png]]
391 )))
392
393 (((
394
395 )))
396
397 (((
398 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
399 )))
400
401 * (((
402 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
403 )))
404
405 (((
406 Uplink 1:  [[image:image-20220624140735-4.png]]
407 )))
408
409
410 (((
411 Uplink 2:  [[image:image-20220624140842-5.png]]
412
413 )))
414
415 * (((
416 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
417 )))
418
419 (((
420 Uplink 1:  [[image:image-20220624141025-6.png]]
421 )))
422
423
424 Uplink 2:  [[image:image-20220624141100-7.png]]
425
426
427 === 2.4.3 Decoder in TTN V3 ===
428
429
430 (((
431 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
432 )))
433
434 (((
435 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 )))
437
438
439 (((
440 and put as below:
441 )))
442
443 [[image:1656051152438-578.png]]
444
445
446 == 2.5 Show data on Application Server ==
447
448
449 (((
450 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
451 )))
452
453 (((
454 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
455 )))
456
457 (((
458 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
459 )))
460
461 [[image:1656051197172-131.png]]
462
463
464
465 **Add TagoIO:**
466
467 [[image:1656051223585-631.png]]
468
469
470
471 **Authorization:**
472
473 [[image:1656051248318-368.png]]
474
475
476
477 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
478
479
480 [[image:1656051277767-168.png]]
481
482
483 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
484
485
486 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
487
488 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
489 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
490
491 There are two kinds of commands to configure WSC1-L, they are:
492
493 * (% style="color:#4472c4" %)**General Commands**.
494
495 These commands are to configure:
496
497 * General system settings like: uplink interval.
498 * LoRaWAN protocol & radio related command.
499
500 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
501
502 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
503
504
505 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
506
507 These commands only valid for WSC1-L, as below:
508
509
510 == 3.1 Set Transmit Interval Time ==
511
512
513 Feature: Change LoRaWAN End Node Transmit Interval.
514
515 (% style="color:#037691" %)**AT Command: AT+TDC**
516
517 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
518 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
519 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
520 30000
521 OK
522 the interval is 30000ms = 30s
523 )))
524 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
525 OK
526 Set transmit interval to 60000ms = 60 seconds
527 )))
528
529 (% style="color:#037691" %)**Downlink Command: 0x01**
530
531 Format: Command Code (0x01) followed by 3 bytes time value.
532
533 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
534
535 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
536 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
537
538
539
540
541 == 3.2 Set Emergency Mode ==
542
543
544 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
545
546 (% style="color:#037691" %)**AT Command:**
547
548 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
549 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
550 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
551 OK
552
553 )))
554 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
555 OK
556 )))
557
558 (% style="color:#037691" %)**Downlink Command:**
559
560 * 0xE101     Same as: AT+ALARMMOD=1
561 * 0xE100     Same as: AT+ALARMMOD=0
562
563
564
565
566 == 3.3 Add or Delete RS485 Sensor ==
567
568
569 (((
570 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
571 )))
572
573 (((
574 (% style="color:#037691" %)**AT Command: **
575 )))
576
577 (((
578 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
579 )))
580
581 * (((
582 Type_Code range:  A1 ~~ A4
583 )))
584 * (((
585 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
586 )))
587 * (((
588 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
589 )))
590 * (((
591 Read_Length:  RS485 response frame length supposed to receive. Max can receive
592 )))
593 * (((
594 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
595 )))
596 * (((
597 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
598 )))
599 * (((
600 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
601 )))
602
603 (((
604 **Example:**
605 )))
606
607 (((
608 User need to change external sensor use the type code as address code.
609 )))
610
611 (((
612 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
613 )))
614
615 [[image:image-20220624143553-10.png]]
616
617
618 The response frame of the sensor is as follows:
619
620 [[image:image-20220624143618-11.png]]
621
622
623 **Then the following parameters should be:**
624
625 * Address_Code range: A1
626 * Query_Length: 8
627 * Query_Command: A103000000019CAA
628 * Read_Length: 8
629 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
630 * has_CRC: 1
631 * timeout: 1500 (Fill in the test according to the actual situation)
632
633 **So the input command is:**
634
635 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
636
637
638 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
639
640 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
641 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
642 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
643
644 **Related commands:**
645
646 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
647
648 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
649
650
651 (% style="color:#037691" %)**Downlink Command:  **
652
653 **delete custom sensor A1:**
654
655 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
656
657 **Remove all custom sensors**
658
659 * 0xE5FF  
660
661
662
663
664
665 == 3.4 RS485 Test Command ==
666
667
668 (% style="color:#037691" %)**AT Command:**
669
670 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
671 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
672 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
673 Send command to 485 sensor. Range : no more than 10 bytes
674 )))|(% style="width:85px" %)OK
675
676 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
677
678 AT+RSWRITE=0103000001840A
679
680
681 (% style="color:#037691" %)**Downlink Command:**
682
683 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
684
685
686
687
688
689 == 3.5 RS485 response timeout ==
690
691
692 Feature: Set or get extended time to receive 485 sensor data.
693
694 (% style="color:#037691" %)**AT Command:**
695
696 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
697 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
698 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
699 Set response timeout to: Range : 0~~10000
700 )))|(% style="width:85px" %)OK
701
702 (% style="color:#037691" %)**Downlink Command:**
703
704 Format: Command Code (0xE0) followed by 3 bytes time value.
705
706 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
707
708 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
709 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
710
711 == 3.6 Set Sensor Type ==
712
713
714 (((
715 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
716 )))
717
718 (((
719 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
720
721 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
722 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
723 | |A4|A3|A2|A1| | |
724 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
725 | | |Solar Radiation|PAR|PM10|PM2.5|(((
726 Rain
727 Gauge
728 )))|(((
729 Air
730 Pressure
731 )))
732 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
733 |Humidity|Temperature|CO2|(((
734 Rain/Snow
735 Detect
736 )))|illuminance|(((
737 Wind
738 Direction
739 )))|Wind Speed|BAT
740 )))
741
742
743 (% style="color:#037691" %)**AT Command:**
744
745 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
746 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
747 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
748
749 Eg: The setting command **AT+STYPE=80221** means:
750
751 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
752 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
753 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
754 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
755 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
756 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
757 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
758
759 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
760
761
762 (% style="color:#037691" %)**Downlink Command:**
763
764 * 0xE400080221  Same as: AT+STYPE=80221
765
766 (% style="color:red" %)**Note:**
767
768 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
769
770
771 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
772
773
774 (% style="color:#037691" %)**AT Command:**
775
776 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
777 |=(% style="width: 161px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 184px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
778 |(% style="width:161px" %)(((
779 AT+RAINFALLSWITCH=1
780
781 (Range: 1~~10)
782 )))|(% style="width:184px" %)(((
783 (((
784 (((
785 Set the registers read by the rain gauge
786 )))
787 )))
788 )))|(% style="width:85px" %)OK
789
790 (% style="color:#037691" %)**Downlink Command:**
791
792 * 0x1701  Same as: AT+RAINFALLSWITCH=1
793
794
795
796 = 4. Power consumption and battery =
797
798 == 4.1 Total Power Consumption ==
799
800
801 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
802
803
804 == 4.2 Reduce power consumption ==
805
806
807 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
808
809
810 == 4.3 Battery ==
811
812
813 (((
814 All sensors are only power by external power source. If external power source is off. All sensor won't work.
815 )))
816
817 (((
818 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
819 )))
820
821
822 = 5. Main Process Unit WSC1-L =
823
824 == 5.1 Features ==
825
826
827 * Wall Attachable.
828 * LoRaWAN v1.0.3 Class A protocol.
829 * RS485 / Modbus protocol
830 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
831 * AT Commands to change parameters
832 * Remote configure parameters via LoRaWAN Downlink
833 * Firmware upgradable via program port
834 * Powered by external 12v battery
835 * Back up rechargeable 1000mAh battery
836 * IP Rating: IP65
837 * Support default sensors or 3rd party RS485 sensors
838
839 == 5.2 Power Consumption ==
840
841
842 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
843
844
845 == 5.3 Storage & Operation Temperature ==
846
847
848 -20°C to +60°C
849
850
851 == 5.4 Pin Mapping ==
852
853
854 [[image:1656054149793-239.png]]
855
856
857 == 5.5 Mechanical ==
858
859
860 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
861
862
863 == 5.6 Connect to RS485 Sensors ==
864
865
866 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
867
868
869 [[image:1656054389031-379.png]]
870
871
872 Hardware Design for the Converter Board please see:
873
874 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
875
876
877 = 6. Weather Sensors =
878
879 == 6.1 Rain Gauge ~-~- WSS-01 ==
880
881
882 (((
883 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
884 )))
885
886 (((
887 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
888 )))
889
890 (((
891 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
892 )))
893
894 (((
895 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
896 )))
897
898 (((
899 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
900 )))
901
902
903 === 6.1.1 Feature ===
904
905
906 * RS485 Rain Gauge
907 * Small dimension, easy to install
908 * Vents under funnel, avoid leaf or other things to avoid rain flow.
909 * ABS enclosure.
910 * Horizontal adjustable.
911
912 === 6.1.2 Specification ===
913
914
915 * Resolution: 0.2mm
916 * Accuracy: ±3%
917 * Range: 0 ~~ 100mm
918 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
919 * Input Power: DC 5~~24v
920 * Interface: RS485
921 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
922 * Working Humidity: <100% (no dewing)
923 * Power Consumption: 4mA @ 12v.
924
925 === 6.1.3 Dimension ===
926
927
928 [[image:1656054957406-980.png]]
929
930
931 === 6.1.4 Pin Mapping ===
932
933
934 [[image:1656054972828-692.png]]
935
936
937 === 6.1.5 Installation Notice ===
938
939
940 (((
941 Do not power on while connect the cables. Double check the wiring before power on.
942 )))
943
944 (((
945 Installation Photo as reference:
946 )))
947
948
949 (((
950 (% style="color:#4472c4" %)** Install on Ground:**
951 )))
952
953 (((
954 WSS-01 Rain Gauge include screws so can install in ground directly .
955 )))
956
957
958 (((
959 (% style="color:#4472c4" %)** Install on pole:**
960 )))
961
962 (((
963 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
964 )))
965
966 [[image:image-20220624152218-1.png||height="526" width="276"]]
967
968 WS-K2: Bracket Kit for Pole installation
969
970
971 WSSC-K2 dimension document, please see:
972
973 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
974
975
976 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
977
978
979 [[image:1656055444035-179.png]]
980
981
982 (((
983 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
984 )))
985
986 (((
987 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
988 )))
989
990 (((
991 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
992 )))
993
994
995 === 6.2.1 Feature ===
996
997
998 * RS485 wind speed / direction sensor
999 * PC enclosure, resist corrosion
1000
1001 === 6.2.2 Specification ===
1002
1003
1004 * Wind speed range: 0 ~~ 60m/s
1005 * Wind direction range: 0 ~~ 360°
1006 * Start wind speed: ≤0.3m/s
1007 * Accuracy: ±(0.3+0.03V)m/s , ±1°
1008 * Input Power: DC 5~~24v
1009 * Interface: RS485
1010 * Working Temperature: -30℃~70℃
1011 * Working Humidity: <100% (no dewing)
1012 * Power Consumption: 13mA ~~ 12v.
1013 * Cable Length: 2 meters
1014
1015 === 6.2.3 Dimension ===
1016
1017
1018 [[image:image-20220624152813-2.png]]
1019
1020
1021 === 6.2.4 Pin Mapping ===
1022
1023
1024 [[image:1656056281231-994.png]]
1025
1026
1027 === 6.2.5  Angle Mapping ===
1028
1029
1030 [[image:1656056303845-585.png]]
1031
1032
1033 === 6.2.6  Installation Notice ===
1034
1035
1036 (((
1037 Do not power on while connect the cables. Double check the wiring before power on.
1038 )))
1039
1040 (((
1041 The sensor must be installed with below direction, towards North.
1042
1043
1044 )))
1045
1046 [[image:image-20220624153901-3.png]]
1047
1048
1049 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1050
1051
1052 (((
1053 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1054 )))
1055
1056 (((
1057 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1058 )))
1059
1060 (((
1061 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1062 )))
1063
1064
1065 === 6.3.1 Feature ===
1066
1067
1068 * RS485 CO2, PM2.5, PM10 sensor
1069 * NDIR to measure CO2 with Internal Temperature Compensation
1070 * Laser Beam Scattering to PM2.5 and PM10
1071
1072 === 6.3.2 Specification ===
1073
1074
1075 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1076 * CO2 resolution: 1ppm
1077 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1078 * PM2.5/PM10 resolution: 1μg/m3
1079 * Input Power: DC 7 ~~ 24v
1080 * Preheat time: 3min
1081 * Interface: RS485
1082 * Working Temperature:
1083 ** CO2: 0℃~50℃;
1084 ** PM2.5/PM10: -30 ~~ 50℃
1085 * Working Humidity:
1086 ** PM2.5/PM10: 15~80%RH (no dewing)
1087 ** CO2: 0~95%RH
1088 * Power Consumption: 50mA@ 12v.
1089
1090 === 6.3.3 Dimension ===
1091
1092
1093 [[image:1656056708366-230.png]]
1094
1095
1096 === 6.3.4 Pin Mapping ===
1097
1098
1099 [[image:1656056722648-743.png]]
1100
1101
1102 === 6.3.5 Installation Notice ===
1103
1104
1105 Do not power on while connect the cables. Double check the wiring before power on.
1106
1107
1108 [[image:1656056751153-304.png]]
1109
1110
1111 [[image:1656056766224-773.png]]
1112
1113
1114 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1115
1116
1117 (((
1118 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1119 )))
1120
1121 (((
1122 WSS-04 has auto heating feature, this ensures measurement more reliable.
1123 )))
1124
1125 (((
1126 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1127 )))
1128
1129
1130 === 6.4.1 Feature ===
1131
1132
1133 * RS485 Rain/Snow detect sensor
1134 * Surface heating to dry
1135 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1136
1137 === 6.4.2 Specification ===
1138
1139
1140 * Detect if there is rain or snow
1141 * Input Power: DC 12 ~~ 24v
1142 * Interface: RS485
1143 * Working Temperature: -30℃~70℃
1144 * Working Humidity: 10~90%RH
1145 * Power Consumption:
1146 ** No heating: 12mA @ 12v,
1147 ** heating: 94ma @ 12v.
1148
1149 === 6.4.3 Dimension ===
1150
1151
1152 [[image:1656056844782-155.png]]
1153
1154
1155 === 6.4.4 Pin Mapping ===
1156
1157
1158 [[image:1656056855590-754.png]]
1159
1160
1161 === 6.4.5 Installation Notice ===
1162
1163
1164 Do not power on while connect the cables. Double check the wiring before power on.
1165
1166 (((
1167 Install with 15°degree.
1168 )))
1169
1170 [[image:1656056873783-780.png]]
1171
1172
1173 [[image:1656056883736-804.png]]
1174
1175
1176 === 6.4.6 Heating ===
1177
1178
1179 (((
1180 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1181 )))
1182
1183
1184 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1185
1186
1187 (((
1188 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1189 )))
1190
1191 (((
1192 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1193 )))
1194
1195
1196 === 6.5.1 Feature ===
1197
1198
1199 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1200
1201 === 6.5.2 Specification ===
1202
1203
1204 * Input Power: DC 12 ~~ 24v
1205 * Interface: RS485
1206 * Temperature Sensor Spec:
1207 ** Range: -30 ~~ 70℃
1208 ** resolution 0.1℃
1209 ** Accuracy: ±0.5℃
1210 * Humidity Sensor Spec:
1211 ** Range: 0 ~~ 100% RH
1212 ** resolution 0.1 %RH
1213 ** Accuracy: 3% RH
1214 * Pressure Sensor Spec:
1215 ** Range: 10~1100hPa
1216 ** Resolution: 0.1hPa
1217 ** Accuracy: ±0.1hPa
1218 * Illuminate sensor:
1219 ** Range: 0~2/20/200kLux
1220 ** Resolution: 10 Lux
1221 ** Accuracy: ±3%FS
1222 * Working Temperature: -30℃~70℃
1223 * Working Humidity: 10~90%RH
1224 * Power Consumption: 4mA @ 12v
1225
1226 === 6.5.3 Dimension ===
1227
1228
1229 [[image:1656057170639-522.png]]
1230
1231
1232 === 6.5.4 Pin Mapping ===
1233
1234
1235 [[image:1656057181899-910.png]]
1236
1237
1238 === 6.5.5 Installation Notice ===
1239
1240
1241 Do not power on while connect the cables. Double check the wiring before power on.
1242
1243 [[image:1656057199955-514.png]]
1244
1245
1246 [[image:1656057212438-475.png]]
1247
1248
1249 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1250
1251
1252 (((
1253 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1254 )))
1255
1256 (((
1257 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1258 )))
1259
1260 (((
1261 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1262 )))
1263
1264
1265 === 6.6.1 Feature ===
1266
1267
1268 * RS485 Total Solar Radiation sensor
1269 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1270 * Measure Reflected Radiation if sense area towards ground.
1271
1272 === 6.6.2 Specification ===
1273
1274
1275 * Input Power: DC 5 ~~ 24v
1276 * Interface: RS485
1277 * Detect spectrum: 0.3~3μm(300~3000nm)
1278 * Measure strength range: 0~2000W/m2
1279 * Resolution: 0.1W/m2
1280 * Accuracy: ±3%
1281 * Yearly Stability: ≤±2%
1282 * Cosine response: ≤7% (@ Sun angle 10°)
1283 * Temperature Effect: ±2%(-10℃~40℃)
1284 * Working Temperature: -40℃~70℃
1285 * Working Humidity: 10~90%RH
1286 * Power Consumption: 4mA @ 12v
1287
1288 === 6.6.3 Dimension ===
1289
1290
1291 [[image:1656057348695-898.png]]
1292
1293
1294 === 6.6.4 Pin Mapping ===
1295
1296
1297 [[image:1656057359343-744.png]]
1298
1299
1300 === 6.6.5 Installation Notice ===
1301
1302
1303 Do not power on while connect the cables. Double check the wiring before power on.
1304
1305
1306 [[image:1656057369259-804.png]]
1307
1308
1309 [[image:1656057377943-564.png]]
1310
1311
1312 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1313
1314
1315 (((
1316 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1317 )))
1318
1319 (((
1320 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1321 )))
1322
1323 (((
1324 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1325 )))
1326
1327
1328 === 6.7.1 Feature ===
1329
1330
1331 (((
1332 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1333 )))
1334
1335 (((
1336 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1337 )))
1338
1339
1340 === 6.7.2 Specification ===
1341
1342
1343 * Input Power: DC 5 ~~ 24v
1344 * Interface: RS485
1345 * Response Spectrum: 400~700nm
1346 * Measure range: 0~2500μmol/m2•s
1347 * Resolution: 1μmol/m2•s
1348 * Accuracy: ±2%
1349 * Yearly Stability: ≤±2%
1350 * Working Temperature: -30℃~75℃
1351 * Working Humidity: 10~90%RH
1352 * Power Consumption: 3mA @ 12v
1353
1354 === 6.7.3 Dimension ===
1355
1356
1357 [[image:1656057538793-888.png]]
1358
1359
1360 === 6.7.4 Pin Mapping ===
1361
1362
1363 [[image:1656057548116-203.png]]
1364
1365
1366 === 6.7.5 Installation Notice ===
1367
1368
1369 Do not power on while connect the cables. Double check the wiring before power on.
1370
1371
1372 [[image:1656057557191-895.png]]
1373
1374
1375 [[image:1656057565783-251.png]]
1376
1377
1378 = 7. FAQ =
1379
1380 == 7.1 What else do I need to purchase to build Weather Station? ==
1381
1382
1383 Below is the installation photo and structure:
1384
1385
1386 [[image:1656057598349-319.png]]
1387
1388
1389 [[image:1656057608049-693.png]]
1390
1391
1392 == 7.2 How to upgrade firmware for WSC1-L? ==
1393
1394
1395 (((
1396 Firmware Location & Change log:
1397
1398 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1399 )))
1400
1401
1402 (((
1403 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1404 )))
1405
1406
1407 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1408
1409
1410 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1411
1412
1413 == 7.4 Can I add my weather sensors? ==
1414
1415
1416 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1417
1418
1419 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1420
1421
1422 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1423
1424
1425 = 8. Trouble Shooting =
1426
1427 == 8.1 AT Command input doesn't work ==
1428
1429
1430 (((
1431 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1432 )))
1433
1434
1435 = 9. Order Info =
1436
1437 == 9.1 Main Process Unit ==
1438
1439
1440 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1441
1442 (% style="color:blue" %)**XX**(%%): The default frequency band
1443
1444 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1445 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1446 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1447 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1448 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1449 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1450 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1451 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1452
1453 == 9.2 Sensors ==
1454
1455
1456 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1457 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1458 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1459 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1460 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1461 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1462 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1463 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1464 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1465 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1466
1467 = 10. Support =
1468
1469
1470 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1471
1472 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1473
1474 = 11. Appendix I: Field Installation Photo =
1475
1476
1477 [[image:1656058346362-132.png||height="685" width="732"]]
1478
1479 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1480
1481
1482
1483 (% style="color:blue" %)**Wind Speed/Direction**
1484
1485 [[image:1656058373174-421.png||height="356" width="731"]]
1486
1487
1488
1489 (% style="color:blue" %)**Total Solar Radiation sensor**
1490
1491 [[image:1656058397364-282.png||height="453" width="732"]]
1492
1493
1494
1495 (% style="color:blue" %)**PAR Sensor**
1496
1497 [[image:1656058416171-615.png]]
1498
1499
1500
1501 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1502
1503 [[image:1656058441194-827.png||height="672" width="523"]]
1504
1505
1506
1507 (% style="color:blue" %)**Rain / Snow Detect**
1508
1509 [[image:1656058451456-166.png]]
1510
1511
1512
1513 (% style="color:blue" %)**Rain Gauge**
1514
1515 [[image:1656058463455-569.png||height="499" width="550"]]
1516
1517
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0