Version 105.1 by Bei Jinggeng on 2023/06/15 09:49

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83 == 2.2 How it works? ==
84
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 (((
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93 )))
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
102
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20230426084533-1.png||height="231" width="497"]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
127
128 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (((
152 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
153 )))
154
155
156 [[image:1656042745346-283.png]]
157
158 == 2.4 Uplink Payload ==
159
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167 === 2.4.1 Uplink FPORT~=5, Device Status ===
168
169
170 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
171
172
173 (((
174 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
175 )))
176
177 (% border="1" cellspacing="8" style="background-color:#f2f2f2; width:500px" %)
178 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
179 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
180
181 [[image:1656043061044-343.png]]
182
183
184 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
185
186
187 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
188
189 For WSC1-L, this value is 0x0D.
190
191
192 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
193
194 0x0100, Means: v1.0.0 version.
195
196
197 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
198
199 *0x01: EU868
200
201 *0x02: US915
202
203 *0x03: IN865
204
205 *0x04: AU915
206
207 *0x05: KZ865
208
209 *0x06: RU864
210
211 *0x07: AS923
212
213 *0x08: AS923-1
214
215 *0x09: AS923-2
216
217 *0x0a: AS923-3
218
219
220 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
221
222 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
223
224
225 ==== (% style="color:#037691" %)**BAT:**(%%) ====
226
227 (((
228 shows the battery voltage for WSC1-L MCU.
229 )))
230
231 (((
232 Ex1: 0x0BD6/1000 = 3.03 V
233 )))
234
235
236 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
237
238 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
239 |Byte3|Byte2|Byte1
240
241 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
242
243 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
244 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
245 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
246 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
247 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
248 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
249 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
250
251 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
252
253 External sensors detected by WSC1-L include :
254
255 custom sensor A1,
256
257 PAR sensor (WSS-07),
258
259 Total Solar Radiation sensor (WSS-06),
260
261 CO2/PM2.5/PM10 (WSS-03),
262
263 Wind Speed/Direction (WSS-02)
264
265
266 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
267
268 (% style="color:#037691" %)**Downlink:0x26 01**
269
270 [[image:1656049673488-415.png]]
271
272
273 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
274
275
276 (((
277 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
278 )))
279
280 (((
281 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
282 )))
283
284
285 (((
286 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
287 )))
288
289
290 (% style="color:#4472c4" %)** Uplink Payload**:
291
292 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
293 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
294
295 (% style="color:#4472c4" %)** Sensor Segment Define**:
296
297 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
298 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
299
300 (% style="color:#4472c4" %)**Sensor Type Table:**
301
302 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
303 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**Example**
304 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
305 (((
306 Speed: 0~60m/s
307 )))
308
309 (((
310 Level: 0~17
311 )))
312 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
313 (((
314 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
315 )))
316
317 (((
318 0x02=2 (0x14: No Sensor, 0x15: Value Error)
319 )))
320 )))
321 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
322 (((
323 Angel: 0~360°
324 )))
325
326 (((
327 Direction: 16 positions
328 )))
329 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
330 (((
331 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
332 )))
333
334 (((
335 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
336 )))
337 )))
338 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
339 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
340 )))
341 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
342 (((
343 0x00 (00) No Rain or snow detected
344 )))
345
346 (((
347 (0x02: No Sensor,0x03: Value Error)
348 )))
349 )))
350 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
352 )))
353 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
354 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
355 )))
356 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
357 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
358 )))
359 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
360 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
361 )))
362 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
363 0mm~100mm(Rainfall in the last 24 hours)
364 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
365 (((
366 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
367 )))
368
369 (((
370 (0x03FE: No Sensor,0x03FF: Value Error)
371 )))
372 )))
373 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
374 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
375 )))
376 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
377 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
378 )))
379 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
380 0~2500μmol/m^^2^^•s
381 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
382 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
383 )))
384 |(% style="width:103px" %)(((
385 Total Solar
386
387 Radiation
388 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
389 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
390 )))
391
392 (((
393 Below is an example payload:  [[image:image-20220624140615-3.png]]
394 )))
395
396 (((
397
398 )))
399
400 (((
401 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
402 )))
403
404 * (((
405 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
406 )))
407
408 (((
409 Uplink 1:  [[image:image-20220624140735-4.png]]
410 )))
411
412
413 (((
414 Uplink 2:  [[image:image-20220624140842-5.png]]
415
416 )))
417
418 * (((
419 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
420 )))
421
422 (((
423 Uplink 1:  [[image:image-20220624141025-6.png]]
424 )))
425
426
427 Uplink 2:  [[image:image-20220624141100-7.png]]
428
429
430 === 2.4.3 Decoder in TTN V3 ===
431
432
433 (((
434 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
435 )))
436
437 (((
438 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
439 )))
440
441
442 (((
443 and put as below:
444 )))
445
446 [[image:1656051152438-578.png]]
447
448
449 == 2.5 Show data on Application Server ==
450
451
452 (((
453 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
454 )))
455
456 (((
457 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
458 )))
459
460 (((
461 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
462 )))
463
464 [[image:1656051197172-131.png]]
465
466
467
468 **Add TagoIO:**
469
470 [[image:1656051223585-631.png]]
471
472
473
474 **Authorization:**
475
476 [[image:1656051248318-368.png]]
477
478
479
480 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
481
482
483 [[image:1656051277767-168.png]]
484
485
486 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
487
488
489 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
490
491 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
492 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
493
494 There are two kinds of commands to configure WSC1-L, they are:
495
496 * (% style="color:#4472c4" %)**General Commands**.
497
498 These commands are to configure:
499
500 * General system settings like: uplink interval.
501 * LoRaWAN protocol & radio related command.
502
503 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
504
505 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
506
507
508 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
509
510 These commands only valid for WSC1-L, as below:
511
512
513 == 3.1 Set Transmit Interval Time ==
514
515
516 Feature: Change LoRaWAN End Node Transmit Interval.
517
518 (% style="color:#037691" %)**AT Command: AT+TDC**
519
520 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
521 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
522 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
523 30000
524 OK
525 the interval is 30000ms = 30s
526 )))
527 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
528 OK
529 Set transmit interval to 60000ms = 60 seconds
530 )))
531
532 (% style="color:#037691" %)**Downlink Command: 0x01**
533
534 Format: Command Code (0x01) followed by 3 bytes time value.
535
536 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
537
538 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
539 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
540
541
542 == 3.2 Set Emergency Mode ==
543
544
545 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
546
547 (% style="color:#037691" %)**AT Command:**
548
549 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:465.818px" %)
550 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:224px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:84px" %)**Response**
551 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
552 OK
553
554 )))
555 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
556 OK
557 )))
558
559 (% style="color:#037691" %)**Downlink Command:**
560
561 * 0xE101     Same as: AT+ALARMMOD=1
562 * 0xE100     Same as: AT+ALARMMOD=0
563
564
565 == 3.3 Add or Delete RS485 Sensor ==
566
567
568 (((
569 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
570 )))
571
572 (((
573 (% style="color:#037691" %)**AT Command: **
574 )))
575
576 (((
577 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
578 )))
579
580 * (((
581 Type_Code range:  A1 ~~ A4
582 )))
583 * (((
584 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
585 )))
586 * (((
587 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
588 )))
589 * (((
590 Read_Length:  RS485 response frame length supposed to receive. Max can receive
591 )))
592 * (((
593 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
594 )))
595 * (((
596 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
597 )))
598 * (((
599 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
600 )))
601
602 (((
603 **Example:**
604 )))
605
606 (((
607 User need to change external sensor use the type code as address code.
608 )))
609
610 (((
611 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
612 )))
613
614 [[image:image-20220624143553-10.png]]
615
616
617 The response frame of the sensor is as follows:
618
619 [[image:image-20220624143618-11.png]]
620
621
622 **Then the following parameters should be:**
623
624 * Address_Code range: A1
625 * Query_Length: 8
626 * Query_Command: A103000000019CAA
627 * Read_Length: 8
628 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
629 * has_CRC: 1
630 * timeout: 1500 (Fill in the test according to the actual situation)
631
632 **So the input command is:**
633
634 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
635
636
637 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
638
639 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
640 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
641 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
642
643 **Related commands:**
644
645 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
646
647 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
648
649
650 (% style="color:#037691" %)**Downlink Command:  **
651
652 **delete custom sensor A1:**
653
654 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
655
656 **Remove all custom sensors**
657
658 * 0xE5FF  
659
660
661 == 3.4 RS485 Test Command ==
662
663
664 (% style="color:#037691" %)**AT Command:**
665
666 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:474px" %)
667 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 228px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
668 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
669 (((
670 Send command to 485 sensor
671 )))
672
673 (((
674 Range : no more than 10 bytes
675 )))
676 )))|(% style="width:85px" %)OK
677
678 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
679
680 AT+RSWRITE=0103000001840A
681
682
683 (% style="color:#037691" %)**Downlink Command:**
684
685 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
686
687
688 == 3.5 RS485 response timeout ==
689
690
691 Feature: Set or get extended time to receive 485 sensor data.
692
693 (% style="color:#037691" %)**AT Command:**
694
695 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
696 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
697 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
698 (((
699 (((
700 Set response timeout to:
701 )))
702 )))
703
704 (((
705 (((
706 Range : 0~~10000
707 )))
708 )))
709 )))|(% style="width:85px" %)OK
710
711 (% style="color:#037691" %)**Downlink Command:**
712
713 Format: Command Code (0xE0) followed by 3 bytes time value.
714
715 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
716
717 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
718 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
719
720
721 == 3.6 Set Sensor Type ==
722
723
724 (((
725 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
726 )))
727
728 (((
729 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
730
731 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
732 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
733 | |A4|A3|A2|A1| | |
734 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
735 | | |Solar Radiation|PAR|PM10|PM2.5|(((
736 Rain
737 Gauge
738 )))|(((
739 Air
740 Pressure
741 )))
742 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
743 |Humidity|Temperature|CO2|(((
744 Rain/Snow
745 Detect
746 )))|illuminance|(((
747 Wind
748 Direction
749 )))|Wind Speed|BAT
750 )))
751
752
753 (% style="color:#037691" %)**AT Command:**
754
755 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
756 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
757 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
758
759 Eg: The setting command **AT+STYPE=80221** means:
760
761 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
762 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
763 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
764 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
765 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
766 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
767 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
768
769 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
770
771
772 (% style="color:#037691" %)**Downlink Command:**
773
774 * 0xE400080221  Same as: AT+STYPE=80221
775
776 (% style="color:red" %)**Note:**
777
778 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
779
780
781 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
782
783 (% style="color:#037691" %)**AT Command:**
784
785 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
786 |=(% style="width: 161px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 184px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
787 |(% style="width:161px" %)(((
788 AT+RAINFALLSWITCH=1
789
790 (Range: 1~~10)
791 )))|(% style="width:184px" %)(((
792 (((
793 (((
794 Set the registers read by the rain gauge
795 )))
796 )))
797 )))|(% style="width:85px" %)OK
798
799
800 (% style="color:#037691" %)**Downlink Command:**
801
802 * 0x1701  Same as: AT+RAINFALLSWITCH=1
803
804 (% class="wikigeneratedid" %)
805 = =
806
807 = 4. Power consumption and battery =
808
809 == 4.1 Total Power Consumption ==
810
811
812 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
813
814
815 == 4.2 Reduce power consumption ==
816
817
818 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
819
820
821 == 4.3 Battery ==
822
823
824 (((
825 All sensors are only power by external power source. If external power source is off. All sensor won't work.
826 )))
827
828 (((
829 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
830 )))
831
832
833 = 5. Main Process Unit WSC1-L =
834
835 == 5.1 Features ==
836
837
838 * Wall Attachable.
839 * LoRaWAN v1.0.3 Class A protocol.
840 * RS485 / Modbus protocol
841 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
842 * AT Commands to change parameters
843 * Remote configure parameters via LoRaWAN Downlink
844 * Firmware upgradable via program port
845 * Powered by external 12v battery
846 * Back up rechargeable 1000mAh battery
847 * IP Rating: IP65
848 * Support default sensors or 3rd party RS485 sensors
849
850
851 == 5.2 Power Consumption ==
852
853
854 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
855
856
857 == 5.3 Storage & Operation Temperature ==
858
859
860 -20°C to +60°C
861
862
863 == 5.4 Pin Mapping ==
864
865
866 [[image:1656054149793-239.png]]
867
868
869 == 5.5 Mechanical ==
870
871
872 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
873
874
875 == 5.6 Connect to RS485 Sensors ==
876
877
878 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
879
880
881 [[image:1656054389031-379.png]]
882
883
884 Hardware Design for the Converter Board please see:
885
886 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
887
888
889 = 6. Weather Sensors =
890
891 == 6.1 Rain Gauge ~-~- WSS-01 ==
892
893
894 (((
895 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
896 )))
897
898 (((
899 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
900 )))
901
902 (((
903 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
904 )))
905
906 (((
907 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
908 )))
909
910 (((
911 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
912 )))
913
914
915 === 6.1.1 Feature ===
916
917
918 * RS485 Rain Gauge
919 * Small dimension, easy to install
920 * Vents under funnel, avoid leaf or other things to avoid rain flow.
921 * ABS enclosure.
922 * Horizontal adjustable.
923
924
925 === 6.1.2 Specification ===
926
927
928 * Resolution: 0.2mm
929 * Accuracy: ±3%
930 * Range: 0 ~~ 100mm
931 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
932 * Input Power: DC 5~~24v
933 * Interface: RS485
934 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
935 * Working Humidity: <100% (no dewing)
936 * Power Consumption: 4mA @ 12v.
937
938
939 === 6.1.3 Dimension ===
940
941
942 [[image:1656054957406-980.png]]
943
944
945 === 6.1.4 Pin Mapping ===
946
947
948 [[image:1656054972828-692.png]]
949
950
951 === 6.1.5 Installation Notice ===
952
953
954 (((
955 Do not power on while connect the cables. Double check the wiring before power on.
956 )))
957
958 (((
959 Installation Photo as reference:
960 )))
961
962
963 (((
964 (% style="color:#4472c4" %)** Install on Ground:**
965 )))
966
967 (((
968 WSS-01 Rain Gauge include screws so can install in ground directly .
969 )))
970
971
972 (((
973 (% style="color:#4472c4" %)** Install on pole:**
974 )))
975
976 (((
977 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
978 )))
979
980 [[image:image-20220624152218-1.png||height="526" width="276"]]
981
982 WS-K2: Bracket Kit for Pole installation
983
984
985 WSSC-K2 dimension document, please see:
986
987 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
988
989
990 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
991
992
993 [[image:1656055444035-179.png]]
994
995
996 (((
997 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
998 )))
999
1000 (((
1001 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
1002 )))
1003
1004 (((
1005 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
1006 )))
1007
1008
1009 === 6.2.1 Feature ===
1010
1011
1012 * RS485 wind speed / direction sensor
1013 * PC enclosure, resist corrosion
1014
1015
1016 === 6.2.2 Specification ===
1017
1018
1019 * Wind speed range: 0 ~~ 60m/s
1020 * Wind direction range: 0 ~~ 360°
1021 * Start wind speed: ≤0.3m/s
1022 * Accuracy: ±(0.3+0.03V)m/s , ±1°
1023 * Input Power: DC 5~~24v
1024 * Interface: RS485
1025 * Working Temperature: -30℃~70℃
1026 * Working Humidity: <100% (no dewing)
1027 * Power Consumption: 13mA ~~ 12v.
1028 * Cable Length: 2 meters
1029
1030
1031 === 6.2.3 Dimension ===
1032
1033
1034 [[image:image-20220624152813-2.png]]
1035
1036
1037 === 6.2.4 Pin Mapping ===
1038
1039
1040 [[image:1656056281231-994.png]]
1041
1042
1043 === 6.2.5  Angle Mapping ===
1044
1045
1046 [[image:1656056303845-585.png]]
1047
1048
1049 === 6.2.6  Installation Notice ===
1050
1051
1052 (((
1053 Do not power on while connect the cables. Double check the wiring before power on.
1054 )))
1055
1056 (((
1057 The sensor must be installed with below direction, towards North.
1058
1059
1060 )))
1061
1062 [[image:image-20220624153901-3.png]]
1063
1064
1065 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1066
1067
1068 (((
1069 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1070 )))
1071
1072 (((
1073 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1074 )))
1075
1076 (((
1077 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1078 )))
1079
1080
1081 === 6.3.1 Feature ===
1082
1083
1084 * RS485 CO2, PM2.5, PM10 sensor
1085 * NDIR to measure CO2 with Internal Temperature Compensation
1086 * Laser Beam Scattering to PM2.5 and PM10
1087
1088
1089 === 6.3.2 Specification ===
1090
1091
1092 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1093 * CO2 resolution: 1ppm
1094 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1095 * PM2.5/PM10 resolution: 1μg/m3
1096 * Input Power: DC 7 ~~ 24v
1097 * Preheat time: 3min
1098 * Interface: RS485
1099 * Working Temperature:
1100 ** CO2: 0℃~50℃;
1101 ** PM2.5/PM10: -30 ~~ 50℃
1102 * Working Humidity:
1103 ** PM2.5/PM10: 15~80%RH (no dewing)
1104 ** CO2: 0~95%RH
1105 * Power Consumption: 50mA@ 12v.
1106
1107
1108 === 6.3.3 Dimension ===
1109
1110
1111 [[image:1656056708366-230.png]]
1112
1113
1114 === 6.3.4 Pin Mapping ===
1115
1116
1117 [[image:1656056722648-743.png]]
1118
1119
1120 === 6.3.5 Installation Notice ===
1121
1122
1123 Do not power on while connect the cables. Double check the wiring before power on.
1124
1125
1126 [[image:1656056751153-304.png]]
1127
1128
1129 [[image:1656056766224-773.png]]
1130
1131
1132 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1133
1134
1135 (((
1136 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1137 )))
1138
1139 (((
1140 WSS-04 has auto heating feature, this ensures measurement more reliable.
1141 )))
1142
1143 (((
1144 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1145 )))
1146
1147
1148 === 6.4.1 Feature ===
1149
1150
1151 * RS485 Rain/Snow detect sensor
1152 * Surface heating to dry
1153 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1154
1155
1156 === 6.4.2 Specification ===
1157
1158
1159 * Detect if there is rain or snow
1160 * Input Power: DC 12 ~~ 24v
1161 * Interface: RS485
1162 * Working Temperature: -30℃~70℃
1163 * Working Humidity: 10~90%RH
1164 * Power Consumption:
1165 ** No heating: 12mA @ 12v,
1166 ** heating: 94ma @ 12v.
1167
1168
1169 === 6.4.3 Dimension ===
1170
1171
1172 [[image:1656056844782-155.png]]
1173
1174
1175 === 6.4.4 Pin Mapping ===
1176
1177
1178 [[image:1656056855590-754.png]]
1179
1180
1181 === 6.4.5 Installation Notice ===
1182
1183
1184 Do not power on while connect the cables. Double check the wiring before power on.
1185
1186 (((
1187 Install with 15°degree.
1188 )))
1189
1190 [[image:1656056873783-780.png]]
1191
1192
1193 [[image:1656056883736-804.png]]
1194
1195
1196 === 6.4.6 Heating ===
1197
1198
1199 (((
1200 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1201 )))
1202
1203
1204 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1205
1206
1207 (((
1208 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1209 )))
1210
1211 (((
1212 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1213 )))
1214
1215
1216 === 6.5.1 Feature ===
1217
1218
1219 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1220
1221
1222 === 6.5.2 Specification ===
1223
1224
1225 * Input Power: DC 12 ~~ 24v
1226 * Interface: RS485
1227 * Temperature Sensor Spec:
1228 ** Range: -30 ~~ 70℃
1229 ** resolution 0.1℃
1230 ** Accuracy: ±0.5℃
1231 * Humidity Sensor Spec:
1232 ** Range: 0 ~~ 100% RH
1233 ** resolution 0.1 %RH
1234 ** Accuracy: 3% RH
1235 * Pressure Sensor Spec:
1236 ** Range: 10~1100hPa
1237 ** Resolution: 0.1hPa
1238 ** Accuracy: ±0.1hPa
1239 * Illuminate sensor:
1240 ** Range: 0~2/20/200kLux
1241 ** Resolution: 10 Lux
1242 ** Accuracy: ±3%FS
1243 * Working Temperature: -30℃~70℃
1244 * Working Humidity: 10~90%RH
1245 * Power Consumption: 4mA @ 12v
1246
1247
1248 === 6.5.3 Dimension ===
1249
1250
1251 [[image:1656057170639-522.png]]
1252
1253
1254 === 6.5.4 Pin Mapping ===
1255
1256
1257 [[image:1656057181899-910.png]]
1258
1259
1260 === 6.5.5 Installation Notice ===
1261
1262
1263 Do not power on while connect the cables. Double check the wiring before power on.
1264
1265 [[image:1656057199955-514.png]]
1266
1267
1268 [[image:1656057212438-475.png]]
1269
1270
1271 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1272
1273
1274 (((
1275 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1276 )))
1277
1278 (((
1279 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1280 )))
1281
1282 (((
1283 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1284 )))
1285
1286
1287 === 6.6.1 Feature ===
1288
1289
1290 * RS485 Total Solar Radiation sensor
1291 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1292 * Measure Reflected Radiation if sense area towards ground.
1293
1294
1295 === 6.6.2 Specification ===
1296
1297
1298 * Input Power: DC 5 ~~ 24v
1299 * Interface: RS485
1300 * Detect spectrum: 0.3~3μm(300~3000nm)
1301 * Measure strength range: 0~2000W/m2
1302 * Resolution: 0.1W/m2
1303 * Accuracy: ±3%
1304 * Yearly Stability: ≤±2%
1305 * Cosine response: ≤7% (@ Sun angle 10°)
1306 * Temperature Effect: ±2%(-10℃~40℃)
1307 * Working Temperature: -40℃~70℃
1308 * Working Humidity: 10~90%RH
1309 * Power Consumption: 4mA @ 12v
1310
1311
1312 === 6.6.3 Dimension ===
1313
1314
1315 [[image:1656057348695-898.png]]
1316
1317
1318 === 6.6.4 Pin Mapping ===
1319
1320
1321 [[image:1656057359343-744.png]]
1322
1323
1324 === 6.6.5 Installation Notice ===
1325
1326
1327 Do not power on while connect the cables. Double check the wiring before power on.
1328
1329
1330 [[image:1656057369259-804.png]]
1331
1332
1333 [[image:1656057377943-564.png]]
1334
1335
1336 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1337
1338
1339 (((
1340 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1341 )))
1342
1343 (((
1344 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1345 )))
1346
1347 (((
1348 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1349 )))
1350
1351
1352 === 6.7.1 Feature ===
1353
1354
1355 (((
1356 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1357 )))
1358
1359 (((
1360 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1361 )))
1362
1363
1364 === 6.7.2 Specification ===
1365
1366
1367 * Input Power: DC 5 ~~ 24v
1368 * Interface: RS485
1369 * Response Spectrum: 400~700nm
1370 * Measure range: 0~2500μmol/m2•s
1371 * Resolution: 1μmol/m2•s
1372 * Accuracy: ±2%
1373 * Yearly Stability: ≤±2%
1374 * Working Temperature: -30℃~75℃
1375 * Working Humidity: 10~90%RH
1376 * Power Consumption: 3mA @ 12v
1377
1378
1379 === 6.7.3 Dimension ===
1380
1381
1382 [[image:1656057538793-888.png]]
1383
1384
1385 === 6.7.4 Pin Mapping ===
1386
1387
1388 [[image:1656057548116-203.png]]
1389
1390
1391 === 6.7.5 Installation Notice ===
1392
1393
1394 Do not power on while connect the cables. Double check the wiring before power on.
1395
1396
1397 [[image:1656057557191-895.png]]
1398
1399
1400 [[image:1656057565783-251.png]]
1401
1402
1403 = 7. FAQ =
1404
1405 == 7.1 What else do I need to purchase to build Weather Station? ==
1406
1407
1408 Below is the installation photo and structure:
1409
1410
1411 [[image:1656057598349-319.png]]
1412
1413
1414 [[image:1656057608049-693.png]]
1415
1416
1417 == 7.2 How to upgrade firmware for WSC1-L? ==
1418
1419
1420 (((
1421 Firmware Location & Change log:
1422
1423 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1424 )))
1425
1426
1427 (((
1428 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1429 )))
1430
1431
1432 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1433
1434
1435 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1436
1437
1438 == 7.4 Can I add my weather sensors? ==
1439
1440
1441 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1442
1443
1444 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1445
1446
1447 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1448
1449
1450 = 8. Trouble Shooting =
1451
1452 == 8.1 AT Command input doesn't work ==
1453
1454
1455 (((
1456 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1457 )))
1458
1459
1460 = 9. Order Info =
1461
1462 == 9.1 Main Process Unit ==
1463
1464
1465 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1466
1467 (% style="color:blue" %)**XX**(%%): The default frequency band
1468
1469 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1470 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1471 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1472 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1473 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1474 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1475 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1476 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1477
1478
1479 == 9.2 Sensors ==
1480
1481
1482 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1483 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1484 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1485 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1486 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1487 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1488 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1489 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1490 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1491 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1492
1493
1494 = 10. Support =
1495
1496
1497 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1498
1499 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1500
1501
1502 = 11. Appendix I: Field Installation Photo =
1503
1504
1505 [[image:1656058346362-132.png||height="685" width="732"]]
1506
1507 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1508
1509
1510
1511 (% style="color:blue" %)**Wind Speed/Direction**
1512
1513 [[image:1656058373174-421.png||height="356" width="731"]]
1514
1515
1516
1517 (% style="color:blue" %)**Total Solar Radiation sensor**
1518
1519 [[image:1656058397364-282.png||height="453" width="732"]]
1520
1521
1522
1523 (% style="color:blue" %)**PAR Sensor**
1524
1525 [[image:1656058416171-615.png]]
1526
1527
1528
1529 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1530
1531 [[image:1656058441194-827.png||height="672" width="523"]]
1532
1533
1534
1535 (% style="color:blue" %)**Rain / Snow Detect**
1536
1537 [[image:1656058451456-166.png]]
1538
1539
1540
1541 (% style="color:blue" %)**Rain Gauge**
1542
1543 [[image:1656058463455-569.png||height="499" width="550"]]
1544
1545
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0