Version 104.7 by Xiaoling on 2023/04/28 17:13

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299
300 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
301 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**Example**
302 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
303 (((
304 Speed: 0~60m/s
305 )))
306
307 (((
308 Level: 0~17
309 )))
310 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
311 (((
312 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
313 )))
314
315 (((
316 0x02=2 (0x14: No Sensor, 0x15: Value Error)
317 )))
318 )))
319 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
320 (((
321 Angel: 0~360°
322 )))
323
324 (((
325 Direction: 16 positions
326 )))
327 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
328 (((
329 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
330 )))
331
332 (((
333 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
334 )))
335 )))
336 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
337 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
338 )))
339 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
340 (((
341 0x00 (00) No Rain or snow detected
342 )))
343
344 (((
345 (0x02: No Sensor,0x03: Value Error)
346 )))
347 )))
348 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
349 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
350 )))
351 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
352 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
353 )))
354 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
355 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
356 )))
357 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
358 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
359 )))
360 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
361 0mm~100mm(Rainfall in the last 24 hours)
362 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
363 (((
364 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
365 )))
366
367 (((
368 (0x03FE: No Sensor,0x03FF: Value Error)
369 )))
370 )))
371 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
372 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
373 )))
374 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
375 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
376 )))
377 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
378 0~2500μmol/m^^2^^•s
379 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
380 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
381 )))
382 |(% style="width:103px" %)(((
383 Total Solar
384
385 Radiation
386 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
387 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
388 )))
389
390
391 (((
392 Below is an example payload:  [[image:image-20220624140615-3.png]]
393 )))
394
395 (((
396
397 )))
398
399 (((
400 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
401 )))
402
403 * (((
404 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
405 )))
406
407 (((
408 Uplink 1:  [[image:image-20220624140735-4.png]]
409 )))
410
411
412 (((
413 Uplink 2:  [[image:image-20220624140842-5.png]]
414
415 )))
416
417 * (((
418 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
419 )))
420
421 (((
422 Uplink 1:  [[image:image-20220624141025-6.png]]
423 )))
424
425
426 Uplink 2:  [[image:image-20220624141100-7.png]]
427
428
429 === 2.4.3 Decoder in TTN V3 ===
430
431
432 (((
433 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
434 )))
435
436 (((
437 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
438 )))
439
440
441 (((
442 and put as below:
443 )))
444
445 [[image:1656051152438-578.png]]
446
447
448 == 2.5 Show data on Application Server ==
449
450
451 (((
452 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
453 )))
454
455 (((
456 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
457 )))
458
459 (((
460 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
461 )))
462
463 [[image:1656051197172-131.png]]
464
465
466
467 **Add TagoIO:**
468
469 [[image:1656051223585-631.png]]
470
471
472
473 **Authorization:**
474
475 [[image:1656051248318-368.png]]
476
477
478
479 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
480
481
482 [[image:1656051277767-168.png]]
483
484
485 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
486
487
488 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
489
490 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
491 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
492
493 There are two kinds of commands to configure WSC1-L, they are:
494
495 * (% style="color:#4472c4" %)**General Commands**.
496
497 These commands are to configure:
498
499 * General system settings like: uplink interval.
500 * LoRaWAN protocol & radio related command.
501
502 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
503
504 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
505
506
507 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
508
509 These commands only valid for WSC1-L, as below:
510
511
512 == 3.1 Set Transmit Interval Time ==
513
514
515 Feature: Change LoRaWAN End Node Transmit Interval.
516
517 (% style="color:#037691" %)**AT Command: AT+TDC**
518
519 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
520 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
521 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
522 30000
523 OK
524 the interval is 30000ms = 30s
525 )))
526 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
527 OK
528 Set transmit interval to 60000ms = 60 seconds
529 )))
530
531
532 (% style="color:#037691" %)**Downlink Command: 0x01**
533
534 Format: Command Code (0x01) followed by 3 bytes time value.
535
536 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
537
538 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
539 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
540
541 == 3.2 Set Emergency Mode ==
542
543
544 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
545
546 (% style="color:#037691" %)**AT Command:**
547
548 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:465.818px" %)
549 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:224px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:84px" %)**Response**
550 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
551 OK
552
553 )))
554 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
555 OK
556 )))
557
558
559 (% style="color:#037691" %)**Downlink Command:**
560
561 * 0xE101     Same as: AT+ALARMMOD=1
562 * 0xE100     Same as: AT+ALARMMOD=0
563
564 == 3.3 Add or Delete RS485 Sensor ==
565
566
567 (((
568 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
569 )))
570
571 (((
572 (% style="color:#037691" %)**AT Command: **
573 )))
574
575 (((
576 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
577 )))
578
579 * (((
580 Type_Code range:  A1 ~~ A4
581 )))
582 * (((
583 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
584 )))
585 * (((
586 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
587 )))
588 * (((
589 Read_Length:  RS485 response frame length supposed to receive. Max can receive
590 )))
591 * (((
592 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
593 )))
594 * (((
595 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
596 )))
597 * (((
598 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
599 )))
600
601 (((
602 **Example:**
603 )))
604
605 (((
606 User need to change external sensor use the type code as address code.
607 )))
608
609 (((
610 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
611 )))
612
613 [[image:image-20220624143553-10.png]]
614
615
616 The response frame of the sensor is as follows:
617
618 [[image:image-20220624143618-11.png]]
619
620
621 **Then the following parameters should be:**
622
623 * Address_Code range: A1
624 * Query_Length: 8
625 * Query_Command: A103000000019CAA
626 * Read_Length: 8
627 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
628 * has_CRC: 1
629 * timeout: 1500 (Fill in the test according to the actual situation)
630
631 **So the input command is:**
632
633 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
634
635
636 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
637
638 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:351px" %)
639 |=(% style="width: 94px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 121px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
640 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
641
642 **Related commands:**
643
644 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
645
646 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
647
648
649 (% style="color:#037691" %)**Downlink Command:  **
650
651 **delete custom sensor A1:**
652
653 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
654
655 **Remove all custom sensors**
656
657 * 0xE5FF  
658
659 == 3.4 RS485 Test Command ==
660
661
662 (% style="color:#037691" %)**AT Command:**
663
664 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
665 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
666 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
667 (((
668 Send command to 485 sensor
669 )))
670
671 (((
672 Range : no more than 10 bytes
673 )))
674 )))|(% style="width:85px" %)OK
675
676 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
677
678 AT+RSWRITE=0103000001840A
679
680
681 (% style="color:#037691" %)**Downlink Command:**
682
683 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
684
685 == 3.5 RS485 response timeout ==
686
687
688 Feature: Set or get extended time to receive 485 sensor data.
689
690 (% style="color:#037691" %)**AT Command:**
691
692 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
693 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
694 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
695 (((
696 Set response timeout to:
697 )))
698
699 (((
700 Range : 0~~10000
701 )))
702 )))|(% style="width:85px" %)OK
703
704 (% style="color:#037691" %)**Downlink Command:**
705
706 Format: Command Code (0xE0) followed by 3 bytes time value.
707
708 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
709
710 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
711 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
712
713 == 3.6 Set Sensor Type ==
714
715
716 (((
717 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
718 )))
719
720 (((
721 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
722 )))
723
724 [[image:image-20220624144904-12.png]]
725
726
727 (% style="color:#037691" %)**AT Command:**
728
729 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
730 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
731 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
732
733 Eg: The setting command **AT+STYPE=80221** means:
734
735 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
736 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
737 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
738 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
739 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
740 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
741 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
742
743 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
744
745
746 (% style="color:#037691" %)**Downlink Command:**
747
748 * 0xE400080221  Same as: AT+STYPE=80221
749
750 (% style="color:red" %)**Note:**
751
752 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
753
754
755 = 4. Power consumption and battery =
756
757 == 4.1 Total Power Consumption ==
758
759
760 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
761
762
763 == 4.2 Reduce power consumption ==
764
765
766 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
767
768
769 == 4.3 Battery ==
770
771
772 (((
773 All sensors are only power by external power source. If external power source is off. All sensor won't work.
774 )))
775
776 (((
777 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
778 )))
779
780
781 = 5. Main Process Unit WSC1-L =
782
783 == 5.1 Features ==
784
785
786 * Wall Attachable.
787 * LoRaWAN v1.0.3 Class A protocol.
788 * RS485 / Modbus protocol
789 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
790 * AT Commands to change parameters
791 * Remote configure parameters via LoRaWAN Downlink
792 * Firmware upgradable via program port
793 * Powered by external 12v battery
794 * Back up rechargeable 1000mAh battery
795 * IP Rating: IP65
796 * Support default sensors or 3rd party RS485 sensors
797
798 == 5.2 Power Consumption ==
799
800
801 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
802
803
804 == 5.3 Storage & Operation Temperature ==
805
806
807 -20°C to +60°C
808
809
810 == 5.4 Pin Mapping ==
811
812
813 [[image:1656054149793-239.png]]
814
815
816 == 5.5 Mechanical ==
817
818
819 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
820
821
822 == 5.6 Connect to RS485 Sensors ==
823
824
825 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
826
827
828 [[image:1656054389031-379.png]]
829
830
831 Hardware Design for the Converter Board please see:
832
833 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
834
835
836 = 6. Weather Sensors =
837
838 == 6.1 Rain Gauge ~-~- WSS-01 ==
839
840
841 (((
842 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
843 )))
844
845 (((
846 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
847 )))
848
849 (((
850 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
851 )))
852
853 (((
854 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
855 )))
856
857 (((
858 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
859 )))
860
861
862 === 6.1.1 Feature ===
863
864
865 * RS485 Rain Gauge
866 * Small dimension, easy to install
867 * Vents under funnel, avoid leaf or other things to avoid rain flow.
868 * ABS enclosure.
869 * Horizontal adjustable.
870
871 === 6.1.2 Specification ===
872
873
874 * Resolution: 0.2mm
875 * Accuracy: ±3%
876 * Range: 0 ~~ 100mm
877 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
878 * Input Power: DC 5~~24v
879 * Interface: RS485
880 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
881 * Working Humidity: <100% (no dewing)
882 * Power Consumption: 4mA @ 12v.
883
884 === 6.1.3 Dimension ===
885
886
887 [[image:1656054957406-980.png]]
888
889
890 === 6.1.4 Pin Mapping ===
891
892
893 [[image:1656054972828-692.png]]
894
895
896 === 6.1.5 Installation Notice ===
897
898
899 (((
900 Do not power on while connect the cables. Double check the wiring before power on.
901 )))
902
903 (((
904 Installation Photo as reference:
905 )))
906
907
908 (((
909 (% style="color:#4472c4" %)** Install on Ground:**
910 )))
911
912 (((
913 WSS-01 Rain Gauge include screws so can install in ground directly .
914 )))
915
916
917 (((
918 (% style="color:#4472c4" %)** Install on pole:**
919 )))
920
921 (((
922 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
923 )))
924
925 [[image:image-20220624152218-1.png||height="526" width="276"]]
926
927 WS-K2: Bracket Kit for Pole installation
928
929
930 WSSC-K2 dimension document, please see:
931
932 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
933
934
935 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
936
937
938 [[image:1656055444035-179.png]]
939
940
941 (((
942 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
943 )))
944
945 (((
946 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
947 )))
948
949 (((
950 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
951 )))
952
953
954
955 === 6.2.1 Feature ===
956
957
958 * RS485 wind speed / direction sensor
959 * PC enclosure, resist corrosion
960
961 === 6.2.2 Specification ===
962
963
964 * Wind speed range: 0 ~~ 60m/s
965 * Wind direction range: 0 ~~ 360°
966 * Start wind speed: ≤0.3m/s
967 * Accuracy: ±(0.3+0.03V)m/s , ±1°
968 * Input Power: DC 5~~24v
969 * Interface: RS485
970 * Working Temperature: -30℃~70℃
971 * Working Humidity: <100% (no dewing)
972 * Power Consumption: 13mA ~~ 12v.
973 * Cable Length: 2 meters
974
975 === 6.2.3 Dimension ===
976
977
978 [[image:image-20220624152813-2.png]]
979
980
981 === 6.2.4 Pin Mapping ===
982
983
984 [[image:1656056281231-994.png]]
985
986
987 === 6.2.5  Angle Mapping ===
988
989
990 [[image:1656056303845-585.png]]
991
992
993 === 6.2.6  Installation Notice ===
994
995
996 (((
997 Do not power on while connect the cables. Double check the wiring before power on.
998 )))
999
1000 (((
1001 The sensor must be installed with below direction, towards North.
1002
1003
1004 )))
1005
1006 [[image:image-20220624153901-3.png]]
1007
1008
1009 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1010
1011
1012 (((
1013 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1014 )))
1015
1016 (((
1017 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1018 )))
1019
1020 (((
1021 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1022 )))
1023
1024
1025 === 6.3.1 Feature ===
1026
1027
1028 * RS485 CO2, PM2.5, PM10 sensor
1029 * NDIR to measure CO2 with Internal Temperature Compensation
1030 * Laser Beam Scattering to PM2.5 and PM10
1031
1032 === 6.3.2 Specification ===
1033
1034
1035 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1036 * CO2 resolution: 1ppm
1037 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1038 * PM2.5/PM10 resolution: 1μg/m3
1039 * Input Power: DC 7 ~~ 24v
1040 * Preheat time: 3min
1041 * Interface: RS485
1042 * Working Temperature:
1043 ** CO2: 0℃~50℃;
1044 ** PM2.5/PM10: -30 ~~ 50℃
1045 * Working Humidity:
1046 ** PM2.5/PM10: 15~80%RH (no dewing)
1047 ** CO2: 0~95%RH
1048 * Power Consumption: 50mA@ 12v.
1049
1050 === 6.3.3 Dimension ===
1051
1052
1053 [[image:1656056708366-230.png]]
1054
1055
1056 === 6.3.4 Pin Mapping ===
1057
1058
1059 [[image:1656056722648-743.png]]
1060
1061
1062 === 6.3.5 Installation Notice ===
1063
1064
1065 Do not power on while connect the cables. Double check the wiring before power on.
1066
1067
1068 [[image:1656056751153-304.png]]
1069
1070
1071 [[image:1656056766224-773.png]]
1072
1073
1074 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1075
1076
1077 (((
1078 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1079 )))
1080
1081 (((
1082 WSS-04 has auto heating feature, this ensures measurement more reliable.
1083 )))
1084
1085 (((
1086 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1087 )))
1088
1089
1090 === 6.4.1 Feature ===
1091
1092
1093 * RS485 Rain/Snow detect sensor
1094 * Surface heating to dry
1095 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1096
1097 === 6.4.2 Specification ===
1098
1099
1100 * Detect if there is rain or snow
1101 * Input Power: DC 12 ~~ 24v
1102 * Interface: RS485
1103 * Working Temperature: -30℃~70℃
1104 * Working Humidity: 10~90%RH
1105 * Power Consumption:
1106 ** No heating: 12mA @ 12v,
1107 ** heating: 94ma @ 12v.
1108
1109 === 6.4.3 Dimension ===
1110
1111
1112 [[image:1656056844782-155.png]]
1113
1114
1115 === 6.4.4 Pin Mapping ===
1116
1117
1118 [[image:1656056855590-754.png]]
1119
1120
1121 === 6.4.5 Installation Notice ===
1122
1123
1124 Do not power on while connect the cables. Double check the wiring before power on.
1125
1126
1127 (((
1128 Install with 15°degree.
1129 )))
1130
1131 [[image:1656056873783-780.png]]
1132
1133
1134 [[image:1656056883736-804.png]]
1135
1136
1137 === 6.4.6 Heating ===
1138
1139
1140 (((
1141 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1142 )))
1143
1144
1145 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1146
1147
1148 (((
1149 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1150 )))
1151
1152 (((
1153 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1154 )))
1155
1156
1157 === 6.5.1 Feature ===
1158
1159
1160 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1161
1162 === 6.5.2 Specification ===
1163
1164
1165 * Input Power: DC 12 ~~ 24v
1166 * Interface: RS485
1167 * Temperature Sensor Spec:
1168 ** Range: -30 ~~ 70℃
1169 ** resolution 0.1℃
1170 ** Accuracy: ±0.5℃
1171 * Humidity Sensor Spec:
1172 ** Range: 0 ~~ 100% RH
1173 ** resolution 0.1 %RH
1174 ** Accuracy: 3% RH
1175 * Pressure Sensor Spec:
1176 ** Range: 10~1100hPa
1177 ** Resolution: 0.1hPa
1178 ** Accuracy: ±0.1hPa
1179 * Illuminate sensor:
1180 ** Range: 0~2/20/200kLux
1181 ** Resolution: 10 Lux
1182 ** Accuracy: ±3%FS
1183 * Working Temperature: -30℃~70℃
1184 * Working Humidity: 10~90%RH
1185 * Power Consumption: 4mA @ 12v
1186
1187 === 6.5.3 Dimension ===
1188
1189
1190 [[image:1656057170639-522.png]]
1191
1192
1193 === 6.5.4 Pin Mapping ===
1194
1195
1196 [[image:1656057181899-910.png]]
1197
1198
1199 === 6.5.5 Installation Notice ===
1200
1201
1202 Do not power on while connect the cables. Double check the wiring before power on.
1203
1204 [[image:1656057199955-514.png]]
1205
1206
1207 [[image:1656057212438-475.png]]
1208
1209
1210 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1211
1212
1213 (((
1214 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1215 )))
1216
1217 (((
1218 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1219 )))
1220
1221 (((
1222 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1223 )))
1224
1225
1226 === 6.6.1 Feature ===
1227
1228
1229 * RS485 Total Solar Radiation sensor
1230 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1231 * Measure Reflected Radiation if sense area towards ground.
1232
1233 === 6.6.2 Specification ===
1234
1235
1236 * Input Power: DC 5 ~~ 24v
1237 * Interface: RS485
1238 * Detect spectrum: 0.3~3μm(300~3000nm)
1239 * Measure strength range: 0~2000W/m2
1240 * Resolution: 0.1W/m2
1241 * Accuracy: ±3%
1242 * Yearly Stability: ≤±2%
1243 * Cosine response: ≤7% (@ Sun angle 10°)
1244 * Temperature Effect: ±2%(-10℃~40℃)
1245 * Working Temperature: -40℃~70℃
1246 * Working Humidity: 10~90%RH
1247 * Power Consumption: 4mA @ 12v
1248
1249 === 6.6.3 Dimension ===
1250
1251
1252 [[image:1656057348695-898.png]]
1253
1254
1255 === 6.6.4 Pin Mapping ===
1256
1257
1258 [[image:1656057359343-744.png]]
1259
1260
1261 === 6.6.5 Installation Notice ===
1262
1263
1264 Do not power on while connect the cables. Double check the wiring before power on.
1265
1266
1267 [[image:1656057369259-804.png]]
1268
1269
1270 [[image:1656057377943-564.png]]
1271
1272
1273 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1274
1275
1276 (((
1277 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1278 )))
1279
1280 (((
1281 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1282 )))
1283
1284 (((
1285 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1286 )))
1287
1288
1289 === 6.7.1 Feature ===
1290
1291
1292 (((
1293 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1294 )))
1295
1296 (((
1297 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1298 )))
1299
1300
1301 === 6.7.2 Specification ===
1302
1303
1304 * Input Power: DC 5 ~~ 24v
1305 * Interface: RS485
1306 * Response Spectrum: 400~700nm
1307 * Measure range: 0~2500μmol/m2•s
1308 * Resolution: 1μmol/m2•s
1309 * Accuracy: ±2%
1310 * Yearly Stability: ≤±2%
1311 * Working Temperature: -30℃~75℃
1312 * Working Humidity: 10~90%RH
1313 * Power Consumption: 3mA @ 12v
1314
1315 === 6.7.3 Dimension ===
1316
1317
1318 [[image:1656057538793-888.png]]
1319
1320
1321 === 6.7.4 Pin Mapping ===
1322
1323
1324 [[image:1656057548116-203.png]]
1325
1326
1327 === 6.7.5 Installation Notice ===
1328
1329
1330 Do not power on while connect the cables. Double check the wiring before power on.
1331
1332
1333 [[image:1656057557191-895.png]]
1334
1335
1336 [[image:1656057565783-251.png]]
1337
1338
1339 = 7. FAQ =
1340
1341 == 7.1 What else do I need to purchase to build Weather Station? ==
1342
1343
1344 Below is the installation photo and structure:
1345
1346
1347 [[image:1656057598349-319.png]]
1348
1349
1350 [[image:1656057608049-693.png]]
1351
1352
1353 == 7.2 How to upgrade firmware for WSC1-L? ==
1354
1355
1356 (((
1357 Firmware Location & Change log:
1358
1359 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1360 )))
1361
1362
1363 (((
1364 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1365 )))
1366
1367
1368 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1369
1370
1371 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1372
1373
1374 == 7.4 Can I add my weather sensors? ==
1375
1376
1377 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1378
1379
1380 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1381
1382 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1383
1384
1385 = 8. Trouble Shooting =
1386
1387 == 8.1 AT Command input doesn't work ==
1388
1389
1390 (((
1391 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1392 )))
1393
1394
1395 = 9. Order Info =
1396
1397 == 9.1 Main Process Unit ==
1398
1399
1400 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1401
1402 (% style="color:blue" %)**XX**(%%): The default frequency band
1403
1404 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1405 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1406 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1407 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1408 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1409 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1410 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1411 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1412
1413 == 9.2 Sensors ==
1414
1415
1416 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1417 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1418 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1419 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1420 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1421 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1422 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1423 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1424 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1425 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1426
1427 = 10. Support =
1428
1429
1430 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1431
1432 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1433
1434 = 11. Appendix I: Field Installation Photo =
1435
1436
1437 [[image:1656058346362-132.png||height="685" width="732"]]
1438
1439 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1440
1441
1442
1443 (% style="color:blue" %)**Wind Speed/Direction**
1444
1445 [[image:1656058373174-421.png||height="356" width="731"]]
1446
1447
1448
1449 (% style="color:blue" %)**Total Solar Radiation sensor**
1450
1451 [[image:1656058397364-282.png||height="453" width="732"]]
1452
1453
1454
1455 (% style="color:blue" %)**PAR Sensor**
1456
1457 [[image:1656058416171-615.png]]
1458
1459
1460
1461 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1462
1463 [[image:1656058441194-827.png||height="672" width="523"]]
1464
1465
1466
1467 (% style="color:blue" %)**Rain / Snow Detect**
1468
1469 [[image:1656058451456-166.png]]
1470
1471
1472
1473 (% style="color:blue" %)**Rain Gauge**
1474
1475 [[image:1656058463455-569.png||height="499" width="550"]]
1476
1477