Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248
249 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
250
251 External sensors detected by WSC1-L include :
252
253 custom sensor A1,
254
255 PAR sensor (WSS-07),
256
257 Total Solar Radiation sensor (WSS-06),
258
259 CO2/PM2.5/PM10 (WSS-03),
260
261 Wind Speed/Direction (WSS-02)
262
263
264 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
265
266 (% style="color:#037691" %)**Downlink:0x26 01**
267
268 [[image:1656049673488-415.png]]
269
270
271 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
272
273
274 (((
275 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
276 )))
277
278 (((
279 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
280 )))
281
282
283 (((
284 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
285 )))
286
287
288 (% style="color:#4472c4" %)** Uplink Payload**:
289
290 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:464px" %)
291 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
292
293 (% style="color:#4472c4" %)** Sensor Segment Define**:
294
295 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
296 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
297
298 (% style="color:#4472c4" %)**Sensor Type Table:**
299
300
301
302 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
303 |**Wind Speed**|0x01|(((
304 Speed: 0~60m/s
305
306 Level: 0~17
307 )))|0x03 |(((
308 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
309
310 0x02=2 (0x14: No Sensor, 0x15: Value Error)
311 )))
312 |**Wind Direction**|0x02|(((
313 Angel: 0~360°
314
315 Direction: 16 positions
316 )))|0x03|(((
317 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
318
319 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
320 )))
321 |**Illumination**|0x03|0~200000kLux|0x02|0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
322 |**Rain / Snow**|0x04|0A: No, 01 Yes.|0x01|(((
323 0x00 (00) No Rain or snow detected
324
325 (0x02: No Sensor,0x03: Value Error)
326 )))
327 |**CO2**|0x05|0~5000ppm|0x02|0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
328 |**Temperature**|0x06|-30℃~70℃|0x02|0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
329 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
330 |**Pressure**|0x08|10~1100hPa|0x02|0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
331 |**Rain Gauge**|0x09|0mm~100mm()|0x02|(((
332 0x0000/10=0mm (last 24 hours?)
333
334 (0x00: No Sensor,0x01: Value Error)
335 )))
336 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|0x0023=35μg/m^^3  ^^(0x05DC: No Sensor,0x7D0: Value Error)
337 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|0x002D=45μg/m^^3  ^^(0x05DC: No Sensor,0x7D0: Value Error)
338 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|0x00B3=179μmol/m^^2^^•s (0x0BB8: No Sensor,0xED8: Value Error)
339 |(((
340 **Total Solar**
341
342 **Radiation**
343 )))|0x0D|0~2000W/m^^2^^|0x02|0x0073/10=11.5W/m^^2^^(0x0BB8: No Sensor,0xED8: Value Error)
344
345 [[image:image-20230428162706-6.png]]
346
347 [[image:image-20220706154434-1.png]]
348
349
350 (((
351 Below is an example payload:  [[image:image-20220624140615-3.png]]
352 )))
353
354 (((
355
356 )))
357
358 (((
359 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
360 )))
361
362 * (((
363 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
364 )))
365
366 (((
367 Uplink 1:  [[image:image-20220624140735-4.png]]
368 )))
369
370
371 (((
372 Uplink 2:  [[image:image-20220624140842-5.png]]
373
374 )))
375
376 * (((
377 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
378 )))
379
380 (((
381 Uplink 1:  [[image:image-20220624141025-6.png]]
382 )))
383
384
385 Uplink 2:  [[image:image-20220624141100-7.png]]
386
387
388 === 2.4.3 Decoder in TTN V3 ===
389
390
391 (((
392 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
393 )))
394
395 (((
396 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
397 )))
398
399
400 (((
401 and put as below:
402 )))
403
404 [[image:1656051152438-578.png]]
405
406
407 == 2.5 Show data on Application Server ==
408
409
410 (((
411 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
412 )))
413
414 (((
415 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
416 )))
417
418 (((
419 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
420 )))
421
422 [[image:1656051197172-131.png]]
423
424
425
426 **Add TagoIO:**
427
428 [[image:1656051223585-631.png]]
429
430
431
432 **Authorization:**
433
434 [[image:1656051248318-368.png]]
435
436
437
438 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
439
440
441 [[image:1656051277767-168.png]]
442
443
444 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
445
446
447 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
448
449 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
450 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
451
452 There are two kinds of commands to configure WSC1-L, they are:
453
454 * (% style="color:#4472c4" %)**General Commands**.
455
456 These commands are to configure:
457
458 * General system settings like: uplink interval.
459 * LoRaWAN protocol & radio related command.
460
461 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
462
463 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
464
465
466 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
467
468 These commands only valid for WSC1-L, as below:
469
470
471 == 3.1 Set Transmit Interval Time ==
472
473
474 Feature: Change LoRaWAN End Node Transmit Interval.
475
476 (% style="color:#037691" %)**AT Command: AT+TDC**
477
478 [[image:image-20220624142619-8.png]]
479
480
481 (% style="color:#037691" %)**Downlink Command: 0x01**
482
483 Format: Command Code (0x01) followed by 3 bytes time value.
484
485 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
486
487 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
488 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
489
490 == 3.2 Set Emergency Mode ==
491
492
493 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
494
495 (% style="color:#037691" %)**AT Command:**
496
497 [[image:image-20220624142956-9.png]]
498
499
500 (% style="color:#037691" %)**Downlink Command:**
501
502 * 0xE101     Same as: AT+ALARMMOD=1
503 * 0xE100     Same as: AT+ALARMMOD=0
504
505 == 3.3 Add or Delete RS485 Sensor ==
506
507
508 (((
509 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
510 )))
511
512 (((
513 (% style="color:#037691" %)**AT Command: **
514 )))
515
516 (((
517 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
518 )))
519
520 * (((
521 Type_Code range:  A1 ~~ A4
522 )))
523 * (((
524 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
525 )))
526 * (((
527 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
528 )))
529 * (((
530 Read_Length:  RS485 response frame length supposed to receive. Max can receive
531 )))
532 * (((
533 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
534 )))
535 * (((
536 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
537 )))
538 * (((
539 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
540 )))
541
542 (((
543 **Example:**
544 )))
545
546 (((
547 User need to change external sensor use the type code as address code.
548 )))
549
550 (((
551 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
552 )))
553
554 [[image:image-20220624143553-10.png]]
555
556
557 The response frame of the sensor is as follows:
558
559 [[image:image-20220624143618-11.png]]
560
561
562 **Then the following parameters should be:**
563
564 * Address_Code range: A1
565 * Query_Length: 8
566 * Query_Command: A103000000019CAA
567 * Read_Length: 8
568 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
569 * has_CRC: 1
570 * timeout: 1500 (Fill in the test according to the actual situation)
571
572 **So the input command is:**
573
574 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
575
576
577 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
578
579 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
580 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
581 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
582
583 **Related commands:**
584
585 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
586
587 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
588
589
590 (% style="color:#037691" %)**Downlink Command:  **
591
592 **delete custom sensor A1:**
593
594 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
595
596 **Remove all custom sensors**
597
598 * 0xE5FF  
599
600 == 3.4 RS485 Test Command ==
601
602
603 (% style="color:#037691" %)**AT Command:**
604
605 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
606 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
607 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
608 (((
609 Send command to 485 sensor
610 )))
611
612 (((
613 Range : no more than 10 bytes
614 )))
615 )))|(% style="width:85px" %)OK
616
617 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
618
619 AT+RSWRITE=0103000001840A
620
621
622 (% style="color:#037691" %)**Downlink Command:**
623
624 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
625
626 == 3.5 RS485 response timeout ==
627
628
629 Feature: Set or get extended time to receive 485 sensor data.
630
631 (% style="color:#037691" %)**AT Command:**
632
633 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
634 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
635 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
636 (((
637 Set response timeout to:
638 )))
639
640 (((
641 Range : 0~~10000
642 )))
643 )))|(% style="width:85px" %)OK
644
645 (% style="color:#037691" %)**Downlink Command:**
646
647 Format: Command Code (0xE0) followed by 3 bytes time value.
648
649 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
650
651 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
652 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
653
654 == 3.6 Set Sensor Type ==
655
656
657 (((
658 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
659 )))
660
661 (((
662 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
663 )))
664
665 [[image:image-20220624144904-12.png]]
666
667
668 (% style="color:#037691" %)**AT Command:**
669
670 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
671 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
672 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
673
674 Eg: The setting command **AT+STYPE=80221** means:
675
676 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
677 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
678 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
679 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
680 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
681 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
682 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
683
684 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
685
686
687 (% style="color:#037691" %)**Downlink Command:**
688
689 * 0xE400080221  Same as: AT+STYPE=80221
690
691 (% style="color:red" %)**Note:**
692
693 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
694
695
696 = 4. Power consumption and battery =
697
698 == 4.1 Total Power Consumption ==
699
700
701 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
702
703
704 == 4.2 Reduce power consumption ==
705
706
707 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
708
709
710 == 4.3 Battery ==
711
712
713 (((
714 All sensors are only power by external power source. If external power source is off. All sensor won't work.
715 )))
716
717 (((
718 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
719 )))
720
721
722 = 5. Main Process Unit WSC1-L =
723
724 == 5.1 Features ==
725
726
727 * Wall Attachable.
728 * LoRaWAN v1.0.3 Class A protocol.
729 * RS485 / Modbus protocol
730 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
731 * AT Commands to change parameters
732 * Remote configure parameters via LoRaWAN Downlink
733 * Firmware upgradable via program port
734 * Powered by external 12v battery
735 * Back up rechargeable 1000mAh battery
736 * IP Rating: IP65
737 * Support default sensors or 3rd party RS485 sensors
738
739 == 5.2 Power Consumption ==
740
741
742 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
743
744
745 == 5.3 Storage & Operation Temperature ==
746
747
748 -20°C to +60°C
749
750
751 == 5.4 Pin Mapping ==
752
753
754 [[image:1656054149793-239.png]]
755
756
757 == 5.5 Mechanical ==
758
759
760 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
761
762
763 == 5.6 Connect to RS485 Sensors ==
764
765
766 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
767
768
769 [[image:1656054389031-379.png]]
770
771
772 Hardware Design for the Converter Board please see:
773
774 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
775
776
777 = 6. Weather Sensors =
778
779 == 6.1 Rain Gauge ~-~- WSS-01 ==
780
781
782 (((
783 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
784 )))
785
786 (((
787 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
788 )))
789
790 (((
791 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
792 )))
793
794 (((
795 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
796 )))
797
798 (((
799 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
800 )))
801
802
803 === 6.1.1 Feature ===
804
805
806 * RS485 Rain Gauge
807 * Small dimension, easy to install
808 * Vents under funnel, avoid leaf or other things to avoid rain flow.
809 * ABS enclosure.
810 * Horizontal adjustable.
811
812 === 6.1.2 Specification ===
813
814
815 * Resolution: 0.2mm
816 * Accuracy: ±3%
817 * Range: 0 ~~ 100mm
818 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
819 * Input Power: DC 5~~24v
820 * Interface: RS485
821 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
822 * Working Humidity: <100% (no dewing)
823 * Power Consumption: 4mA @ 12v.
824
825 === 6.1.3 Dimension ===
826
827
828 [[image:1656054957406-980.png]]
829
830
831 === 6.1.4 Pin Mapping ===
832
833
834 [[image:1656054972828-692.png]]
835
836
837 === 6.1.5 Installation Notice ===
838
839
840 (((
841 Do not power on while connect the cables. Double check the wiring before power on.
842 )))
843
844 (((
845 Installation Photo as reference:
846 )))
847
848
849 (((
850 (% style="color:#4472c4" %)** Install on Ground:**
851 )))
852
853 (((
854 WSS-01 Rain Gauge include screws so can install in ground directly .
855 )))
856
857
858 (((
859 (% style="color:#4472c4" %)** Install on pole:**
860 )))
861
862 (((
863 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
864 )))
865
866 [[image:image-20220624152218-1.png||height="526" width="276"]]
867
868 WS-K2: Bracket Kit for Pole installation
869
870
871 WSSC-K2 dimension document, please see:
872
873 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
874
875
876 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
877
878
879 [[image:1656055444035-179.png]]
880
881
882 (((
883 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
884 )))
885
886 (((
887 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
888 )))
889
890 (((
891 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
892 )))
893
894
895
896 === 6.2.1 Feature ===
897
898
899 * RS485 wind speed / direction sensor
900 * PC enclosure, resist corrosion
901
902 === 6.2.2 Specification ===
903
904
905 * Wind speed range: 0 ~~ 60m/s
906 * Wind direction range: 0 ~~ 360°
907 * Start wind speed: ≤0.3m/s
908 * Accuracy: ±(0.3+0.03V)m/s , ±1°
909 * Input Power: DC 5~~24v
910 * Interface: RS485
911 * Working Temperature: -30℃~70℃
912 * Working Humidity: <100% (no dewing)
913 * Power Consumption: 13mA ~~ 12v.
914 * Cable Length: 2 meters
915
916 === 6.2.3 Dimension ===
917
918
919 [[image:image-20220624152813-2.png]]
920
921
922 === 6.2.4 Pin Mapping ===
923
924
925 [[image:1656056281231-994.png]]
926
927
928 === 6.2.5  Angle Mapping ===
929
930
931 [[image:1656056303845-585.png]]
932
933
934 === 6.2.6  Installation Notice ===
935
936
937 (((
938 Do not power on while connect the cables. Double check the wiring before power on.
939 )))
940
941 (((
942 The sensor must be installed with below direction, towards North.
943
944
945 )))
946
947 [[image:image-20220624153901-3.png]]
948
949
950 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
951
952
953 (((
954 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
955 )))
956
957 (((
958 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
959 )))
960
961 (((
962 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
963 )))
964
965
966 === 6.3.1 Feature ===
967
968
969 * RS485 CO2, PM2.5, PM10 sensor
970 * NDIR to measure CO2 with Internal Temperature Compensation
971 * Laser Beam Scattering to PM2.5 and PM10
972
973 === 6.3.2 Specification ===
974
975
976 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
977 * CO2 resolution: 1ppm
978 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
979 * PM2.5/PM10 resolution: 1μg/m3
980 * Input Power: DC 7 ~~ 24v
981 * Preheat time: 3min
982 * Interface: RS485
983 * Working Temperature:
984 ** CO2: 0℃~50℃;
985 ** PM2.5/PM10: -30 ~~ 50℃
986 * Working Humidity:
987 ** PM2.5/PM10: 15~80%RH (no dewing)
988 ** CO2: 0~95%RH
989 * Power Consumption: 50mA@ 12v.
990
991 === 6.3.3 Dimension ===
992
993
994 [[image:1656056708366-230.png]]
995
996
997 === 6.3.4 Pin Mapping ===
998
999
1000 [[image:1656056722648-743.png]]
1001
1002
1003 === 6.3.5 Installation Notice ===
1004
1005
1006 Do not power on while connect the cables. Double check the wiring before power on.
1007
1008
1009 [[image:1656056751153-304.png]]
1010
1011
1012 [[image:1656056766224-773.png]]
1013
1014
1015 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1016
1017
1018 (((
1019 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1020 )))
1021
1022 (((
1023 WSS-04 has auto heating feature, this ensures measurement more reliable.
1024 )))
1025
1026 (((
1027 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1028 )))
1029
1030
1031 === 6.4.1 Feature ===
1032
1033
1034 * RS485 Rain/Snow detect sensor
1035 * Surface heating to dry
1036 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1037
1038 === 6.4.2 Specification ===
1039
1040
1041 * Detect if there is rain or snow
1042 * Input Power: DC 12 ~~ 24v
1043 * Interface: RS485
1044 * Working Temperature: -30℃~70℃
1045 * Working Humidity: 10~90%RH
1046 * Power Consumption:
1047 ** No heating: 12mA @ 12v,
1048 ** heating: 94ma @ 12v.
1049
1050 === 6.4.3 Dimension ===
1051
1052
1053 [[image:1656056844782-155.png]]
1054
1055
1056 === 6.4.4 Pin Mapping ===
1057
1058
1059 [[image:1656056855590-754.png]]
1060
1061
1062 === 6.4.5 Installation Notice ===
1063
1064
1065 Do not power on while connect the cables. Double check the wiring before power on.
1066
1067
1068 (((
1069 Install with 15°degree.
1070 )))
1071
1072 [[image:1656056873783-780.png]]
1073
1074
1075 [[image:1656056883736-804.png]]
1076
1077
1078 === 6.4.6 Heating ===
1079
1080
1081 (((
1082 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1083 )))
1084
1085
1086 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1087
1088
1089 (((
1090 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1091 )))
1092
1093 (((
1094 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1095 )))
1096
1097
1098 === 6.5.1 Feature ===
1099
1100
1101 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1102
1103 === 6.5.2 Specification ===
1104
1105
1106 * Input Power: DC 12 ~~ 24v
1107 * Interface: RS485
1108 * Temperature Sensor Spec:
1109 ** Range: -30 ~~ 70℃
1110 ** resolution 0.1℃
1111 ** Accuracy: ±0.5℃
1112 * Humidity Sensor Spec:
1113 ** Range: 0 ~~ 100% RH
1114 ** resolution 0.1 %RH
1115 ** Accuracy: 3% RH
1116 * Pressure Sensor Spec:
1117 ** Range: 10~1100hPa
1118 ** Resolution: 0.1hPa
1119 ** Accuracy: ±0.1hPa
1120 * Illuminate sensor:
1121 ** Range: 0~2/20/200kLux
1122 ** Resolution: 10 Lux
1123 ** Accuracy: ±3%FS
1124 * Working Temperature: -30℃~70℃
1125 * Working Humidity: 10~90%RH
1126 * Power Consumption: 4mA @ 12v
1127
1128 === 6.5.3 Dimension ===
1129
1130
1131 [[image:1656057170639-522.png]]
1132
1133
1134 === 6.5.4 Pin Mapping ===
1135
1136
1137 [[image:1656057181899-910.png]]
1138
1139
1140 === 6.5.5 Installation Notice ===
1141
1142
1143 Do not power on while connect the cables. Double check the wiring before power on.
1144
1145 [[image:1656057199955-514.png]]
1146
1147
1148 [[image:1656057212438-475.png]]
1149
1150
1151 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1152
1153
1154 (((
1155 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1156 )))
1157
1158 (((
1159 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1160 )))
1161
1162 (((
1163 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1164 )))
1165
1166
1167 === 6.6.1 Feature ===
1168
1169
1170 * RS485 Total Solar Radiation sensor
1171 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1172 * Measure Reflected Radiation if sense area towards ground.
1173
1174 === 6.6.2 Specification ===
1175
1176
1177 * Input Power: DC 5 ~~ 24v
1178 * Interface: RS485
1179 * Detect spectrum: 0.3~3μm(300~3000nm)
1180 * Measure strength range: 0~2000W/m2
1181 * Resolution: 0.1W/m2
1182 * Accuracy: ±3%
1183 * Yearly Stability: ≤±2%
1184 * Cosine response: ≤7% (@ Sun angle 10°)
1185 * Temperature Effect: ±2%(-10℃~40℃)
1186 * Working Temperature: -40℃~70℃
1187 * Working Humidity: 10~90%RH
1188 * Power Consumption: 4mA @ 12v
1189
1190 === 6.6.3 Dimension ===
1191
1192
1193 [[image:1656057348695-898.png]]
1194
1195
1196 === 6.6.4 Pin Mapping ===
1197
1198
1199 [[image:1656057359343-744.png]]
1200
1201
1202 === 6.6.5 Installation Notice ===
1203
1204
1205 Do not power on while connect the cables. Double check the wiring before power on.
1206
1207
1208 [[image:1656057369259-804.png]]
1209
1210
1211 [[image:1656057377943-564.png]]
1212
1213
1214 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1215
1216
1217 (((
1218 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1219 )))
1220
1221 (((
1222 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1223 )))
1224
1225 (((
1226 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1227 )))
1228
1229
1230 === 6.7.1 Feature ===
1231
1232
1233 (((
1234 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1235 )))
1236
1237 (((
1238 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1239 )))
1240
1241
1242 === 6.7.2 Specification ===
1243
1244
1245 * Input Power: DC 5 ~~ 24v
1246 * Interface: RS485
1247 * Response Spectrum: 400~700nm
1248 * Measure range: 0~2500μmol/m2•s
1249 * Resolution: 1μmol/m2•s
1250 * Accuracy: ±2%
1251 * Yearly Stability: ≤±2%
1252 * Working Temperature: -30℃~75℃
1253 * Working Humidity: 10~90%RH
1254 * Power Consumption: 3mA @ 12v
1255
1256 === 6.7.3 Dimension ===
1257
1258
1259 [[image:1656057538793-888.png]]
1260
1261
1262 === 6.7.4 Pin Mapping ===
1263
1264
1265 [[image:1656057548116-203.png]]
1266
1267
1268 === 6.7.5 Installation Notice ===
1269
1270
1271 Do not power on while connect the cables. Double check the wiring before power on.
1272
1273
1274 [[image:1656057557191-895.png]]
1275
1276
1277 [[image:1656057565783-251.png]]
1278
1279
1280 = 7. FAQ =
1281
1282 == 7.1 What else do I need to purchase to build Weather Station? ==
1283
1284
1285 Below is the installation photo and structure:
1286
1287
1288 [[image:1656057598349-319.png]]
1289
1290
1291 [[image:1656057608049-693.png]]
1292
1293
1294 == 7.2 How to upgrade firmware for WSC1-L? ==
1295
1296
1297 (((
1298 Firmware Location & Change log:
1299
1300 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1301 )))
1302
1303
1304 (((
1305 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1306 )))
1307
1308
1309 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1310
1311
1312 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1313
1314
1315 == 7.4 Can I add my weather sensors? ==
1316
1317
1318 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1319
1320
1321 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1322
1323 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1324
1325
1326 = 8. Trouble Shooting =
1327
1328 == 8.1 AT Command input doesn't work ==
1329
1330
1331 (((
1332 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1333 )))
1334
1335
1336 = 9. Order Info =
1337
1338 == 9.1 Main Process Unit ==
1339
1340
1341 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1342
1343 (% style="color:blue" %)**XX**(%%): The default frequency band
1344
1345 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1346 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1347 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1348 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1349 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1350 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1351 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1352 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1353
1354 == 9.2 Sensors ==
1355
1356
1357 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1358 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1359 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1360 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1361 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1362 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1363 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1364 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1365 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1366 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1367
1368 = 10. Support =
1369
1370
1371 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1372
1373 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1374
1375 = 11. Appendix I: Field Installation Photo =
1376
1377
1378 [[image:1656058346362-132.png||height="685" width="732"]]
1379
1380 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1381
1382
1383
1384 (% style="color:blue" %)**Wind Speed/Direction**
1385
1386 [[image:1656058373174-421.png||height="356" width="731"]]
1387
1388
1389
1390 (% style="color:blue" %)**Total Solar Radiation sensor**
1391
1392 [[image:1656058397364-282.png||height="453" width="732"]]
1393
1394
1395
1396 (% style="color:blue" %)**PAR Sensor**
1397
1398 [[image:1656058416171-615.png]]
1399
1400
1401
1402 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1403
1404 [[image:1656058441194-827.png||height="672" width="523"]]
1405
1406
1407
1408 (% style="color:blue" %)**Rain / Snow Detect**
1409
1410 [[image:1656058451456-166.png]]
1411
1412
1413
1414 (% style="color:blue" %)**Rain Gauge**
1415
1416 [[image:1656058463455-569.png||height="499" width="550"]]
1417
1418
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0