Version 104.11 by Xiaoling on 2023/04/28 17:38

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299
300 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
301 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**Example**
302 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
303 (((
304 Speed: 0~60m/s
305 )))
306
307 (((
308 Level: 0~17
309 )))
310 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
311 (((
312 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
313 )))
314
315 (((
316 0x02=2 (0x14: No Sensor, 0x15: Value Error)
317 )))
318 )))
319 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
320 (((
321 Angel: 0~360°
322 )))
323
324 (((
325 Direction: 16 positions
326 )))
327 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
328 (((
329 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
330 )))
331
332 (((
333 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
334 )))
335 )))
336 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
337 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
338 )))
339 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
340 (((
341 0x00 (00) No Rain or snow detected
342 )))
343
344 (((
345 (0x02: No Sensor,0x03: Value Error)
346 )))
347 )))
348 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
349 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
350 )))
351 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
352 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
353 )))
354 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
355 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
356 )))
357 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
358 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
359 )))
360 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
361 0mm~100mm(Rainfall in the last 24 hours)
362 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
363 (((
364 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
365 )))
366
367 (((
368 (0x03FE: No Sensor,0x03FF: Value Error)
369 )))
370 )))
371 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
372 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
373 )))
374 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
375 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
376 )))
377 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
378 0~2500μmol/m^^2^^•s
379 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
380 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
381 )))
382 |(% style="width:103px" %)(((
383 Total Solar
384
385 Radiation
386 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
387 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
388 )))
389
390 (((
391 Below is an example payload:  [[image:image-20220624140615-3.png]]
392 )))
393
394 (((
395
396 )))
397
398 (((
399 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
400 )))
401
402 * (((
403 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
404 )))
405
406 (((
407 Uplink 1:  [[image:image-20220624140735-4.png]]
408 )))
409
410
411 (((
412 Uplink 2:  [[image:image-20220624140842-5.png]]
413
414 )))
415
416 * (((
417 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
418 )))
419
420 (((
421 Uplink 1:  [[image:image-20220624141025-6.png]]
422 )))
423
424
425 Uplink 2:  [[image:image-20220624141100-7.png]]
426
427
428 === 2.4.3 Decoder in TTN V3 ===
429
430
431 (((
432 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
433 )))
434
435 (((
436 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
437 )))
438
439
440 (((
441 and put as below:
442 )))
443
444 [[image:1656051152438-578.png]]
445
446
447 == 2.5 Show data on Application Server ==
448
449
450 (((
451 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
452 )))
453
454 (((
455 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
456 )))
457
458 (((
459 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
460 )))
461
462 [[image:1656051197172-131.png]]
463
464
465
466 **Add TagoIO:**
467
468 [[image:1656051223585-631.png]]
469
470
471
472 **Authorization:**
473
474 [[image:1656051248318-368.png]]
475
476
477
478 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
479
480
481 [[image:1656051277767-168.png]]
482
483
484 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
485
486
487 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
488
489 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
490 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
491
492 There are two kinds of commands to configure WSC1-L, they are:
493
494 * (% style="color:#4472c4" %)**General Commands**.
495
496 These commands are to configure:
497
498 * General system settings like: uplink interval.
499 * LoRaWAN protocol & radio related command.
500
501 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
502
503 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
504
505
506 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
507
508 These commands only valid for WSC1-L, as below:
509
510
511 == 3.1 Set Transmit Interval Time ==
512
513
514 Feature: Change LoRaWAN End Node Transmit Interval.
515
516 (% style="color:#037691" %)**AT Command: AT+TDC**
517
518 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
519 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
520 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
521 30000
522 OK
523 the interval is 30000ms = 30s
524 )))
525 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
526 OK
527 Set transmit interval to 60000ms = 60 seconds
528 )))
529
530 (% style="color:#037691" %)**Downlink Command: 0x01**
531
532 Format: Command Code (0x01) followed by 3 bytes time value.
533
534 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
535
536 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
537 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
538
539 == 3.2 Set Emergency Mode ==
540
541
542 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
543
544 (% style="color:#037691" %)**AT Command:**
545
546 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:465.818px" %)
547 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:224px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:84px" %)**Response**
548 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
549 OK
550
551 )))
552 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
553 OK
554 )))
555
556 (% style="color:#037691" %)**Downlink Command:**
557
558 * 0xE101     Same as: AT+ALARMMOD=1
559 * 0xE100     Same as: AT+ALARMMOD=0
560
561 == 3.3 Add or Delete RS485 Sensor ==
562
563
564 (((
565 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
566 )))
567
568 (((
569 (% style="color:#037691" %)**AT Command: **
570 )))
571
572 (((
573 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
574 )))
575
576 * (((
577 Type_Code range:  A1 ~~ A4
578 )))
579 * (((
580 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
581 )))
582 * (((
583 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
584 )))
585 * (((
586 Read_Length:  RS485 response frame length supposed to receive. Max can receive
587 )))
588 * (((
589 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
590 )))
591 * (((
592 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
593 )))
594 * (((
595 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
596 )))
597
598 (((
599 **Example:**
600 )))
601
602 (((
603 User need to change external sensor use the type code as address code.
604 )))
605
606 (((
607 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
608 )))
609
610 [[image:image-20220624143553-10.png]]
611
612
613 The response frame of the sensor is as follows:
614
615 [[image:image-20220624143618-11.png]]
616
617
618 **Then the following parameters should be:**
619
620 * Address_Code range: A1
621 * Query_Length: 8
622 * Query_Command: A103000000019CAA
623 * Read_Length: 8
624 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
625 * has_CRC: 1
626 * timeout: 1500 (Fill in the test according to the actual situation)
627
628 **So the input command is:**
629
630 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
631
632
633 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
634
635 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
636 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
637 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
638
639 **Related commands:**
640
641 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
642
643 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
644
645
646 (% style="color:#037691" %)**Downlink Command:  **
647
648 **delete custom sensor A1:**
649
650 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
651
652 **Remove all custom sensors**
653
654 * 0xE5FF  
655
656 == 3.4 RS485 Test Command ==
657
658
659 (% style="color:#037691" %)**AT Command:**
660
661 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:474px" %)
662 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 228px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
663 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
664 (((
665 Send command to 485 sensor
666 )))
667
668 (((
669 Range : no more than 10 bytes
670 )))
671 )))|(% style="width:85px" %)OK
672
673 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
674
675 AT+RSWRITE=0103000001840A
676
677
678 (% style="color:#037691" %)**Downlink Command:**
679
680 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
681
682 == 3.5 RS485 response timeout ==
683
684
685 Feature: Set or get extended time to receive 485 sensor data.
686
687 (% style="color:#037691" %)**AT Command:**
688
689 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
690 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
691 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
692 (((
693 Set response timeout to:
694 )))
695
696 (((
697 Range : 0~~10000
698 )))
699 )))|(% style="width:85px" %)OK
700
701 (% style="color:#037691" %)**Downlink Command:**
702
703 Format: Command Code (0xE0) followed by 3 bytes time value.
704
705 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
706
707 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
708 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
709
710 == 3.6 Set Sensor Type ==
711
712
713 (((
714 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
715 )))
716
717 (((
718 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
719
720 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
721 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
722 | |A4|A3|A2|A1| | |
723 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
724 | | |Solar Radiation|PAR|PM10|PM2.5|(((
725 Rain
726 Gauge
727 )))|(((
728 Air
729 Pressure
730 )))
731 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
732 |Humidity|Temperature|CO2|(((
733 Rain/Snow
734 Detect
735 )))|illuminance|(((
736 Wind
737 Direction
738 )))|Wind Speed|BAT
739 )))
740
741
742
743 (% style="color:#037691" %)**AT Command:**
744
745 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
746 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
747 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
748
749 Eg: The setting command **AT+STYPE=80221** means:
750
751 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
752 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
753 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
754 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
755 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
756 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
757 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
758
759 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
760
761
762 (% style="color:#037691" %)**Downlink Command:**
763
764 * 0xE400080221  Same as: AT+STYPE=80221
765
766 (% style="color:red" %)**Note:**
767
768 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
769
770
771 = 4. Power consumption and battery =
772
773 == 4.1 Total Power Consumption ==
774
775
776 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
777
778
779 == 4.2 Reduce power consumption ==
780
781
782 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
783
784
785 == 4.3 Battery ==
786
787
788 (((
789 All sensors are only power by external power source. If external power source is off. All sensor won't work.
790 )))
791
792 (((
793 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
794 )))
795
796
797 = 5. Main Process Unit WSC1-L =
798
799 == 5.1 Features ==
800
801
802 * Wall Attachable.
803 * LoRaWAN v1.0.3 Class A protocol.
804 * RS485 / Modbus protocol
805 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
806 * AT Commands to change parameters
807 * Remote configure parameters via LoRaWAN Downlink
808 * Firmware upgradable via program port
809 * Powered by external 12v battery
810 * Back up rechargeable 1000mAh battery
811 * IP Rating: IP65
812 * Support default sensors or 3rd party RS485 sensors
813
814 == 5.2 Power Consumption ==
815
816
817 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
818
819
820 == 5.3 Storage & Operation Temperature ==
821
822
823 -20°C to +60°C
824
825
826 == 5.4 Pin Mapping ==
827
828
829 [[image:1656054149793-239.png]]
830
831
832 == 5.5 Mechanical ==
833
834
835 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
836
837
838 == 5.6 Connect to RS485 Sensors ==
839
840
841 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
842
843
844 [[image:1656054389031-379.png]]
845
846
847 Hardware Design for the Converter Board please see:
848
849 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
850
851
852 = 6. Weather Sensors =
853
854 == 6.1 Rain Gauge ~-~- WSS-01 ==
855
856
857 (((
858 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
859 )))
860
861 (((
862 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
863 )))
864
865 (((
866 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
867 )))
868
869 (((
870 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
871 )))
872
873 (((
874 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
875 )))
876
877
878 === 6.1.1 Feature ===
879
880
881 * RS485 Rain Gauge
882 * Small dimension, easy to install
883 * Vents under funnel, avoid leaf or other things to avoid rain flow.
884 * ABS enclosure.
885 * Horizontal adjustable.
886
887 === 6.1.2 Specification ===
888
889
890 * Resolution: 0.2mm
891 * Accuracy: ±3%
892 * Range: 0 ~~ 100mm
893 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
894 * Input Power: DC 5~~24v
895 * Interface: RS485
896 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
897 * Working Humidity: <100% (no dewing)
898 * Power Consumption: 4mA @ 12v.
899
900 === 6.1.3 Dimension ===
901
902
903 [[image:1656054957406-980.png]]
904
905
906 === 6.1.4 Pin Mapping ===
907
908
909 [[image:1656054972828-692.png]]
910
911
912 === 6.1.5 Installation Notice ===
913
914
915 (((
916 Do not power on while connect the cables. Double check the wiring before power on.
917 )))
918
919 (((
920 Installation Photo as reference:
921 )))
922
923
924 (((
925 (% style="color:#4472c4" %)** Install on Ground:**
926 )))
927
928 (((
929 WSS-01 Rain Gauge include screws so can install in ground directly .
930 )))
931
932
933 (((
934 (% style="color:#4472c4" %)** Install on pole:**
935 )))
936
937 (((
938 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
939 )))
940
941 [[image:image-20220624152218-1.png||height="526" width="276"]]
942
943 WS-K2: Bracket Kit for Pole installation
944
945
946 WSSC-K2 dimension document, please see:
947
948 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
949
950
951 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
952
953
954 [[image:1656055444035-179.png]]
955
956
957 (((
958 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
959 )))
960
961 (((
962 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
963 )))
964
965 (((
966 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
967 )))
968
969
970
971 === 6.2.1 Feature ===
972
973
974 * RS485 wind speed / direction sensor
975 * PC enclosure, resist corrosion
976
977 === 6.2.2 Specification ===
978
979
980 * Wind speed range: 0 ~~ 60m/s
981 * Wind direction range: 0 ~~ 360°
982 * Start wind speed: ≤0.3m/s
983 * Accuracy: ±(0.3+0.03V)m/s , ±1°
984 * Input Power: DC 5~~24v
985 * Interface: RS485
986 * Working Temperature: -30℃~70℃
987 * Working Humidity: <100% (no dewing)
988 * Power Consumption: 13mA ~~ 12v.
989 * Cable Length: 2 meters
990
991 === 6.2.3 Dimension ===
992
993
994 [[image:image-20220624152813-2.png]]
995
996
997 === 6.2.4 Pin Mapping ===
998
999
1000 [[image:1656056281231-994.png]]
1001
1002
1003 === 6.2.5  Angle Mapping ===
1004
1005
1006 [[image:1656056303845-585.png]]
1007
1008
1009 === 6.2.6  Installation Notice ===
1010
1011
1012 (((
1013 Do not power on while connect the cables. Double check the wiring before power on.
1014 )))
1015
1016 (((
1017 The sensor must be installed with below direction, towards North.
1018
1019
1020 )))
1021
1022 [[image:image-20220624153901-3.png]]
1023
1024
1025 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1026
1027
1028 (((
1029 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1030 )))
1031
1032 (((
1033 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1034 )))
1035
1036 (((
1037 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1038 )))
1039
1040
1041 === 6.3.1 Feature ===
1042
1043
1044 * RS485 CO2, PM2.5, PM10 sensor
1045 * NDIR to measure CO2 with Internal Temperature Compensation
1046 * Laser Beam Scattering to PM2.5 and PM10
1047
1048 === 6.3.2 Specification ===
1049
1050
1051 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1052 * CO2 resolution: 1ppm
1053 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1054 * PM2.5/PM10 resolution: 1μg/m3
1055 * Input Power: DC 7 ~~ 24v
1056 * Preheat time: 3min
1057 * Interface: RS485
1058 * Working Temperature:
1059 ** CO2: 0℃~50℃;
1060 ** PM2.5/PM10: -30 ~~ 50℃
1061 * Working Humidity:
1062 ** PM2.5/PM10: 15~80%RH (no dewing)
1063 ** CO2: 0~95%RH
1064 * Power Consumption: 50mA@ 12v.
1065
1066 === 6.3.3 Dimension ===
1067
1068
1069 [[image:1656056708366-230.png]]
1070
1071
1072 === 6.3.4 Pin Mapping ===
1073
1074
1075 [[image:1656056722648-743.png]]
1076
1077
1078 === 6.3.5 Installation Notice ===
1079
1080
1081 Do not power on while connect the cables. Double check the wiring before power on.
1082
1083
1084 [[image:1656056751153-304.png]]
1085
1086
1087 [[image:1656056766224-773.png]]
1088
1089
1090 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1091
1092
1093 (((
1094 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1095 )))
1096
1097 (((
1098 WSS-04 has auto heating feature, this ensures measurement more reliable.
1099 )))
1100
1101 (((
1102 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1103 )))
1104
1105
1106 === 6.4.1 Feature ===
1107
1108
1109 * RS485 Rain/Snow detect sensor
1110 * Surface heating to dry
1111 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1112
1113 === 6.4.2 Specification ===
1114
1115
1116 * Detect if there is rain or snow
1117 * Input Power: DC 12 ~~ 24v
1118 * Interface: RS485
1119 * Working Temperature: -30℃~70℃
1120 * Working Humidity: 10~90%RH
1121 * Power Consumption:
1122 ** No heating: 12mA @ 12v,
1123 ** heating: 94ma @ 12v.
1124
1125 === 6.4.3 Dimension ===
1126
1127
1128 [[image:1656056844782-155.png]]
1129
1130
1131 === 6.4.4 Pin Mapping ===
1132
1133
1134 [[image:1656056855590-754.png]]
1135
1136
1137 === 6.4.5 Installation Notice ===
1138
1139
1140 Do not power on while connect the cables. Double check the wiring before power on.
1141
1142
1143 (((
1144 Install with 15°degree.
1145 )))
1146
1147 [[image:1656056873783-780.png]]
1148
1149
1150 [[image:1656056883736-804.png]]
1151
1152
1153 === 6.4.6 Heating ===
1154
1155
1156 (((
1157 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1158 )))
1159
1160
1161 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1162
1163
1164 (((
1165 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1166 )))
1167
1168 (((
1169 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1170 )))
1171
1172
1173 === 6.5.1 Feature ===
1174
1175
1176 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1177
1178 === 6.5.2 Specification ===
1179
1180
1181 * Input Power: DC 12 ~~ 24v
1182 * Interface: RS485
1183 * Temperature Sensor Spec:
1184 ** Range: -30 ~~ 70℃
1185 ** resolution 0.1℃
1186 ** Accuracy: ±0.5℃
1187 * Humidity Sensor Spec:
1188 ** Range: 0 ~~ 100% RH
1189 ** resolution 0.1 %RH
1190 ** Accuracy: 3% RH
1191 * Pressure Sensor Spec:
1192 ** Range: 10~1100hPa
1193 ** Resolution: 0.1hPa
1194 ** Accuracy: ±0.1hPa
1195 * Illuminate sensor:
1196 ** Range: 0~2/20/200kLux
1197 ** Resolution: 10 Lux
1198 ** Accuracy: ±3%FS
1199 * Working Temperature: -30℃~70℃
1200 * Working Humidity: 10~90%RH
1201 * Power Consumption: 4mA @ 12v
1202
1203 === 6.5.3 Dimension ===
1204
1205
1206 [[image:1656057170639-522.png]]
1207
1208
1209 === 6.5.4 Pin Mapping ===
1210
1211
1212 [[image:1656057181899-910.png]]
1213
1214
1215 === 6.5.5 Installation Notice ===
1216
1217
1218 Do not power on while connect the cables. Double check the wiring before power on.
1219
1220 [[image:1656057199955-514.png]]
1221
1222
1223 [[image:1656057212438-475.png]]
1224
1225
1226 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1227
1228
1229 (((
1230 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1231 )))
1232
1233 (((
1234 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1235 )))
1236
1237 (((
1238 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1239 )))
1240
1241
1242 === 6.6.1 Feature ===
1243
1244
1245 * RS485 Total Solar Radiation sensor
1246 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1247 * Measure Reflected Radiation if sense area towards ground.
1248
1249 === 6.6.2 Specification ===
1250
1251
1252 * Input Power: DC 5 ~~ 24v
1253 * Interface: RS485
1254 * Detect spectrum: 0.3~3μm(300~3000nm)
1255 * Measure strength range: 0~2000W/m2
1256 * Resolution: 0.1W/m2
1257 * Accuracy: ±3%
1258 * Yearly Stability: ≤±2%
1259 * Cosine response: ≤7% (@ Sun angle 10°)
1260 * Temperature Effect: ±2%(-10℃~40℃)
1261 * Working Temperature: -40℃~70℃
1262 * Working Humidity: 10~90%RH
1263 * Power Consumption: 4mA @ 12v
1264
1265 === 6.6.3 Dimension ===
1266
1267
1268 [[image:1656057348695-898.png]]
1269
1270
1271 === 6.6.4 Pin Mapping ===
1272
1273
1274 [[image:1656057359343-744.png]]
1275
1276
1277 === 6.6.5 Installation Notice ===
1278
1279
1280 Do not power on while connect the cables. Double check the wiring before power on.
1281
1282
1283 [[image:1656057369259-804.png]]
1284
1285
1286 [[image:1656057377943-564.png]]
1287
1288
1289 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1290
1291
1292 (((
1293 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1294 )))
1295
1296 (((
1297 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1298 )))
1299
1300 (((
1301 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1302 )))
1303
1304
1305 === 6.7.1 Feature ===
1306
1307
1308 (((
1309 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1310 )))
1311
1312 (((
1313 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1314 )))
1315
1316
1317 === 6.7.2 Specification ===
1318
1319
1320 * Input Power: DC 5 ~~ 24v
1321 * Interface: RS485
1322 * Response Spectrum: 400~700nm
1323 * Measure range: 0~2500μmol/m2•s
1324 * Resolution: 1μmol/m2•s
1325 * Accuracy: ±2%
1326 * Yearly Stability: ≤±2%
1327 * Working Temperature: -30℃~75℃
1328 * Working Humidity: 10~90%RH
1329 * Power Consumption: 3mA @ 12v
1330
1331 === 6.7.3 Dimension ===
1332
1333
1334 [[image:1656057538793-888.png]]
1335
1336
1337 === 6.7.4 Pin Mapping ===
1338
1339
1340 [[image:1656057548116-203.png]]
1341
1342
1343 === 6.7.5 Installation Notice ===
1344
1345
1346 Do not power on while connect the cables. Double check the wiring before power on.
1347
1348
1349 [[image:1656057557191-895.png]]
1350
1351
1352 [[image:1656057565783-251.png]]
1353
1354
1355 = 7. FAQ =
1356
1357 == 7.1 What else do I need to purchase to build Weather Station? ==
1358
1359
1360 Below is the installation photo and structure:
1361
1362
1363 [[image:1656057598349-319.png]]
1364
1365
1366 [[image:1656057608049-693.png]]
1367
1368
1369 == 7.2 How to upgrade firmware for WSC1-L? ==
1370
1371
1372 (((
1373 Firmware Location & Change log:
1374
1375 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1376 )))
1377
1378
1379 (((
1380 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1381 )))
1382
1383
1384 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1385
1386
1387 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1388
1389
1390 == 7.4 Can I add my weather sensors? ==
1391
1392
1393 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1394
1395
1396 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1397
1398 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1399
1400
1401 = 8. Trouble Shooting =
1402
1403 == 8.1 AT Command input doesn't work ==
1404
1405
1406 (((
1407 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1408 )))
1409
1410
1411 = 9. Order Info =
1412
1413 == 9.1 Main Process Unit ==
1414
1415
1416 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1417
1418 (% style="color:blue" %)**XX**(%%): The default frequency band
1419
1420 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1421 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1422 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1423 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1424 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1425 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1426 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1427 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1428
1429 == 9.2 Sensors ==
1430
1431
1432 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1433 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1434 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1435 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1436 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1437 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1438 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1439 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1440 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1441 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1442
1443 = 10. Support =
1444
1445
1446 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1447
1448 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1449
1450 = 11. Appendix I: Field Installation Photo =
1451
1452
1453 [[image:1656058346362-132.png||height="685" width="732"]]
1454
1455 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1456
1457
1458
1459 (% style="color:blue" %)**Wind Speed/Direction**
1460
1461 [[image:1656058373174-421.png||height="356" width="731"]]
1462
1463
1464
1465 (% style="color:blue" %)**Total Solar Radiation sensor**
1466
1467 [[image:1656058397364-282.png||height="453" width="732"]]
1468
1469
1470
1471 (% style="color:blue" %)**PAR Sensor**
1472
1473 [[image:1656058416171-615.png]]
1474
1475
1476
1477 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1478
1479 [[image:1656058441194-827.png||height="672" width="523"]]
1480
1481
1482
1483 (% style="color:blue" %)**Rain / Snow Detect**
1484
1485 [[image:1656058451456-166.png]]
1486
1487
1488
1489 (% style="color:blue" %)**Rain Gauge**
1490
1491 [[image:1656058463455-569.png||height="499" width="550"]]
1492
1493