Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299
300 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
301 |(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:91px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:116px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**Example**
302 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
303 (((
304 Speed: 0~60m/s
305 )))
306
307 (((
308 Level: 0~17
309 )))
310 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
311 (((
312 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
313 )))
314
315 (((
316 0x02=2 (0x14: No Sensor, 0x15: Value Error)
317 )))
318 )))
319 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
320 (((
321 Angel: 0~360°
322 )))
323
324 (((
325 Direction: 16 positions
326 )))
327 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
328 (((
329 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
330 )))
331
332 (((
333 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
334 )))
335 )))
336 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
337 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
338 )))
339 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
340 (((
341 0x00 (00) No Rain or snow detected
342 )))
343
344 (((
345 (0x02: No Sensor,0x03: Value Error)
346 )))
347 )))
348 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
349 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
350 )))
351 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
352 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
353 )))
354 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
355 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
356 )))
357 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
358 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
359 )))
360 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
361 0mm~100mm(Rainfall in the last 24 hours)
362 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
363 (((
364 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
365 )))
366
367 (((
368 (0x03FE: No Sensor,0x03FF: Value Error)
369 )))
370 )))
371 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
372 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
373 )))
374 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
375 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
376 )))
377 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
378 0~2500μmol/m^^2^^•s
379 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
380 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
381 )))
382 |(% style="width:103px" %)(((
383 Total Solar
384
385 Radiation
386 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
387 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
388 )))
389
390 (((
391 Below is an example payload:  [[image:image-20220624140615-3.png]]
392 )))
393
394 (((
395
396 )))
397
398 (((
399 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
400 )))
401
402 * (((
403 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
404 )))
405
406 (((
407 Uplink 1:  [[image:image-20220624140735-4.png]]
408 )))
409
410
411 (((
412 Uplink 2:  [[image:image-20220624140842-5.png]]
413
414 )))
415
416 * (((
417 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
418 )))
419
420 (((
421 Uplink 1:  [[image:image-20220624141025-6.png]]
422 )))
423
424
425 Uplink 2:  [[image:image-20220624141100-7.png]]
426
427
428 === 2.4.3 Decoder in TTN V3 ===
429
430
431 (((
432 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
433 )))
434
435 (((
436 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
437 )))
438
439
440 (((
441 and put as below:
442 )))
443
444 [[image:1656051152438-578.png]]
445
446
447 == 2.5 Show data on Application Server ==
448
449
450 (((
451 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
452 )))
453
454 (((
455 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
456 )))
457
458 (((
459 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
460 )))
461
462 [[image:1656051197172-131.png]]
463
464
465
466 **Add TagoIO:**
467
468 [[image:1656051223585-631.png]]
469
470
471
472 **Authorization:**
473
474 [[image:1656051248318-368.png]]
475
476
477
478 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
479
480
481 [[image:1656051277767-168.png]]
482
483
484 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
485
486
487 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
488
489 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
490 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
491
492 There are two kinds of commands to configure WSC1-L, they are:
493
494 * (% style="color:#4472c4" %)**General Commands**.
495
496 These commands are to configure:
497
498 * General system settings like: uplink interval.
499 * LoRaWAN protocol & radio related command.
500
501 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
502
503 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
504
505
506 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
507
508 These commands only valid for WSC1-L, as below:
509
510
511 == 3.1 Set Transmit Interval Time ==
512
513
514 Feature: Change LoRaWAN End Node Transmit Interval.
515
516 (% style="color:#037691" %)**AT Command: AT+TDC**
517
518 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
519 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
520 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
521 30000
522 OK
523 the interval is 30000ms = 30s
524 )))
525 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
526 OK
527 Set transmit interval to 60000ms = 60 seconds
528 )))
529
530 (% style="color:#037691" %)**Downlink Command: 0x01**
531
532 Format: Command Code (0x01) followed by 3 bytes time value.
533
534 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
535
536 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
537 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
538
539 == 3.2 Set Emergency Mode ==
540
541
542 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
543
544 (% style="color:#037691" %)**AT Command:**
545
546 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:465.818px" %)
547 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:224px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:84px" %)**Response**
548 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
549 OK
550
551 )))
552 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
553 OK
554 )))
555
556 (% style="color:#037691" %)**Downlink Command:**
557
558 * 0xE101     Same as: AT+ALARMMOD=1
559 * 0xE100     Same as: AT+ALARMMOD=0
560
561 == 3.3 Add or Delete RS485 Sensor ==
562
563
564 (((
565 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
566 )))
567
568 (((
569 (% style="color:#037691" %)**AT Command: **
570 )))
571
572 (((
573 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
574 )))
575
576 * (((
577 Type_Code range:  A1 ~~ A4
578 )))
579 * (((
580 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
581 )))
582 * (((
583 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
584 )))
585 * (((
586 Read_Length:  RS485 response frame length supposed to receive. Max can receive
587 )))
588 * (((
589 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
590 )))
591 * (((
592 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
593 )))
594 * (((
595 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
596 )))
597
598 (((
599 **Example:**
600 )))
601
602 (((
603 User need to change external sensor use the type code as address code.
604 )))
605
606 (((
607 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
608 )))
609
610 [[image:image-20220624143553-10.png]]
611
612
613 The response frame of the sensor is as follows:
614
615 [[image:image-20220624143618-11.png]]
616
617
618 **Then the following parameters should be:**
619
620 * Address_Code range: A1
621 * Query_Length: 8
622 * Query_Command: A103000000019CAA
623 * Read_Length: 8
624 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
625 * has_CRC: 1
626 * timeout: 1500 (Fill in the test according to the actual situation)
627
628 **So the input command is:**
629
630 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
631
632
633 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
634
635 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
636 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
637 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
638
639 **Related commands:**
640
641 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
642
643 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
644
645
646 (% style="color:#037691" %)**Downlink Command:  **
647
648 **delete custom sensor A1:**
649
650 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
651
652 **Remove all custom sensors**
653
654 * 0xE5FF  
655
656 == 3.4 RS485 Test Command ==
657
658
659 (% style="color:#037691" %)**AT Command:**
660
661 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:474px" %)
662 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 228px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
663 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
664 (((
665 Send command to 485 sensor
666 )))
667
668 (((
669 Range : no more than 10 bytes
670 )))
671 )))|(% style="width:85px" %)OK
672
673 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
674
675 AT+RSWRITE=0103000001840A
676
677
678 (% style="color:#037691" %)**Downlink Command:**
679
680 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
681
682 == 3.5 RS485 response timeout ==
683
684
685 Feature: Set or get extended time to receive 485 sensor data.
686
687 (% style="color:#037691" %)**AT Command:**
688
689 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
690 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
691 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
692 (((
693 Set response timeout to:
694 )))
695
696 (((
697 Range : 0~~10000
698 )))
699 )))|(% style="width:85px" %)OK
700
701 (% style="color:#037691" %)**Downlink Command:**
702
703 Format: Command Code (0xE0) followed by 3 bytes time value.
704
705 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
706
707 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
708 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
709
710 == 3.6 Set Sensor Type ==
711
712
713 (((
714 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
715 )))
716
717 (((
718 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
719
720 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
721 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
722 | |A4|A3|A2|A1| | |
723 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
724 | | |Solar Radiation|PAR|PM10|PM2.5|(((
725 Rain
726 Gauge
727 )))|(((
728 Air
729 Pressure
730 )))
731 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
732 |Humidity|Temperature|CO2|(((
733 Rain/Snow
734 Detect
735 )))|illuminance|(((
736 Wind
737 Direction
738 )))|Wind Speed|BAT
739 )))
740
741 [[image:image-20220624144904-12.png]]
742
743
744 (% style="color:#037691" %)**AT Command:**
745
746 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
747 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
748 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
749
750 Eg: The setting command **AT+STYPE=80221** means:
751
752 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
753 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
754 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
755 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
756 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
757 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
758 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
759
760 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
761
762
763 (% style="color:#037691" %)**Downlink Command:**
764
765 * 0xE400080221  Same as: AT+STYPE=80221
766
767 (% style="color:red" %)**Note:**
768
769 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
770
771
772 = 4. Power consumption and battery =
773
774 == 4.1 Total Power Consumption ==
775
776
777 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
778
779
780 == 4.2 Reduce power consumption ==
781
782
783 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
784
785
786 == 4.3 Battery ==
787
788
789 (((
790 All sensors are only power by external power source. If external power source is off. All sensor won't work.
791 )))
792
793 (((
794 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
795 )))
796
797
798 = 5. Main Process Unit WSC1-L =
799
800 == 5.1 Features ==
801
802
803 * Wall Attachable.
804 * LoRaWAN v1.0.3 Class A protocol.
805 * RS485 / Modbus protocol
806 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
807 * AT Commands to change parameters
808 * Remote configure parameters via LoRaWAN Downlink
809 * Firmware upgradable via program port
810 * Powered by external 12v battery
811 * Back up rechargeable 1000mAh battery
812 * IP Rating: IP65
813 * Support default sensors or 3rd party RS485 sensors
814
815 == 5.2 Power Consumption ==
816
817
818 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
819
820
821 == 5.3 Storage & Operation Temperature ==
822
823
824 -20°C to +60°C
825
826
827 == 5.4 Pin Mapping ==
828
829
830 [[image:1656054149793-239.png]]
831
832
833 == 5.5 Mechanical ==
834
835
836 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
837
838
839 == 5.6 Connect to RS485 Sensors ==
840
841
842 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
843
844
845 [[image:1656054389031-379.png]]
846
847
848 Hardware Design for the Converter Board please see:
849
850 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
851
852
853 = 6. Weather Sensors =
854
855 == 6.1 Rain Gauge ~-~- WSS-01 ==
856
857
858 (((
859 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
860 )))
861
862 (((
863 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
864 )))
865
866 (((
867 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
868 )))
869
870 (((
871 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
872 )))
873
874 (((
875 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
876 )))
877
878
879 === 6.1.1 Feature ===
880
881
882 * RS485 Rain Gauge
883 * Small dimension, easy to install
884 * Vents under funnel, avoid leaf or other things to avoid rain flow.
885 * ABS enclosure.
886 * Horizontal adjustable.
887
888 === 6.1.2 Specification ===
889
890
891 * Resolution: 0.2mm
892 * Accuracy: ±3%
893 * Range: 0 ~~ 100mm
894 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
895 * Input Power: DC 5~~24v
896 * Interface: RS485
897 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
898 * Working Humidity: <100% (no dewing)
899 * Power Consumption: 4mA @ 12v.
900
901 === 6.1.3 Dimension ===
902
903
904 [[image:1656054957406-980.png]]
905
906
907 === 6.1.4 Pin Mapping ===
908
909
910 [[image:1656054972828-692.png]]
911
912
913 === 6.1.5 Installation Notice ===
914
915
916 (((
917 Do not power on while connect the cables. Double check the wiring before power on.
918 )))
919
920 (((
921 Installation Photo as reference:
922 )))
923
924
925 (((
926 (% style="color:#4472c4" %)** Install on Ground:**
927 )))
928
929 (((
930 WSS-01 Rain Gauge include screws so can install in ground directly .
931 )))
932
933
934 (((
935 (% style="color:#4472c4" %)** Install on pole:**
936 )))
937
938 (((
939 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
940 )))
941
942 [[image:image-20220624152218-1.png||height="526" width="276"]]
943
944 WS-K2: Bracket Kit for Pole installation
945
946
947 WSSC-K2 dimension document, please see:
948
949 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
950
951
952 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
953
954
955 [[image:1656055444035-179.png]]
956
957
958 (((
959 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
960 )))
961
962 (((
963 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
964 )))
965
966 (((
967 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
968 )))
969
970
971
972 === 6.2.1 Feature ===
973
974
975 * RS485 wind speed / direction sensor
976 * PC enclosure, resist corrosion
977
978 === 6.2.2 Specification ===
979
980
981 * Wind speed range: 0 ~~ 60m/s
982 * Wind direction range: 0 ~~ 360°
983 * Start wind speed: ≤0.3m/s
984 * Accuracy: ±(0.3+0.03V)m/s , ±1°
985 * Input Power: DC 5~~24v
986 * Interface: RS485
987 * Working Temperature: -30℃~70℃
988 * Working Humidity: <100% (no dewing)
989 * Power Consumption: 13mA ~~ 12v.
990 * Cable Length: 2 meters
991
992 === 6.2.3 Dimension ===
993
994
995 [[image:image-20220624152813-2.png]]
996
997
998 === 6.2.4 Pin Mapping ===
999
1000
1001 [[image:1656056281231-994.png]]
1002
1003
1004 === 6.2.5  Angle Mapping ===
1005
1006
1007 [[image:1656056303845-585.png]]
1008
1009
1010 === 6.2.6  Installation Notice ===
1011
1012
1013 (((
1014 Do not power on while connect the cables. Double check the wiring before power on.
1015 )))
1016
1017 (((
1018 The sensor must be installed with below direction, towards North.
1019
1020
1021 )))
1022
1023 [[image:image-20220624153901-3.png]]
1024
1025
1026 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1027
1028
1029 (((
1030 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1031 )))
1032
1033 (((
1034 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1035 )))
1036
1037 (((
1038 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1039 )))
1040
1041
1042 === 6.3.1 Feature ===
1043
1044
1045 * RS485 CO2, PM2.5, PM10 sensor
1046 * NDIR to measure CO2 with Internal Temperature Compensation
1047 * Laser Beam Scattering to PM2.5 and PM10
1048
1049 === 6.3.2 Specification ===
1050
1051
1052 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1053 * CO2 resolution: 1ppm
1054 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1055 * PM2.5/PM10 resolution: 1μg/m3
1056 * Input Power: DC 7 ~~ 24v
1057 * Preheat time: 3min
1058 * Interface: RS485
1059 * Working Temperature:
1060 ** CO2: 0℃~50℃;
1061 ** PM2.5/PM10: -30 ~~ 50℃
1062 * Working Humidity:
1063 ** PM2.5/PM10: 15~80%RH (no dewing)
1064 ** CO2: 0~95%RH
1065 * Power Consumption: 50mA@ 12v.
1066
1067 === 6.3.3 Dimension ===
1068
1069
1070 [[image:1656056708366-230.png]]
1071
1072
1073 === 6.3.4 Pin Mapping ===
1074
1075
1076 [[image:1656056722648-743.png]]
1077
1078
1079 === 6.3.5 Installation Notice ===
1080
1081
1082 Do not power on while connect the cables. Double check the wiring before power on.
1083
1084
1085 [[image:1656056751153-304.png]]
1086
1087
1088 [[image:1656056766224-773.png]]
1089
1090
1091 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1092
1093
1094 (((
1095 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1096 )))
1097
1098 (((
1099 WSS-04 has auto heating feature, this ensures measurement more reliable.
1100 )))
1101
1102 (((
1103 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1104 )))
1105
1106
1107 === 6.4.1 Feature ===
1108
1109
1110 * RS485 Rain/Snow detect sensor
1111 * Surface heating to dry
1112 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1113
1114 === 6.4.2 Specification ===
1115
1116
1117 * Detect if there is rain or snow
1118 * Input Power: DC 12 ~~ 24v
1119 * Interface: RS485
1120 * Working Temperature: -30℃~70℃
1121 * Working Humidity: 10~90%RH
1122 * Power Consumption:
1123 ** No heating: 12mA @ 12v,
1124 ** heating: 94ma @ 12v.
1125
1126 === 6.4.3 Dimension ===
1127
1128
1129 [[image:1656056844782-155.png]]
1130
1131
1132 === 6.4.4 Pin Mapping ===
1133
1134
1135 [[image:1656056855590-754.png]]
1136
1137
1138 === 6.4.5 Installation Notice ===
1139
1140
1141 Do not power on while connect the cables. Double check the wiring before power on.
1142
1143
1144 (((
1145 Install with 15°degree.
1146 )))
1147
1148 [[image:1656056873783-780.png]]
1149
1150
1151 [[image:1656056883736-804.png]]
1152
1153
1154 === 6.4.6 Heating ===
1155
1156
1157 (((
1158 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1159 )))
1160
1161
1162 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1163
1164
1165 (((
1166 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1167 )))
1168
1169 (((
1170 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1171 )))
1172
1173
1174 === 6.5.1 Feature ===
1175
1176
1177 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1178
1179 === 6.5.2 Specification ===
1180
1181
1182 * Input Power: DC 12 ~~ 24v
1183 * Interface: RS485
1184 * Temperature Sensor Spec:
1185 ** Range: -30 ~~ 70℃
1186 ** resolution 0.1℃
1187 ** Accuracy: ±0.5℃
1188 * Humidity Sensor Spec:
1189 ** Range: 0 ~~ 100% RH
1190 ** resolution 0.1 %RH
1191 ** Accuracy: 3% RH
1192 * Pressure Sensor Spec:
1193 ** Range: 10~1100hPa
1194 ** Resolution: 0.1hPa
1195 ** Accuracy: ±0.1hPa
1196 * Illuminate sensor:
1197 ** Range: 0~2/20/200kLux
1198 ** Resolution: 10 Lux
1199 ** Accuracy: ±3%FS
1200 * Working Temperature: -30℃~70℃
1201 * Working Humidity: 10~90%RH
1202 * Power Consumption: 4mA @ 12v
1203
1204 === 6.5.3 Dimension ===
1205
1206
1207 [[image:1656057170639-522.png]]
1208
1209
1210 === 6.5.4 Pin Mapping ===
1211
1212
1213 [[image:1656057181899-910.png]]
1214
1215
1216 === 6.5.5 Installation Notice ===
1217
1218
1219 Do not power on while connect the cables. Double check the wiring before power on.
1220
1221 [[image:1656057199955-514.png]]
1222
1223
1224 [[image:1656057212438-475.png]]
1225
1226
1227 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1228
1229
1230 (((
1231 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1232 )))
1233
1234 (((
1235 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1236 )))
1237
1238 (((
1239 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1240 )))
1241
1242
1243 === 6.6.1 Feature ===
1244
1245
1246 * RS485 Total Solar Radiation sensor
1247 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1248 * Measure Reflected Radiation if sense area towards ground.
1249
1250 === 6.6.2 Specification ===
1251
1252
1253 * Input Power: DC 5 ~~ 24v
1254 * Interface: RS485
1255 * Detect spectrum: 0.3~3μm(300~3000nm)
1256 * Measure strength range: 0~2000W/m2
1257 * Resolution: 0.1W/m2
1258 * Accuracy: ±3%
1259 * Yearly Stability: ≤±2%
1260 * Cosine response: ≤7% (@ Sun angle 10°)
1261 * Temperature Effect: ±2%(-10℃~40℃)
1262 * Working Temperature: -40℃~70℃
1263 * Working Humidity: 10~90%RH
1264 * Power Consumption: 4mA @ 12v
1265
1266 === 6.6.3 Dimension ===
1267
1268
1269 [[image:1656057348695-898.png]]
1270
1271
1272 === 6.6.4 Pin Mapping ===
1273
1274
1275 [[image:1656057359343-744.png]]
1276
1277
1278 === 6.6.5 Installation Notice ===
1279
1280
1281 Do not power on while connect the cables. Double check the wiring before power on.
1282
1283
1284 [[image:1656057369259-804.png]]
1285
1286
1287 [[image:1656057377943-564.png]]
1288
1289
1290 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1291
1292
1293 (((
1294 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1295 )))
1296
1297 (((
1298 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1299 )))
1300
1301 (((
1302 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1303 )))
1304
1305
1306 === 6.7.1 Feature ===
1307
1308
1309 (((
1310 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1311 )))
1312
1313 (((
1314 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1315 )))
1316
1317
1318 === 6.7.2 Specification ===
1319
1320
1321 * Input Power: DC 5 ~~ 24v
1322 * Interface: RS485
1323 * Response Spectrum: 400~700nm
1324 * Measure range: 0~2500μmol/m2•s
1325 * Resolution: 1μmol/m2•s
1326 * Accuracy: ±2%
1327 * Yearly Stability: ≤±2%
1328 * Working Temperature: -30℃~75℃
1329 * Working Humidity: 10~90%RH
1330 * Power Consumption: 3mA @ 12v
1331
1332 === 6.7.3 Dimension ===
1333
1334
1335 [[image:1656057538793-888.png]]
1336
1337
1338 === 6.7.4 Pin Mapping ===
1339
1340
1341 [[image:1656057548116-203.png]]
1342
1343
1344 === 6.7.5 Installation Notice ===
1345
1346
1347 Do not power on while connect the cables. Double check the wiring before power on.
1348
1349
1350 [[image:1656057557191-895.png]]
1351
1352
1353 [[image:1656057565783-251.png]]
1354
1355
1356 = 7. FAQ =
1357
1358 == 7.1 What else do I need to purchase to build Weather Station? ==
1359
1360
1361 Below is the installation photo and structure:
1362
1363
1364 [[image:1656057598349-319.png]]
1365
1366
1367 [[image:1656057608049-693.png]]
1368
1369
1370 == 7.2 How to upgrade firmware for WSC1-L? ==
1371
1372
1373 (((
1374 Firmware Location & Change log:
1375
1376 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1377 )))
1378
1379
1380 (((
1381 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1382 )))
1383
1384
1385 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1386
1387
1388 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1389
1390
1391 == 7.4 Can I add my weather sensors? ==
1392
1393
1394 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1395
1396
1397 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1398
1399 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1400
1401
1402 = 8. Trouble Shooting =
1403
1404 == 8.1 AT Command input doesn't work ==
1405
1406
1407 (((
1408 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1409 )))
1410
1411
1412 = 9. Order Info =
1413
1414 == 9.1 Main Process Unit ==
1415
1416
1417 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1418
1419 (% style="color:blue" %)**XX**(%%): The default frequency band
1420
1421 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1422 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1423 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1424 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1425 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1426 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1427 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1428 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1429
1430 == 9.2 Sensors ==
1431
1432
1433 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1434 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1435 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1436 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1437 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1438 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1439 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1440 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1441 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1442 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1443
1444 = 10. Support =
1445
1446
1447 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1448
1449 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1450
1451 = 11. Appendix I: Field Installation Photo =
1452
1453
1454 [[image:1656058346362-132.png||height="685" width="732"]]
1455
1456 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1457
1458
1459
1460 (% style="color:blue" %)**Wind Speed/Direction**
1461
1462 [[image:1656058373174-421.png||height="356" width="731"]]
1463
1464
1465
1466 (% style="color:blue" %)**Total Solar Radiation sensor**
1467
1468 [[image:1656058397364-282.png||height="453" width="732"]]
1469
1470
1471
1472 (% style="color:blue" %)**PAR Sensor**
1473
1474 [[image:1656058416171-615.png]]
1475
1476
1477
1478 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1479
1480 [[image:1656058441194-827.png||height="672" width="523"]]
1481
1482
1483
1484 (% style="color:blue" %)**Rain / Snow Detect**
1485
1486 [[image:1656058451456-166.png]]
1487
1488
1489
1490 (% style="color:blue" %)**Rain Gauge**
1491
1492 [[image:1656058463455-569.png||height="499" width="550"]]
1493
1494
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0