Version 92.1 by Bei Jinggeng on 2022/11/23 16:51

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43
44 == 2.1 Installation ==
45
46
47 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
48
49
50 [[image:1656041948552-849.png]]
51
52
53 (% style="color:blue" %)** Wiring:**
54
55 ~1. WSC1-L and sensors all powered by solar power via MPPT
56
57 2. WSC1-L and sensors connect to each other via RS485/Modbus.
58
59 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
60
61
62 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
63
64
65 [[image:1656042136605-251.png]]
66
67
68 (% style="color:red" %)**Notice 1:**
69
70 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
71 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
72 * Weather sensors won't work if solar panel and storage battery fails.
73
74 (% style="color:red" %)**Notice 2:**
75
76 Due to shipment and importation limitation, user is better to purchase below parts locally:
77
78 * Solar Panel
79 * Storage Battery
80 * MPPT Solar Recharger
81 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
82 * Cabinet.
83
84
85 == 2.2 How it works? ==
86
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
104
105
106 == 2.3 Example to use for LoRaWAN network ==
107
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111
112 [[image:1656042612899-422.png]]
113
114
115
116 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
117
118
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
120
121 Each WSC1-L is shipped with a sticker with the default device EUI as below:
122
123 [[image:image-20220624115043-1.jpeg]]
124
125
126 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167 === 2.4.1 Uplink FPORT~=5, Device Status ===
168
169
170 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
171
172
173 (((
174 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
175 )))
176
177 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
178 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
179 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
180
181 [[image:1656043061044-343.png]]
182
183
184 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
185
186
187
188 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
189
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197
198 0x0100, Means: v1.0.0 version.
199
200
201
202 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
203
204
205 *0x01: EU868
206
207 *0x02: US915
208
209 *0x03: IN865
210
211 *0x04: AU915
212
213 *0x05: KZ865
214
215 *0x06: RU864
216
217 *0x07: AS923
218
219 *0x08: AS923-1
220
221 *0x09: AS923-2
222
223 *0x0a: AS923-3
224
225
226
227 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
228
229
230 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
231
232
233
234 ==== (% style="color:#037691" %)**BAT:**(%%) ====
235
236
237 (((
238 shows the battery voltage for WSC1-L MCU.
239 )))
240
241 (((
242 Ex1: 0x0BD6/1000 = 3.03 V
243 )))
244
245
246
247 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
248
249
250 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
251 |Byte3|Byte2|Byte1
252
253 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
254
255 [[image:image-20220624134713-1.png]]
256
257
258 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
259
260 External sensors detected by WSC1-L include :
261
262 custom sensor A1,
263
264 PAR sensor (WSS-07),
265
266 Total Solar Radiation sensor (WSS-06),
267
268 CO2/PM2.5/PM10 (WSS-03),
269
270 Wind Speed/Direction (WSS-02)
271
272
273 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
274
275 (% style="color:#037691" %)**Downlink:0x26 01**
276
277 [[image:1656049673488-415.png]]
278
279
280
281 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
282
283
284 (((
285 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
286 )))
287
288 (((
289 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
290 )))
291
292
293 (((
294 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
295 )))
296
297
298 (% style="color:#4472c4" %)** Uplink Payload**:
299
300 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
301 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
302
303 (% style="color:#4472c4" %)** Sensor Segment Define**:
304
305 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
306 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
307
308 (% style="color:#4472c4" %)**Sensor Type Table:**
309
310 [[image:image-20220706154434-1.png]]
311
312
313 (((
314 Below is an example payload:  [[image:image-20220624140615-3.png]]
315 )))
316
317 (((
318
319 )))
320
321 (((
322 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
323 )))
324
325 * (((
326 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
327 )))
328
329 (((
330 Uplink 1:  [[image:image-20220624140735-4.png]]
331 )))
332
333 (((
334
335 )))
336
337 (((
338 Uplink 2:  [[image:image-20220624140842-5.png]]
339 )))
340
341 (((
342
343 )))
344
345 * (((
346 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
347 )))
348
349 (((
350 Uplink 1:  [[image:image-20220624141025-6.png]]
351 )))
352
353 (((
354
355 )))
356
357 Uplink 2:  [[image:image-20220624141100-7.png]]
358
359
360
361 === 2.4.3 Decoder in TTN V3 ===
362
363
364 (((
365 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
366 )))
367
368 (((
369
370 )))
371
372 (((
373 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
374 )))
375
376 (((
377
378 )))
379
380 (((
381 and put as below:
382
383
384 )))
385
386 [[image:1656051152438-578.png]]
387
388
389
390 == 2.5 Show data on Application Server ==
391
392
393 (((
394 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
395 )))
396
397 (((
398
399 )))
400
401 (((
402 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
403 )))
404
405 (((
406 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
407 )))
408
409 [[image:1656051197172-131.png]]
410
411
412
413 **Add TagoIO:**
414
415 [[image:1656051223585-631.png]]
416
417
418
419 **Authorization:**
420
421 [[image:1656051248318-368.png]]
422
423
424
425 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
426
427
428 [[image:1656051277767-168.png]]
429
430
431
432 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
433
434
435 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
436
437 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
438 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
439
440 There are two kinds of commands to configure WSC1-L, they are:
441
442 * (% style="color:#4472c4" %)**General Commands**.
443
444 These commands are to configure:
445
446 * General system settings like: uplink interval.
447 * LoRaWAN protocol & radio related command.
448
449 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
450
451 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
452
453
454 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
455
456 These commands only valid for WSC1-L, as below:
457
458
459
460 == 3.1 Set Transmit Interval Time ==
461
462
463 Feature: Change LoRaWAN End Node Transmit Interval.
464
465 (% style="color:#037691" %)**AT Command: AT+TDC**
466
467 [[image:image-20220624142619-8.png]]
468
469
470 (% style="color:#037691" %)**Downlink Command: 0x01**
471
472 Format: Command Code (0x01) followed by 3 bytes time value.
473
474 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
475
476 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
477 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
478
479
480 == 3.2 Set Emergency Mode ==
481
482
483 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
484
485 (% style="color:#037691" %)**AT Command:**
486
487 [[image:image-20220624142956-9.png]]
488
489
490 (% style="color:#037691" %)**Downlink Command:**
491
492 * 0xE101     Same as: AT+ALARMMOD=1
493 * 0xE100     Same as: AT+ALARMMOD=0
494
495
496 == 3.3 Add or Delete RS485 Sensor ==
497
498
499 (((
500 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
501 )))
502
503 (((
504 (% style="color:#037691" %)**AT Command: **
505 )))
506
507 (((
508 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
509 )))
510
511 * (((
512 Type_Code range:  A1 ~~ A4
513 )))
514 * (((
515 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
516 )))
517 * (((
518 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
519 )))
520 * (((
521 Read_Length:  RS485 response frame length supposed to receive. Max can receive
522 )))
523 * (((
524 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
525 )))
526 * (((
527 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
528 )))
529 * (((
530 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
531 )))
532
533 (((
534 **Example:**
535 )))
536
537 (((
538 User need to change external sensor use the type code as address code.
539 )))
540
541 (((
542 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
543 )))
544
545 [[image:image-20220624143553-10.png]]
546
547
548 The response frame of the sensor is as follows:
549
550 [[image:image-20220624143618-11.png]]
551
552
553
554 **Then the following parameters should be:**
555
556 * Address_Code range: A1
557 * Query_Length: 8
558 * Query_Command: A103000000019CAA
559 * Read_Length: 8
560 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
561 * has_CRC: 1
562 * timeout: 1500 (Fill in the test according to the actual situation)
563
564 **So the input command is:**
565
566 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
567
568
569 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
570
571 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
572 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
573 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
574
575 **Related commands:**
576
577 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
578
579 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
580
581
582 (% style="color:#037691" %)**Downlink Command:  **
583
584 **delete custom sensor A1:**
585
586 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
587
588 **Remove all custom sensors**
589
590 * 0xE5FF  
591
592
593 == 3.4 RS485 Test Command ==
594
595
596 (% style="color:#037691" %)**AT Command:**
597
598 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
599 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
600 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
601 (((
602 Send command to 485 sensor
603 )))
604
605 (((
606 Range : no more than 10 bytes
607 )))
608 )))|(% style="width:85px" %)OK
609
610 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
611
612 AT+RSWRITE=0103000001840A
613
614
615 (% style="color:#037691" %)**Downlink Command:**
616
617 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
618
619
620 == 3.5 RS485 response timeout ==
621
622
623 Feature: Set or get extended time to receive 485 sensor data.
624
625 (% style="color:#037691" %)**AT Command:**
626
627 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
628 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
629 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
630 (((
631 Set response timeout to:
632 )))
633
634 (((
635 Range : 0~~10000
636 )))
637 )))|(% style="width:85px" %)OK
638
639 (% style="color:#037691" %)**Downlink Command:**
640
641 Format: Command Code (0xE0) followed by 3 bytes time value.
642
643 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
644
645 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
646 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
647
648
649 == 3.6 Set Sensor Type ==
650
651
652 (((
653 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
654 )))
655
656 (((
657 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
658 )))
659
660 [[image:image-20220624144904-12.png]]
661
662
663 (% style="color:#037691" %)**AT Command:**
664
665 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
666 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
667 |(% style="width:157px" %)AT+STYPE=802212|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
668
669 Eg: The setting command **AT+STYPE=802212** means:
670
671 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
672 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
673 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
674 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
675 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
676 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
677 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
678
679 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
680
681
682 (% style="color:#037691" %)**Downlink Command:**
683
684 * 0xE400802212     Same as: AT+STYPE=80221
685
686 (% style="color:red" %)**Note:**
687
688 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
689
690
691
692 = 4. Power consumption and battery =
693
694
695 == 4.1 Total Power Consumption ==
696
697
698 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
699
700
701
702 == 4.2 Reduce power consumption ==
703
704
705 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
706
707
708
709 == 4.3 Battery ==
710
711
712 (((
713 All sensors are only power by external power source. If external power source is off. All sensor won't work.
714 )))
715
716 (((
717 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
718 )))
719
720
721
722 = 5. Main Process Unit WSC1-L =
723
724
725 == 5.1 Features ==
726
727
728 * Wall Attachable.
729 * LoRaWAN v1.0.3 Class A protocol.
730 * RS485 / Modbus protocol
731 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
732 * AT Commands to change parameters
733 * Remote configure parameters via LoRaWAN Downlink
734 * Firmware upgradable via program port
735 * Powered by external 12v battery
736 * Back up rechargeable 1000mAh battery
737 * IP Rating: IP65
738 * Support default sensors or 3rd party RS485 sensors
739
740
741 == 5.2 Power Consumption ==
742
743
744 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
745
746
747
748 == 5.3 Storage & Operation Temperature ==
749
750
751 -20°C to +60°C
752
753
754
755 == 5.4 Pin Mapping ==
756
757
758 [[image:1656054149793-239.png]]
759
760
761
762 == 5.5 Mechanical ==
763
764
765 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
766
767
768
769 == 5.6 Connect to RS485 Sensors ==
770
771
772 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
773
774
775 [[image:1656054389031-379.png]]
776
777
778 Hardware Design for the Converter Board please see:
779
780 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
781
782
783
784 = 6. Weather Sensors =
785
786
787 == 6.1 Rain Gauge ~-~- WSS-01 ==
788
789
790 (((
791 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
792 )))
793
794 (((
795 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
796 )))
797
798 (((
799 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
800 )))
801
802 (((
803 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
804 )))
805
806 (((
807 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
808 )))
809
810
811
812 === 6.1.1 Feature ===
813
814
815 * RS485 Rain Gauge
816 * Small dimension, easy to install
817 * Vents under funnel, avoid leaf or other things to avoid rain flow.
818 * ABS enclosure.
819 * Horizontal adjustable.
820
821
822 === 6.1.2 Specification ===
823
824
825 * Resolution: 0.2mm
826 * Accuracy: ±3%
827 * Range: 0 ~~ 100mm
828 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
829 * Input Power: DC 5~~24v
830 * Interface: RS485
831 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
832 * Working Humidity: <100% (no dewing)
833 * Power Consumption: 4mA @ 12v.
834
835
836 === 6.1.3 Dimension ===
837
838
839 [[image:1656054957406-980.png]]
840
841
842
843 === 6.1.4 Pin Mapping ===
844
845
846 [[image:1656054972828-692.png]]
847
848
849
850 === 6.1.5 Installation Notice ===
851
852
853 (((
854 Do not power on while connect the cables. Double check the wiring before power on.
855 )))
856
857 (((
858 Installation Photo as reference:
859 )))
860
861
862 (((
863 (% style="color:#4472c4" %)** Install on Ground:**
864 )))
865
866 (((
867 WSS-01 Rain Gauge include screws so can install in ground directly .
868 )))
869
870
871 (((
872 (% style="color:#4472c4" %)** Install on pole:**
873 )))
874
875 (((
876 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
877 )))
878
879 [[image:image-20220624152218-1.png||height="526" width="276"]]
880
881 WS-K2: Bracket Kit for Pole installation
882
883
884 WSSC-K2 dimension document, please see:
885
886 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
887
888
889
890 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
891
892
893 [[image:1656055444035-179.png]]
894
895
896 (((
897 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
898 )))
899
900 (((
901 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
902 )))
903
904 (((
905 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
906 )))
907
908
909
910 === 6.2.1 Feature ===
911
912
913 * RS485 wind speed / direction sensor
914 * PC enclosure, resist corrosion
915
916
917 === 6.2.2 Specification ===
918
919
920 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
921 * Wind direction range: 0 ~~ 360°
922 * Start wind speed: ≤0.3m/s
923 * Accuracy: ±(0.3+0.03V)m/s , ±1°
924 * Input Power: DC 5~~24v
925 * Interface: RS485
926 * Working Temperature: -30℃~70℃
927 * Working Humidity: <100% (no dewing)
928 * Power Consumption: 13mA ~~ 12v.
929 * Cable Length: 2 meters
930
931
932 === 6.2.3 Dimension ===
933
934
935 [[image:image-20220624152813-2.png]]
936
937
938
939 === 6.2.4 Pin Mapping ===
940
941
942 [[image:1656056281231-994.png]]
943
944
945
946 === 6.2.5  Angle Mapping ===
947
948
949 [[image:1656056303845-585.png]]
950
951
952
953 === 6.2.6  Installation Notice ===
954
955
956 (((
957 Do not power on while connect the cables. Double check the wiring before power on.
958 )))
959
960 (((
961 The sensor must be installed with below direction, towards North.
962
963
964 )))
965
966 [[image:image-20220624153901-3.png]]
967
968
969
970 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
971
972
973 (((
974 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
975 )))
976
977 (((
978 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
979 )))
980
981 (((
982 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
983 )))
984
985
986
987 === 6.3.1 Feature ===
988
989
990 * RS485 CO2, PM2.5, PM10 sensor
991 * NDIR to measure CO2 with Internal Temperature Compensation
992 * Laser Beam Scattering to PM2.5 and PM10
993
994
995 === 6.3.2 Specification ===
996
997
998 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
999 * CO2 resolution: 1ppm
1000 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1001 * PM2.5/PM10 resolution: 1μg/m3
1002 * Input Power: DC 7 ~~ 24v
1003 * Preheat time: 3min
1004 * Interface: RS485
1005 * Working Temperature:
1006 ** CO2: 0℃~50℃;
1007 ** PM2.5/PM10: -30 ~~ 50℃
1008 * Working Humidity:
1009 ** PM2.5/PM10: 15~80%RH (no dewing)
1010 ** CO2: 0~95%RH
1011 * Power Consumption: 50mA@ 12v.
1012
1013
1014 === 6.3.3 Dimension ===
1015
1016
1017 [[image:1656056708366-230.png]]
1018
1019
1020
1021 === 6.3.4 Pin Mapping ===
1022
1023
1024 [[image:1656056722648-743.png]]
1025
1026
1027
1028 === 6.3.5 Installation Notice ===
1029
1030
1031 Do not power on while connect the cables. Double check the wiring before power on.
1032
1033
1034 [[image:1656056751153-304.png]]
1035
1036 [[image:1656056766224-773.png]]
1037
1038
1039
1040 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1041
1042
1043 (((
1044 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1045 )))
1046
1047 (((
1048 WSS-04 has auto heating feature, this ensures measurement more reliable.
1049 )))
1050
1051 (((
1052 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1053 )))
1054
1055
1056
1057 === 6.4.1 Feature ===
1058
1059
1060 * RS485 Rain/Snow detect sensor
1061 * Surface heating to dry
1062 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1063
1064
1065 === 6.4.2 Specification ===
1066
1067
1068 * Detect if there is rain or snow
1069 * Input Power: DC 12 ~~ 24v
1070 * Interface: RS485
1071 * Working Temperature: -30℃~70℃
1072 * Working Humidity: 10~90%RH
1073 * Power Consumption:
1074 ** No heating: 12mA @ 12v,
1075 ** heating: 94ma @ 12v.
1076
1077
1078 === 6.4.3 Dimension ===
1079
1080
1081 [[image:1656056844782-155.png]]
1082
1083
1084
1085 === 6.4.4 Pin Mapping ===
1086
1087
1088 [[image:1656056855590-754.png]]
1089
1090
1091
1092 === 6.4.5 Installation Notice ===
1093
1094
1095 Do not power on while connect the cables. Double check the wiring before power on.
1096
1097
1098 (((
1099 Install with 15°degree.
1100 )))
1101
1102 [[image:1656056873783-780.png]]
1103
1104
1105 [[image:1656056883736-804.png]]
1106
1107
1108
1109 === 6.4.6 Heating ===
1110
1111
1112 (((
1113 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1114 )))
1115
1116
1117
1118 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1119
1120
1121 (((
1122 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1123 )))
1124
1125 (((
1126 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1127 )))
1128
1129
1130
1131 === 6.5.1 Feature ===
1132
1133
1134 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1135
1136
1137 === 6.5.2 Specification ===
1138
1139
1140 * Input Power: DC 12 ~~ 24v
1141 * Interface: RS485
1142 * Temperature Sensor Spec:
1143 ** Range: -30 ~~ 70℃
1144 ** resolution 0.1℃
1145 ** Accuracy: ±0.5℃
1146 * Humidity Sensor Spec:
1147 ** Range: 0 ~~ 100% RH
1148 ** resolution 0.1 %RH
1149 ** Accuracy: 3% RH
1150 * Pressure Sensor Spec:
1151 ** Range: 10~1100hPa
1152 ** Resolution: 0.1hPa
1153 ** Accuracy: ±0.1hPa
1154 * Illuminate sensor:
1155 ** Range: 0~2/20/200kLux
1156 ** Resolution: 10 Lux
1157 ** Accuracy: ±3%FS
1158 * Working Temperature: -30℃~70℃
1159 * Working Humidity: 10~90%RH
1160 * Power Consumption: 4mA @ 12v
1161
1162
1163 === 6.5.3 Dimension ===
1164
1165
1166 [[image:1656057170639-522.png]]
1167
1168
1169
1170 === 6.5.4 Pin Mapping ===
1171
1172
1173 [[image:1656057181899-910.png]]
1174
1175
1176
1177 === 6.5.5 Installation Notice ===
1178
1179
1180 Do not power on while connect the cables. Double check the wiring before power on.
1181
1182 [[image:1656057199955-514.png]]
1183
1184
1185 [[image:1656057212438-475.png]]
1186
1187
1188
1189 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1190
1191
1192 (((
1193 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1194 )))
1195
1196 (((
1197 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1198 )))
1199
1200 (((
1201 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1202 )))
1203
1204
1205
1206 === 6.6.1 Feature ===
1207
1208
1209 * RS485 Total Solar Radiation sensor
1210 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1211 * Measure Reflected Radiation if sense area towards ground.
1212
1213
1214 === 6.6.2 Specification ===
1215
1216
1217 * Input Power: DC 5 ~~ 24v
1218 * Interface: RS485
1219 * Detect spectrum: 0.3~3μm(300~3000nm)
1220 * Measure strength range: 0~2000W/m2
1221 * Resolution: 0.1W/m2
1222 * Accuracy: ±3%
1223 * Yearly Stability: ≤±2%
1224 * Cosine response: ≤7% (@ Sun angle 10°)
1225 * Temperature Effect: ±2%(-10℃~40℃)
1226 * Working Temperature: -40℃~70℃
1227 * Working Humidity: 10~90%RH
1228 * Power Consumption: 4mA @ 12v
1229
1230
1231 === 6.6.3 Dimension ===
1232
1233
1234 [[image:1656057348695-898.png]]
1235
1236
1237
1238 === 6.6.4 Pin Mapping ===
1239
1240
1241 [[image:1656057359343-744.png]]
1242
1243
1244
1245 === 6.6.5 Installation Notice ===
1246
1247
1248 Do not power on while connect the cables. Double check the wiring before power on.
1249
1250
1251 [[image:1656057369259-804.png]]
1252
1253
1254 [[image:1656057377943-564.png]]
1255
1256
1257
1258 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1259
1260
1261 (((
1262 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1263 )))
1264
1265 (((
1266 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1267 )))
1268
1269 (((
1270 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1271 )))
1272
1273
1274
1275 === 6.7.1 Feature ===
1276
1277
1278 (((
1279 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1280 )))
1281
1282 (((
1283 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1284 )))
1285
1286
1287
1288 === 6.7.2 Specification ===
1289
1290
1291 * Input Power: DC 5 ~~ 24v
1292 * Interface: RS485
1293 * Response Spectrum: 400~700nm
1294 * Measure range: 0~2500μmol/m2•s
1295 * Resolution: 1μmol/m2•s
1296 * Accuracy: ±2%
1297 * Yearly Stability: ≤±2%
1298 * Working Temperature: -30℃~75℃
1299 * Working Humidity: 10~90%RH
1300 * Power Consumption: 3mA @ 12v
1301
1302
1303 === 6.7.3 Dimension ===
1304
1305
1306 [[image:1656057538793-888.png]]
1307
1308
1309
1310 === 6.7.4 Pin Mapping ===
1311
1312
1313 [[image:1656057548116-203.png]]
1314
1315
1316
1317 === 6.7.5 Installation Notice ===
1318
1319
1320 Do not power on while connect the cables. Double check the wiring before power on.
1321
1322
1323 [[image:1656057557191-895.png]]
1324
1325
1326 [[image:1656057565783-251.png]]
1327
1328
1329
1330 = 7. FAQ =
1331
1332
1333 == 7.1 What else do I need to purchase to build Weather Station? ==
1334
1335
1336 Below is the installation photo and structure:
1337
1338
1339 [[image:1656057598349-319.png]]
1340
1341
1342 [[image:1656057608049-693.png]]
1343
1344
1345
1346 == 7.2 How to upgrade firmware for WSC1-L? ==
1347
1348
1349 (((
1350 Firmware Location & Change log:
1351
1352 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1353 )))
1354
1355 (((
1356
1357 )))
1358
1359 (((
1360 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1361 )))
1362
1363
1364
1365 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1366
1367
1368 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1369
1370
1371
1372 == 7.4 Can I add my weather sensors? ==
1373
1374
1375 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1376
1377
1378
1379 = 8. Trouble Shooting =
1380
1381
1382 == 8.1 AT Command input doesn't work ==
1383
1384
1385 (((
1386 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1387 )))
1388
1389
1390
1391 = 9. Order Info =
1392
1393
1394 == 9.1 Main Process Unit ==
1395
1396
1397 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1398
1399 (% style="color:blue" %)**XX**(%%): The default frequency band
1400
1401 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1402 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1403 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1404 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1405 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1406 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1407 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1408 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1409
1410
1411 == 9.2 Sensors ==
1412
1413
1414 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1415 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1416 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1417 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1418 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1419 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1420 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1421 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1422 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1423 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1424
1425
1426 = 10. Support =
1427
1428
1429 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1430 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1431
1432
1433 = 11. Appendix I: Field Installation Photo =
1434
1435
1436 [[image:1656058346362-132.png||height="685" width="732"]]
1437
1438 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1439
1440
1441
1442 (% style="color:blue" %)**Wind Speed/Direction**
1443
1444 [[image:1656058373174-421.png||height="356" width="731"]]
1445
1446
1447
1448 (% style="color:blue" %)**Total Solar Radiation sensor**
1449
1450 [[image:1656058397364-282.png||height="453" width="732"]]
1451
1452
1453
1454 (% style="color:blue" %)**PAR Sensor**
1455
1456 [[image:1656058416171-615.png]]
1457
1458
1459
1460 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1461
1462 [[image:1656058441194-827.png||height="672" width="523"]]
1463
1464
1465
1466 (% style="color:blue" %)**Rain / Snow Detect**
1467
1468 [[image:1656058451456-166.png]]
1469
1470
1471
1472 (% style="color:blue" %)**Rain Gauge**
1473
1474 [[image:1656058463455-569.png||height="499" width="550"]]
1475
1476