Version 91.6 by Xiaoling on 2022/07/07 18:08

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 (((
88 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
89 )))
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
98
99
100
101 == 2.3 Example to use for LoRaWAN network ==
102
103 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
104
105
106 [[image:1656042612899-422.png]]
107
108
109
110 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
111
112
113 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
114
115 Each WSC1-L is shipped with a sticker with the default device EUI as below:
116
117 [[image:image-20220624115043-1.jpeg]]
118
119
120 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
121
122 **Add APP EUI in the application.**
123
124 [[image:1656042662694-311.png]]
125
126 [[image:1656042673910-429.png]]
127
128
129
130
131 **Choose Manually to add WSC1-L**
132
133 [[image:1656042695755-103.png]]
134
135
136
137 **Add APP KEY and DEV EUI**
138
139 [[image:1656042723199-746.png]]
140
141
142
143 (((
144 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
145 )))
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159
160
161
162 === 2.4.1 Uplink FPORT~=5, Device Status ===
163
164 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
165
166
167 (((
168 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
169 )))
170
171 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
172 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
173 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
174
175 [[image:1656043061044-343.png]]
176
177
178 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
179
180
181
182 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
183
184 For WSC1-L, this value is 0x0D.
185
186
187
188 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
189
190 0x0100, Means: v1.0.0 version.
191
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217
218 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
219
220 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
221
222
223
224 ==== (% style="color:#037691" %)**BAT:**(%%) ====
225
226 (((
227 shows the battery voltage for WSC1-L MCU.
228 )))
229
230 (((
231 Ex1: 0x0BD6/1000 = 3.03 V
232 )))
233
234
235
236 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
237
238 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
239 |Byte3|Byte2|Byte1
240
241 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
242
243 [[image:image-20220624134713-1.png]]
244
245
246 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
247
248 External sensors detected by WSC1-L include :
249
250 custom sensor A1,
251
252 PAR sensor (WSS-07),
253
254 Total Solar Radiation sensor (WSS-06),
255
256 CO2/PM2.5/PM10 (WSS-03),
257
258 Wind Speed/Direction (WSS-02)
259
260
261 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
262
263 (% style="color:#037691" %)**Downlink:0x26 01**
264
265 [[image:1656049673488-415.png]]
266
267
268
269 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
270
271 (((
272 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
273 )))
274
275 (((
276 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
277 )))
278
279
280 (((
281 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
282 )))
283
284
285 (% style="color:#4472c4" %)** Uplink Payload**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
288 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
289
290 (% style="color:#4472c4" %)** Sensor Segment Define**:
291
292 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
293 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
294
295 (% style="color:#4472c4" %)**Sensor Type Table:**
296
297 [[image:image-20220706154434-1.png]]
298
299
300 (((
301 Below is an example payload:  [[image:image-20220624140615-3.png]]
302 )))
303
304 (((
305
306 )))
307
308 (((
309 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
310 )))
311
312 * (((
313 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
314 )))
315
316 (((
317 Uplink 1:  [[image:image-20220624140735-4.png]]
318 )))
319
320 (((
321
322 )))
323
324 (((
325 Uplink 2:  [[image:image-20220624140842-5.png]]
326 )))
327
328 (((
329
330 )))
331
332 * (((
333 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
334 )))
335
336 (((
337 Uplink 1:  [[image:image-20220624141025-6.png]]
338 )))
339
340 (((
341
342 )))
343
344 Uplink 2:  [[image:image-20220624141100-7.png]]
345
346
347
348 === 2.4.3 Decoder in TTN V3 ===
349
350 (((
351 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
352 )))
353
354 (((
355
356 )))
357
358 (((
359 Download decoder for suitable platform from:
360 )))
361
362 (((
363 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
364 )))
365
366 (((
367 and put as below:
368 )))
369
370 [[image:1656051152438-578.png]]
371
372
373
374 == 2.5 Show data on Application Server ==
375
376 (((
377 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
378 )))
379
380 (((
381
382 )))
383
384 (((
385 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
386 )))
387
388 (((
389 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
390 )))
391
392 [[image:1656051197172-131.png]]
393
394
395 **Add TagoIO:**
396
397 [[image:1656051223585-631.png]]
398
399
400 **Authorization:**
401
402 [[image:1656051248318-368.png]]
403
404
405 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
406
407 [[image:1656051277767-168.png]]
408
409
410
411 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
412
413 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
414
415 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
416 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
417
418 There are two kinds of commands to configure WSC1-L, they are:
419
420 * (% style="color:#4472c4" %)**General Commands**.
421
422 These commands are to configure:
423
424 * General system settings like: uplink interval.
425 * LoRaWAN protocol & radio related command.
426
427 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
428
429 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
430
431
432 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
433
434 These commands only valid for WSC1-L, as below:
435
436
437
438 == 3.1 Set Transmit Interval Time ==
439
440 Feature: Change LoRaWAN End Node Transmit Interval.
441
442 (% style="color:#037691" %)**AT Command: AT+TDC**
443
444 [[image:image-20220624142619-8.png]]
445
446
447 (% style="color:#037691" %)**Downlink Command: 0x01**
448
449 Format: Command Code (0x01) followed by 3 bytes time value.
450
451 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
452
453 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
454 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
455
456
457
458
459 == 3.2 Set Emergency Mode ==
460
461 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
462
463 (% style="color:#037691" %)**AT Command:**
464
465 [[image:image-20220624142956-9.png]]
466
467
468 (% style="color:#037691" %)**Downlink Command:**
469
470 * 0xE101     Same as: AT+ALARMMOD=1
471 * 0xE100     Same as: AT+ALARMMOD=0
472
473
474
475
476 == 3.3 Add or Delete RS485 Sensor ==
477
478 (((
479 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
480 )))
481
482 (((
483 (% style="color:#037691" %)**AT Command: **
484 )))
485
486 (((
487 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
488 )))
489
490 * (((
491 Type_Code range:  A1 ~~ A4
492 )))
493 * (((
494 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
495 )))
496 * (((
497 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
498 )))
499 * (((
500 Read_Length:  RS485 response frame length supposed to receive. Max can receive
501 )))
502 * (((
503 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
504 )))
505 * (((
506 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
507 )))
508 * (((
509 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
510 )))
511
512 (((
513 **Example:**
514 )))
515
516 (((
517 User need to change external sensor use the type code as address code.
518 )))
519
520 (((
521 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
522 )))
523
524 [[image:image-20220624143553-10.png]]
525
526
527 The response frame of the sensor is as follows:
528
529 [[image:image-20220624143618-11.png]]
530
531
532
533 **Then the following parameters should be:**
534
535 * Address_Code range: A1
536 * Query_Length: 8
537 * Query_Command: A103000000019CAA
538 * Read_Length: 8
539 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
540 * has_CRC: 1
541 * timeout: 1500 (Fill in the test according to the actual situation)
542
543 **So the input command is:**
544
545 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
546
547
548 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
549
550 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
551 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
552 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
553
554 **Related commands:**
555
556 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
557
558 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
559
560
561 (% style="color:#037691" %)**Downlink Command:  **
562
563 **delete custom sensor A1:**
564
565 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
566
567 **Remove all custom sensors**
568
569 * 0xE5FF  
570
571
572
573
574 == 3.4 RS485 Test Command ==
575
576 (% style="color:#037691" %)**AT Command:**
577
578 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
579 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
580 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
581 (((
582 Send command to 485 sensor
583 )))
584
585 (((
586 Range : no more than 10 bytes
587 )))
588 )))|(% style="width:85px" %)OK
589
590 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
591
592 AT+RSWRITE=0103000001840A
593
594
595 (% style="color:#037691" %)**Downlink Command:**
596
597 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
598
599 == 3.5 RS485 response timeout ==
600
601 Feature: Set or get extended time to receive 485 sensor data.
602
603 (% style="color:#037691" %)**AT Command:**
604
605 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
606 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
607 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
608 (((
609 Set response timeout to:
610 )))
611
612 (((
613 Range : 0~~10000
614 )))
615 )))|(% style="width:85px" %)OK
616
617 (% style="color:#037691" %)**Downlink Command:**
618
619 Format: Command Code (0xE0) followed by 3 bytes time value.
620
621 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
622
623 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
624 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
625
626 == 3.6 Set Sensor Type ==
627
628 (((
629 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
630 )))
631
632 (((
633 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
634 )))
635
636 [[image:image-20220624144904-12.png]]
637
638
639 (% style="color:#037691" %)**AT Command:**
640
641 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
642 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
643 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
644
645 Eg: The setting command **AT+STYPE=802212** means:
646
647 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
648 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
649 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
650 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
651 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
652 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
653 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
654
655 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
656
657
658 (% style="color:#037691" %)**Downlink Command:**
659
660 * 0xE400802212     Same as: AT+STYPE=80221
661
662 (% style="color:red" %)**Note:**
663
664 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
665
666
667
668 = 4. Power consumption and battery =
669
670 == 4.1 Total Power Consumption ==
671
672 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
673
674
675 == 4.2 Reduce power consumption ==
676
677 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
678
679
680 == 4.3 Battery ==
681
682 (((
683 All sensors are only power by external power source. If external power source is off. All sensor won't work.
684 )))
685
686 (((
687 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
688 )))
689
690
691 = 5. Main Process Unit WSC1-L =
692
693 == 5.1 Features ==
694
695 * Wall Attachable.
696 * LoRaWAN v1.0.3 Class A protocol.
697 * RS485 / Modbus protocol
698 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
699 * AT Commands to change parameters
700 * Remote configure parameters via LoRaWAN Downlink
701 * Firmware upgradable via program port
702 * Powered by external 12v battery
703 * Back up rechargeable 1000mAh battery
704 * IP Rating: IP65
705 * Support default sensors or 3rd party RS485 sensors
706
707 == 5.2 Power Consumption ==
708
709 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
710
711
712 == 5.3 Storage & Operation Temperature ==
713
714 -20°C to +60°C
715
716
717 == 5.4 Pin Mapping ==
718
719 [[image:1656054149793-239.png]]
720
721
722 == 5.5 Mechanical ==
723
724 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
725
726
727 == 5.6 Connect to RS485 Sensors ==
728
729 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
730
731
732 [[image:1656054389031-379.png]]
733
734
735 Hardware Design for the Converter Board please see:
736
737 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
738
739
740 = 6. Weather Sensors =
741
742 == 6.1 Rain Gauge ~-~- WSS-01 ==
743
744
745 (((
746 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
747 )))
748
749 (((
750 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
751 )))
752
753 (((
754 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
755 )))
756
757 (((
758 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
759 )))
760
761 (((
762 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
763 )))
764
765
766 === 6.1.1 Feature ===
767
768 * RS485 Rain Gauge
769 * Small dimension, easy to install
770 * Vents under funnel, avoid leaf or other things to avoid rain flow.
771 * ABS enclosure.
772 * Horizontal adjustable.
773
774 === 6.1.2 Specification ===
775
776 * Resolution: 0.2mm
777 * Accuracy: ±3%
778 * Range: 0 ~~ 100mm
779 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
780 * Input Power: DC 5~~24v
781 * Interface: RS485
782 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
783 * Working Humidity: <100% (no dewing)
784 * Power Consumption: 4mA @ 12v.
785
786 === 6.1.3 Dimension ===
787
788 [[image:1656054957406-980.png]]
789
790
791 === 6.1.4 Pin Mapping ===
792
793 [[image:1656054972828-692.png]]
794
795
796 === 6.1.5 Installation Notice ===
797
798 (((
799 Do not power on while connect the cables. Double check the wiring before power on.
800 )))
801
802 (((
803 Installation Photo as reference:
804 )))
805
806
807 (((
808 (% style="color:#4472c4" %)** Install on Ground:**
809 )))
810
811 (((
812 WSS-01 Rain Gauge include screws so can install in ground directly .
813 )))
814
815
816 (((
817 (% style="color:#4472c4" %)** Install on pole:**
818 )))
819
820 (((
821 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
822 )))
823
824 [[image:image-20220624152218-1.png||height="526" width="276"]]
825
826 WS-K2: Bracket Kit for Pole installation
827
828
829 WSSC-K2 dimension document, please see:
830
831 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
832
833
834 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
835
836 [[image:1656055444035-179.png]]
837
838 (((
839 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
840 )))
841
842 (((
843 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
844 )))
845
846 (((
847 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
848 )))
849
850
851 === 6.2.1 Feature ===
852
853 * RS485 wind speed / direction sensor
854 * PC enclosure, resist corrosion
855
856 === 6.2.2 Specification ===
857
858 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
859 * Wind direction range: 0 ~~ 360°
860 * Start wind speed: ≤0.3m/s
861 * Accuracy: ±(0.3+0.03V)m/s , ±1°
862 * Input Power: DC 5~~24v
863 * Interface: RS485
864 * Working Temperature: -30℃~70℃
865 * Working Humidity: <100% (no dewing)
866 * Power Consumption: 13mA ~~ 12v.
867 * Cable Length: 2 meters
868
869 === 6.2.3 Dimension ===
870
871 [[image:image-20220624152813-2.png]]
872
873
874 === 6.2.4 Pin Mapping ===
875
876 [[image:1656056281231-994.png]]
877
878
879 === 6.2.5  Angle Mapping ===
880
881 [[image:1656056303845-585.png]]
882
883
884 === 6.2.6  Installation Notice ===
885
886 (((
887 Do not power on while connect the cables. Double check the wiring before power on.
888 )))
889
890 (((
891 The sensor must be installed with below direction, towards North.
892 )))
893
894 [[image:image-20220624153901-3.png]]
895
896
897 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
898
899
900 (((
901 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
902 )))
903
904 (((
905 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
906 )))
907
908 (((
909 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
910 )))
911
912
913 === 6.3.1 Feature ===
914
915 * RS485 CO2, PM2.5, PM10 sensor
916 * NDIR to measure CO2 with Internal Temperature Compensation
917 * Laser Beam Scattering to PM2.5 and PM10
918
919 === 6.3.2 Specification ===
920
921 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
922 * CO2 resolution: 1ppm
923 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
924 * PM2.5/PM10 resolution: 1μg/m3
925 * Input Power: DC 7 ~~ 24v
926 * Preheat time: 3min
927 * Interface: RS485
928 * Working Temperature:
929 ** CO2: 0℃~50℃;
930 ** PM2.5/PM10: -30 ~~ 50℃
931 * Working Humidity:
932 ** PM2.5/PM10: 15~80%RH (no dewing)
933 ** CO2: 0~95%RH
934 * Power Consumption: 50mA@ 12v.
935
936 === 6.3.3 Dimension ===
937
938 [[image:1656056708366-230.png]]
939
940
941 === 6.3.4 Pin Mapping ===
942
943 [[image:1656056722648-743.png]]
944
945
946 === 6.3.5 Installation Notice ===
947
948 Do not power on while connect the cables. Double check the wiring before power on.
949
950 [[image:1656056751153-304.png]]
951
952 [[image:1656056766224-773.png]]
953
954
955 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
956
957
958 (((
959 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
960 )))
961
962 (((
963 WSS-04 has auto heating feature, this ensures measurement more reliable.
964 )))
965
966 (((
967 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
968 )))
969
970
971
972 === 6.4.1 Feature ===
973
974 * RS485 Rain/Snow detect sensor
975 * Surface heating to dry
976 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
977
978 === 6.4.2 Specification ===
979
980 * Detect if there is rain or snow
981 * Input Power: DC 12 ~~ 24v
982 * Interface: RS485
983 * Working Temperature: -30℃~70℃
984 * Working Humidity: 10~90%RH
985 * Power Consumption:
986 ** No heating: 12mA @ 12v,
987 ** heating: 94ma @ 12v.
988
989 === 6.4.3 Dimension ===
990
991 [[image:1656056844782-155.png]]
992
993
994 === 6.4.4 Pin Mapping ===
995
996 [[image:1656056855590-754.png]]
997
998
999 === 6.4.5 Installation Notice ===
1000
1001 Do not power on while connect the cables. Double check the wiring before power on.
1002
1003
1004 (((
1005 Install with 15°degree.
1006 )))
1007
1008 [[image:1656056873783-780.png]]
1009
1010
1011 [[image:1656056883736-804.png]]
1012
1013
1014 === 6.4.6 Heating ===
1015
1016 (((
1017 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1018 )))
1019
1020
1021 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1022
1023
1024 (((
1025 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1026 )))
1027
1028 (((
1029 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1030 )))
1031
1032
1033 === 6.5.1 Feature ===
1034
1035 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1036
1037 === 6.5.2 Specification ===
1038
1039 * Input Power: DC 12 ~~ 24v
1040 * Interface: RS485
1041 * Temperature Sensor Spec:
1042 ** Range: -30 ~~ 70℃
1043 ** resolution 0.1℃
1044 ** Accuracy: ±0.5℃
1045 * Humidity Sensor Spec:
1046 ** Range: 0 ~~ 100% RH
1047 ** resolution 0.1 %RH
1048 ** Accuracy: 3% RH
1049 * Pressure Sensor Spec:
1050 ** Range: 10~1100hPa
1051 ** Resolution: 0.1hPa
1052 ** Accuracy: ±0.1hPa
1053 * Illuminate sensor:
1054 ** Range: 0~2/20/200kLux
1055 ** Resolution: 10 Lux
1056 ** Accuracy: ±3%FS
1057 * Working Temperature: -30℃~70℃
1058 * Working Humidity: 10~90%RH
1059 * Power Consumption: 4mA @ 12v
1060
1061 === 6.5.3 Dimension ===
1062
1063 [[image:1656057170639-522.png]]
1064
1065
1066 === 6.5.4 Pin Mapping ===
1067
1068 [[image:1656057181899-910.png]]
1069
1070
1071 === 6.5.5 Installation Notice ===
1072
1073 Do not power on while connect the cables. Double check the wiring before power on.
1074
1075 [[image:1656057199955-514.png]]
1076
1077
1078 [[image:1656057212438-475.png]]
1079
1080
1081 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1082
1083
1084 (((
1085 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1086 )))
1087
1088 (((
1089 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1090 )))
1091
1092 (((
1093 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1094 )))
1095
1096
1097
1098 === 6.6.1 Feature ===
1099
1100 * RS485 Total Solar Radiation sensor
1101 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1102 * Measure Reflected Radiation if sense area towards ground.
1103
1104 === 6.6.2 Specification ===
1105
1106 * Input Power: DC 5 ~~ 24v
1107 * Interface: RS485
1108 * Detect spectrum: 0.3~3μm(300~3000nm)
1109 * Measure strength range: 0~2000W/m2
1110 * Resolution: 0.1W/m2
1111 * Accuracy: ±3%
1112 * Yearly Stability: ≤±2%
1113 * Cosine response: ≤7% (@ Sun angle 10°)
1114 * Temperature Effect: ±2%(-10℃~40℃)
1115 * Working Temperature: -40℃~70℃
1116 * Working Humidity: 10~90%RH
1117 * Power Consumption: 4mA @ 12v
1118
1119 === 6.6.3 Dimension ===
1120
1121 [[image:1656057348695-898.png]]
1122
1123
1124 === 6.6.4 Pin Mapping ===
1125
1126 [[image:1656057359343-744.png]]
1127
1128
1129 === 6.6.5 Installation Notice ===
1130
1131 Do not power on while connect the cables. Double check the wiring before power on.
1132
1133 [[image:1656057369259-804.png]]
1134
1135
1136 [[image:1656057377943-564.png]]
1137
1138
1139 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1140
1141
1142 (((
1143 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1144 )))
1145
1146 (((
1147 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1148 )))
1149
1150 (((
1151 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1152 )))
1153
1154
1155 === 6.7.1 Feature ===
1156
1157 (((
1158 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1159 )))
1160
1161 (((
1162 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1163 )))
1164
1165
1166 === 6.7.2 Specification ===
1167
1168 * Input Power: DC 5 ~~ 24v
1169 * Interface: RS485
1170 * Response Spectrum: 400~700nm
1171 * Measure range: 0~2500μmol/m2•s
1172 * Resolution: 1μmol/m2•s
1173 * Accuracy: ±2%
1174 * Yearly Stability: ≤±2%
1175 * Working Temperature: -30℃~75℃
1176 * Working Humidity: 10~90%RH
1177 * Power Consumption: 3mA @ 12v
1178
1179 === 6.7.3 Dimension ===
1180
1181 [[image:1656057538793-888.png]]
1182
1183
1184 === 6.7.4 Pin Mapping ===
1185
1186 [[image:1656057548116-203.png]]
1187
1188
1189 === 6.7.5 Installation Notice ===
1190
1191 Do not power on while connect the cables. Double check the wiring before power on.
1192
1193
1194 [[image:1656057557191-895.png]]
1195
1196
1197 [[image:1656057565783-251.png]]
1198
1199
1200 = 7. FAQ =
1201
1202 == 7.1 What else do I need to purchase to build Weather Station? ==
1203
1204 Below is the installation photo and structure:
1205
1206 [[image:1656057598349-319.png]]
1207
1208
1209 [[image:1656057608049-693.png]]
1210
1211
1212
1213 == 7.2 How to upgrade firmware for WSC1-L? ==
1214
1215 (((
1216 Firmware Location & Change log:
1217 )))
1218
1219 (((
1220 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1221 )))
1222
1223
1224 (((
1225 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1226 )))
1227
1228
1229 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1230
1231 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1232
1233
1234 == 7.4 Can I add my weather sensors? ==
1235
1236 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1237
1238
1239 = 8. Trouble Shooting =
1240
1241 == 8.1 AT Command input doesn't work ==
1242
1243 (((
1244 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1245 )))
1246
1247
1248 = 9. Order Info =
1249
1250 == 9.1 Main Process Unit ==
1251
1252 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1253
1254 (% style="color:blue" %)**XX**(%%): The default frequency band
1255
1256 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1257 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1258 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1259 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1260 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1261 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1262 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1263 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1264
1265 == 9.2 Sensors ==
1266
1267 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1268 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1269 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1270 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1271 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1272 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1273 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1274 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1275 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1276 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1277
1278 = 10. Support =
1279
1280 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1281 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1282
1283 = 11. Appendix I: Field Installation Photo =
1284
1285
1286 [[image:1656058346362-132.png||height="685" width="732"]]
1287
1288 **Storage Battery**: 12v,12AH li battery
1289
1290
1291
1292 **Wind Speed/Direction**
1293
1294 [[image:1656058373174-421.png||height="356" width="731"]]
1295
1296
1297
1298 **Total Solar Radiation sensor**
1299
1300 [[image:1656058397364-282.png||height="453" width="732"]]
1301
1302
1303
1304 **PAR Sensor**
1305
1306 [[image:1656058416171-615.png]]
1307
1308
1309
1310 **CO2/PM2.5/PM10 3 in 1 sensor**
1311
1312 [[image:1656058441194-827.png||height="672" width="523"]]
1313
1314
1315
1316 **Rain / Snow Detect**
1317
1318 [[image:1656058451456-166.png]]
1319
1320
1321
1322 **Rain Gauge**
1323
1324 [[image:1656058463455-569.png||height="499" width="550"]]