Version 91.14 by Xiaoling on 2022/08/22 09:22

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43
44 == 2.1 Installation ==
45
46
47 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
48
49
50 [[image:1656041948552-849.png]]
51
52
53 (% style="color:blue" %)** Wiring:**
54
55 ~1. WSC1-L and sensors all powered by solar power via MPPT
56
57 2. WSC1-L and sensors connect to each other via RS485/Modbus.
58
59 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
60
61
62 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
63
64
65 [[image:1656042136605-251.png]]
66
67
68 (% style="color:red" %)**Notice 1:**
69
70 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
71 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
72 * Weather sensors won't work if solar panel and storage battery fails.
73
74
75 (% style="color:red" %)**Notice 2:**
76
77 Due to shipment and importation limitation, user is better to purchase below parts locally:
78
79 * Solar Panel
80 * Storage Battery
81 * MPPT Solar Recharger
82 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
83 * Cabinet.
84
85
86
87
88 == 2.2 How it works? ==
89
90
91 (((
92 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
93 )))
94
95
96 (((
97 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
98 )))
99
100 [[image:1656042192857-709.png]]
101
102
103 (% style="color:red" %)**Notice:**
104
105 1. WSC1-L will auto scan available weather sensors when power on or reboot.
106 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
107
108
109
110
111 == 2.3 Example to use for LoRaWAN network ==
112
113
114 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
115
116
117 [[image:1656042612899-422.png]]
118
119
120
121 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
122
123
124 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
125
126 Each WSC1-L is shipped with a sticker with the default device EUI as below:
127
128 [[image:image-20220624115043-1.jpeg]]
129
130
131 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
132
133 **Add APP EUI in the application.**
134
135 [[image:1656042662694-311.png]]
136
137 [[image:1656042673910-429.png]]
138
139
140
141
142 **Choose Manually to add WSC1-L**
143
144 [[image:1656042695755-103.png]]
145
146
147
148 **Add APP KEY and DEV EUI**
149
150 [[image:1656042723199-746.png]]
151
152
153
154 (((
155 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
156 )))
157
158
159 [[image:1656042745346-283.png]]
160
161
162
163 == 2.4 Uplink Payload ==
164
165
166 Uplink payloads include two types: Valid Sensor Value and other status / control command.
167
168 * Valid Sensor Value: Use FPORT=2
169 * Other control command: Use FPORT other than 2.
170
171
172
173
174 === 2.4.1 Uplink FPORT~=5, Device Status ===
175
176
177 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
178
179
180 (((
181 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
182 )))
183
184 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
185 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
186 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
187
188 [[image:1656043061044-343.png]]
189
190
191 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
192
193
194
195 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
196
197
198 For WSC1-L, this value is 0x0D.
199
200
201
202 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
203
204
205 0x0100, Means: v1.0.0 version.
206
207
208
209 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
210
211
212 *0x01: EU868
213
214 *0x02: US915
215
216 *0x03: IN865
217
218 *0x04: AU915
219
220 *0x05: KZ865
221
222 *0x06: RU864
223
224 *0x07: AS923
225
226 *0x08: AS923-1
227
228 *0x09: AS923-2
229
230 *0x0a: AS923-3
231
232
233
234 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
235
236
237 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
238
239
240
241 ==== (% style="color:#037691" %)**BAT:**(%%) ====
242
243
244 (((
245 shows the battery voltage for WSC1-L MCU.
246 )))
247
248 (((
249 Ex1: 0x0BD6/1000 = 3.03 V
250 )))
251
252
253
254 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
255
256
257 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
258 |Byte3|Byte2|Byte1
259
260 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
261
262 [[image:image-20220624134713-1.png]]
263
264
265 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
266
267 External sensors detected by WSC1-L include :
268
269 custom sensor A1,
270
271 PAR sensor (WSS-07),
272
273 Total Solar Radiation sensor (WSS-06),
274
275 CO2/PM2.5/PM10 (WSS-03),
276
277 Wind Speed/Direction (WSS-02)
278
279
280 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
281
282 (% style="color:#037691" %)**Downlink:0x26 01**
283
284 [[image:1656049673488-415.png]]
285
286
287
288 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
289
290
291 (((
292 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
293 )))
294
295 (((
296 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
297 )))
298
299
300 (((
301 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
302 )))
303
304
305 (% style="color:#4472c4" %)** Uplink Payload**:
306
307 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
308 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
309
310 (% style="color:#4472c4" %)** Sensor Segment Define**:
311
312 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
313 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
314
315 (% style="color:#4472c4" %)**Sensor Type Table:**
316
317 [[image:image-20220706154434-1.png]]
318
319
320 (((
321 Below is an example payload:  [[image:image-20220624140615-3.png]]
322 )))
323
324 (((
325
326 )))
327
328 (((
329 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
330 )))
331
332 * (((
333 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
334 )))
335
336 (((
337 Uplink 1:  [[image:image-20220624140735-4.png]]
338 )))
339
340 (((
341
342 )))
343
344 (((
345 Uplink 2:  [[image:image-20220624140842-5.png]]
346 )))
347
348 (((
349
350 )))
351
352 * (((
353 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
354 )))
355
356 (((
357 Uplink 1:  [[image:image-20220624141025-6.png]]
358 )))
359
360 (((
361
362 )))
363
364 Uplink 2:  [[image:image-20220624141100-7.png]]
365
366
367
368 === 2.4.3 Decoder in TTN V3 ===
369
370
371 (((
372 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
373 )))
374
375 (((
376
377 )))
378
379 (((
380 Download decoder for suitable platform from: [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
381 )))
382
383 (((
384
385 )))
386
387 (((
388 and put as below:
389
390
391 )))
392
393 [[image:1656051152438-578.png]]
394
395
396
397 == 2.5 Show data on Application Server ==
398
399
400 (((
401 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
402 )))
403
404 (((
405
406 )))
407
408 (((
409 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
410 )))
411
412 (((
413 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
414 )))
415
416 [[image:1656051197172-131.png]]
417
418
419
420 **Add TagoIO:**
421
422 [[image:1656051223585-631.png]]
423
424
425
426 **Authorization:**
427
428 [[image:1656051248318-368.png]]
429
430
431
432 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
433
434
435 [[image:1656051277767-168.png]]
436
437
438
439 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
440
441
442 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
443
444 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
445 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
446
447 There are two kinds of commands to configure WSC1-L, they are:
448
449 * (% style="color:#4472c4" %)**General Commands**.
450
451 These commands are to configure:
452
453 * General system settings like: uplink interval.
454 * LoRaWAN protocol & radio related command.
455
456 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
457
458 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
459
460
461 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
462
463 These commands only valid for WSC1-L, as below:
464
465
466
467 == 3.1 Set Transmit Interval Time ==
468
469
470 Feature: Change LoRaWAN End Node Transmit Interval.
471
472 (% style="color:#037691" %)**AT Command: AT+TDC**
473
474 [[image:image-20220624142619-8.png]]
475
476
477 (% style="color:#037691" %)**Downlink Command: 0x01**
478
479 Format: Command Code (0x01) followed by 3 bytes time value.
480
481 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
482
483 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
484 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
485
486
487
488
489 == 3.2 Set Emergency Mode ==
490
491
492 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
493
494 (% style="color:#037691" %)**AT Command:**
495
496 [[image:image-20220624142956-9.png]]
497
498
499 (% style="color:#037691" %)**Downlink Command:**
500
501 * 0xE101     Same as: AT+ALARMMOD=1
502 * 0xE100     Same as: AT+ALARMMOD=0
503
504
505
506
507 == 3.3 Add or Delete RS485 Sensor ==
508
509
510 (((
511 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
512 )))
513
514 (((
515 (% style="color:#037691" %)**AT Command: **
516 )))
517
518 (((
519 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
520 )))
521
522 * (((
523 Type_Code range:  A1 ~~ A4
524 )))
525 * (((
526 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
527 )))
528 * (((
529 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
530 )))
531 * (((
532 Read_Length:  RS485 response frame length supposed to receive. Max can receive
533 )))
534 * (((
535 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
536 )))
537 * (((
538 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
539 )))
540 * (((
541 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
542 )))
543
544 (((
545 **Example:**
546 )))
547
548 (((
549 User need to change external sensor use the type code as address code.
550 )))
551
552 (((
553 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
554 )))
555
556 [[image:image-20220624143553-10.png]]
557
558
559 The response frame of the sensor is as follows:
560
561 [[image:image-20220624143618-11.png]]
562
563
564
565 **Then the following parameters should be:**
566
567 * Address_Code range: A1
568 * Query_Length: 8
569 * Query_Command: A103000000019CAA
570 * Read_Length: 8
571 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
572 * has_CRC: 1
573 * timeout: 1500 (Fill in the test according to the actual situation)
574
575
576 **So the input command is:**
577
578 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
579
580
581 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
582
583 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
584 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
585 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
586
587 **Related commands:**
588
589 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
590
591 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
592
593
594 (% style="color:#037691" %)**Downlink Command:  **
595
596 **delete custom sensor A1:**
597
598 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
599
600 **Remove all custom sensors**
601
602 * 0xE5FF  
603
604
605
606
607 == 3.4 RS485 Test Command ==
608
609
610 (% style="color:#037691" %)**AT Command:**
611
612 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
613 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
614 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
615 (((
616 Send command to 485 sensor
617 )))
618
619 (((
620 Range : no more than 10 bytes
621 )))
622 )))|(% style="width:85px" %)OK
623
624 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
625
626 AT+RSWRITE=0103000001840A
627
628
629 (% style="color:#037691" %)**Downlink Command:**
630
631 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
632
633
634
635
636 == 3.5 RS485 response timeout ==
637
638
639 Feature: Set or get extended time to receive 485 sensor data.
640
641 (% style="color:#037691" %)**AT Command:**
642
643 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
644 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
645 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
646 (((
647 Set response timeout to:
648 )))
649
650 (((
651 Range : 0~~10000
652 )))
653 )))|(% style="width:85px" %)OK
654
655 (% style="color:#037691" %)**Downlink Command:**
656
657 Format: Command Code (0xE0) followed by 3 bytes time value.
658
659 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
660
661 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
662 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
663
664
665
666
667 == 3.6 Set Sensor Type ==
668
669
670 (((
671 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
672 )))
673
674 (((
675 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
676 )))
677
678 [[image:image-20220624144904-12.png]]
679
680
681 (% style="color:#037691" %)**AT Command:**
682
683 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
684 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
685 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
686
687 Eg: The setting command **AT+STYPE=802212** means:
688
689 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
690 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
691 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
692 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
693 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
694 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
695 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
696
697 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
698
699
700 (% style="color:#037691" %)**Downlink Command:**
701
702 * 0xE400802212     Same as: AT+STYPE=80221
703
704
705 (% style="color:red" %)**Note:**
706
707 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
708
709
710
711 = 4. Power consumption and battery =
712
713
714 == 4.1 Total Power Consumption ==
715
716
717 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
718
719
720
721 == 4.2 Reduce power consumption ==
722
723
724 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
725
726
727
728 == 4.3 Battery ==
729
730
731 (((
732 All sensors are only power by external power source. If external power source is off. All sensor won't work.
733 )))
734
735 (((
736 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
737 )))
738
739
740
741 = 5. Main Process Unit WSC1-L =
742
743
744 == 5.1 Features ==
745
746
747 * Wall Attachable.
748 * LoRaWAN v1.0.3 Class A protocol.
749 * RS485 / Modbus protocol
750 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
751 * AT Commands to change parameters
752 * Remote configure parameters via LoRaWAN Downlink
753 * Firmware upgradable via program port
754 * Powered by external 12v battery
755 * Back up rechargeable 1000mAh battery
756 * IP Rating: IP65
757 * Support default sensors or 3rd party RS485 sensors
758
759
760
761
762 == 5.2 Power Consumption ==
763
764
765 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
766
767
768
769 == 5.3 Storage & Operation Temperature ==
770
771
772 -20°C to +60°C
773
774
775
776 == 5.4 Pin Mapping ==
777
778
779 [[image:1656054149793-239.png]]
780
781
782
783 == 5.5 Mechanical ==
784
785
786 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
787
788
789
790 == 5.6 Connect to RS485 Sensors ==
791
792
793 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
794
795
796 [[image:1656054389031-379.png]]
797
798
799 Hardware Design for the Converter Board please see:
800
801 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
802
803
804
805 = 6. Weather Sensors =
806
807
808 == 6.1 Rain Gauge ~-~- WSS-01 ==
809
810
811 (((
812 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
813 )))
814
815 (((
816 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
817 )))
818
819 (((
820 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
821 )))
822
823 (((
824 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
825 )))
826
827 (((
828 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
829 )))
830
831
832
833 === 6.1.1 Feature ===
834
835
836 * RS485 Rain Gauge
837 * Small dimension, easy to install
838 * Vents under funnel, avoid leaf or other things to avoid rain flow.
839 * ABS enclosure.
840 * Horizontal adjustable.
841
842
843
844
845 === 6.1.2 Specification ===
846
847
848 * Resolution: 0.2mm
849 * Accuracy: ±3%
850 * Range: 0 ~~ 100mm
851 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
852 * Input Power: DC 5~~24v
853 * Interface: RS485
854 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
855 * Working Humidity: <100% (no dewing)
856 * Power Consumption: 4mA @ 12v.
857
858
859
860
861 === 6.1.3 Dimension ===
862
863
864 [[image:1656054957406-980.png]]
865
866
867
868 === 6.1.4 Pin Mapping ===
869
870
871 [[image:1656054972828-692.png]]
872
873
874
875 === 6.1.5 Installation Notice ===
876
877
878 (((
879 Do not power on while connect the cables. Double check the wiring before power on.
880 )))
881
882 (((
883 Installation Photo as reference:
884 )))
885
886
887 (((
888 (% style="color:#4472c4" %)** Install on Ground:**
889 )))
890
891 (((
892 WSS-01 Rain Gauge include screws so can install in ground directly .
893 )))
894
895
896 (((
897 (% style="color:#4472c4" %)** Install on pole:**
898 )))
899
900 (((
901 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
902 )))
903
904 [[image:image-20220624152218-1.png||height="526" width="276"]]
905
906 WS-K2: Bracket Kit for Pole installation
907
908
909 WSSC-K2 dimension document, please see:
910
911 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
912
913
914
915 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
916
917
918 [[image:1656055444035-179.png]]
919
920
921 (((
922 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
923 )))
924
925 (((
926 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
927 )))
928
929 (((
930 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
931 )))
932
933
934
935 === 6.2.1 Feature ===
936
937
938 * RS485 wind speed / direction sensor
939 * PC enclosure, resist corrosion
940
941
942
943
944 === 6.2.2 Specification ===
945
946
947 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
948 * Wind direction range: 0 ~~ 360°
949 * Start wind speed: ≤0.3m/s
950 * Accuracy: ±(0.3+0.03V)m/s , ±1°
951 * Input Power: DC 5~~24v
952 * Interface: RS485
953 * Working Temperature: -30℃~70℃
954 * Working Humidity: <100% (no dewing)
955 * Power Consumption: 13mA ~~ 12v.
956 * Cable Length: 2 meters
957
958
959
960
961 === 6.2.3 Dimension ===
962
963
964 [[image:image-20220624152813-2.png]]
965
966
967
968 === 6.2.4 Pin Mapping ===
969
970
971 [[image:1656056281231-994.png]]
972
973
974
975 === 6.2.5  Angle Mapping ===
976
977
978 [[image:1656056303845-585.png]]
979
980
981
982 === 6.2.6  Installation Notice ===
983
984
985 (((
986 Do not power on while connect the cables. Double check the wiring before power on.
987 )))
988
989 (((
990 The sensor must be installed with below direction, towards North.
991
992
993 )))
994
995 [[image:image-20220624153901-3.png]]
996
997
998
999 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1000
1001
1002 (((
1003 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1004 )))
1005
1006 (((
1007 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1008 )))
1009
1010 (((
1011 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1012 )))
1013
1014
1015
1016 === 6.3.1 Feature ===
1017
1018
1019 * RS485 CO2, PM2.5, PM10 sensor
1020 * NDIR to measure CO2 with Internal Temperature Compensation
1021 * Laser Beam Scattering to PM2.5 and PM10
1022
1023
1024
1025
1026 === 6.3.2 Specification ===
1027
1028
1029 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1030 * CO2 resolution: 1ppm
1031 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1032 * PM2.5/PM10 resolution: 1μg/m3
1033 * Input Power: DC 7 ~~ 24v
1034 * Preheat time: 3min
1035 * Interface: RS485
1036 * Working Temperature:
1037 ** CO2: 0℃~50℃;
1038 ** PM2.5/PM10: -30 ~~ 50℃
1039 * Working Humidity:
1040 ** PM2.5/PM10: 15~80%RH (no dewing)
1041 ** CO2: 0~95%RH
1042 * Power Consumption: 50mA@ 12v.
1043
1044
1045
1046
1047 === 6.3.3 Dimension ===
1048
1049
1050 [[image:1656056708366-230.png]]
1051
1052
1053
1054 === 6.3.4 Pin Mapping ===
1055
1056
1057 [[image:1656056722648-743.png]]
1058
1059
1060
1061 === 6.3.5 Installation Notice ===
1062
1063
1064 Do not power on while connect the cables. Double check the wiring before power on.
1065
1066
1067 [[image:1656056751153-304.png]]
1068
1069 [[image:1656056766224-773.png]]
1070
1071
1072
1073 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1074
1075
1076 (((
1077 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1078 )))
1079
1080 (((
1081 WSS-04 has auto heating feature, this ensures measurement more reliable.
1082 )))
1083
1084 (((
1085 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1086 )))
1087
1088
1089
1090 === 6.4.1 Feature ===
1091
1092
1093 * RS485 Rain/Snow detect sensor
1094 * Surface heating to dry
1095 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1096
1097
1098
1099
1100 === 6.4.2 Specification ===
1101
1102
1103 * Detect if there is rain or snow
1104 * Input Power: DC 12 ~~ 24v
1105 * Interface: RS485
1106 * Working Temperature: -30℃~70℃
1107 * Working Humidity: 10~90%RH
1108 * Power Consumption:
1109 ** No heating: 12mA @ 12v,
1110 ** heating: 94ma @ 12v.
1111
1112
1113
1114
1115 === 6.4.3 Dimension ===
1116
1117
1118 [[image:1656056844782-155.png]]
1119
1120
1121
1122 === 6.4.4 Pin Mapping ===
1123
1124
1125 [[image:1656056855590-754.png]]
1126
1127
1128
1129 === 6.4.5 Installation Notice ===
1130
1131
1132 Do not power on while connect the cables. Double check the wiring before power on.
1133
1134
1135 (((
1136 Install with 15°degree.
1137 )))
1138
1139 [[image:1656056873783-780.png]]
1140
1141
1142 [[image:1656056883736-804.png]]
1143
1144
1145
1146 === 6.4.6 Heating ===
1147
1148
1149 (((
1150 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1151 )))
1152
1153
1154
1155 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1156
1157
1158 (((
1159 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1160 )))
1161
1162 (((
1163 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1164 )))
1165
1166
1167
1168 === 6.5.1 Feature ===
1169
1170
1171 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1172
1173
1174
1175
1176 === 6.5.2 Specification ===
1177
1178
1179 * Input Power: DC 12 ~~ 24v
1180 * Interface: RS485
1181 * Temperature Sensor Spec:
1182 ** Range: -30 ~~ 70℃
1183 ** resolution 0.1℃
1184 ** Accuracy: ±0.5℃
1185 * Humidity Sensor Spec:
1186 ** Range: 0 ~~ 100% RH
1187 ** resolution 0.1 %RH
1188 ** Accuracy: 3% RH
1189 * Pressure Sensor Spec:
1190 ** Range: 10~1100hPa
1191 ** Resolution: 0.1hPa
1192 ** Accuracy: ±0.1hPa
1193 * Illuminate sensor:
1194 ** Range: 0~2/20/200kLux
1195 ** Resolution: 10 Lux
1196 ** Accuracy: ±3%FS
1197 * Working Temperature: -30℃~70℃
1198 * Working Humidity: 10~90%RH
1199 * Power Consumption: 4mA @ 12v
1200
1201
1202
1203
1204 === 6.5.3 Dimension ===
1205
1206
1207 [[image:1656057170639-522.png]]
1208
1209
1210
1211 === 6.5.4 Pin Mapping ===
1212
1213
1214 [[image:1656057181899-910.png]]
1215
1216
1217
1218 === 6.5.5 Installation Notice ===
1219
1220
1221 Do not power on while connect the cables. Double check the wiring before power on.
1222
1223 [[image:1656057199955-514.png]]
1224
1225
1226 [[image:1656057212438-475.png]]
1227
1228
1229
1230 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1231
1232
1233 (((
1234 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1235 )))
1236
1237 (((
1238 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1239 )))
1240
1241 (((
1242 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1243 )))
1244
1245
1246
1247 === 6.6.1 Feature ===
1248
1249
1250 * RS485 Total Solar Radiation sensor
1251 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1252 * Measure Reflected Radiation if sense area towards ground.
1253
1254
1255
1256
1257 === 6.6.2 Specification ===
1258
1259
1260 * Input Power: DC 5 ~~ 24v
1261 * Interface: RS485
1262 * Detect spectrum: 0.3~3μm(300~3000nm)
1263 * Measure strength range: 0~2000W/m2
1264 * Resolution: 0.1W/m2
1265 * Accuracy: ±3%
1266 * Yearly Stability: ≤±2%
1267 * Cosine response: ≤7% (@ Sun angle 10°)
1268 * Temperature Effect: ±2%(-10℃~40℃)
1269 * Working Temperature: -40℃~70℃
1270 * Working Humidity: 10~90%RH
1271 * Power Consumption: 4mA @ 12v
1272
1273
1274
1275
1276 === 6.6.3 Dimension ===
1277
1278
1279 [[image:1656057348695-898.png]]
1280
1281
1282
1283 === 6.6.4 Pin Mapping ===
1284
1285
1286 [[image:1656057359343-744.png]]
1287
1288
1289
1290 === 6.6.5 Installation Notice ===
1291
1292
1293 Do not power on while connect the cables. Double check the wiring before power on.
1294
1295
1296 [[image:1656057369259-804.png]]
1297
1298
1299 [[image:1656057377943-564.png]]
1300
1301
1302
1303 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1304
1305
1306 (((
1307 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1308 )))
1309
1310 (((
1311 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1312 )))
1313
1314 (((
1315 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1316 )))
1317
1318
1319
1320 === 6.7.1 Feature ===
1321
1322
1323 (((
1324 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1325 )))
1326
1327 (((
1328 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1329 )))
1330
1331
1332
1333 === 6.7.2 Specification ===
1334
1335
1336 * Input Power: DC 5 ~~ 24v
1337 * Interface: RS485
1338 * Response Spectrum: 400~700nm
1339 * Measure range: 0~2500μmol/m2•s
1340 * Resolution: 1μmol/m2•s
1341 * Accuracy: ±2%
1342 * Yearly Stability: ≤±2%
1343 * Working Temperature: -30℃~75℃
1344 * Working Humidity: 10~90%RH
1345 * Power Consumption: 3mA @ 12v
1346
1347
1348
1349
1350 === 6.7.3 Dimension ===
1351
1352
1353 [[image:1656057538793-888.png]]
1354
1355
1356
1357 === 6.7.4 Pin Mapping ===
1358
1359
1360 [[image:1656057548116-203.png]]
1361
1362
1363
1364 === 6.7.5 Installation Notice ===
1365
1366
1367 Do not power on while connect the cables. Double check the wiring before power on.
1368
1369
1370 [[image:1656057557191-895.png]]
1371
1372
1373 [[image:1656057565783-251.png]]
1374
1375
1376
1377 = 7. FAQ =
1378
1379
1380 == 7.1 What else do I need to purchase to build Weather Station? ==
1381
1382
1383 Below is the installation photo and structure:
1384
1385
1386 [[image:1656057598349-319.png]]
1387
1388
1389 [[image:1656057608049-693.png]]
1390
1391
1392
1393 == 7.2 How to upgrade firmware for WSC1-L? ==
1394
1395
1396 (((
1397 Firmware Location & Change log:
1398
1399 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1400 )))
1401
1402 (((
1403
1404 )))
1405
1406 (((
1407 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1408 )))
1409
1410
1411
1412 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1413
1414
1415 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1416
1417
1418
1419 == 7.4 Can I add my weather sensors? ==
1420
1421
1422 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1423
1424
1425
1426 = 8. Trouble Shooting =
1427
1428
1429 == 8.1 AT Command input doesn't work ==
1430
1431
1432 (((
1433 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1434 )))
1435
1436
1437
1438 = 9. Order Info =
1439
1440
1441 == 9.1 Main Process Unit ==
1442
1443
1444 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1445
1446 (% style="color:blue" %)**XX**(%%): The default frequency band
1447
1448 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1449 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1450 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1451 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1452 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1453 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1454 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1455 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1456
1457
1458
1459
1460 == 9.2 Sensors ==
1461
1462
1463 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1464 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1465 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1466 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1467 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1468 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1469 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1470 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1471 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1472 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1473
1474
1475
1476
1477 = 10. Support =
1478
1479
1480 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1481 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1482
1483
1484
1485
1486 = 11. Appendix I: Field Installation Photo =
1487
1488
1489 [[image:1656058346362-132.png||height="685" width="732"]]
1490
1491 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1492
1493
1494
1495 (% style="color:blue" %)**Wind Speed/Direction**
1496
1497 [[image:1656058373174-421.png||height="356" width="731"]]
1498
1499
1500
1501 (% style="color:blue" %)**Total Solar Radiation sensor**
1502
1503 [[image:1656058397364-282.png||height="453" width="732"]]
1504
1505
1506
1507 (% style="color:blue" %)**PAR Sensor**
1508
1509 [[image:1656058416171-615.png]]
1510
1511
1512
1513 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1514
1515 [[image:1656058441194-827.png||height="672" width="523"]]
1516
1517
1518
1519 (% style="color:blue" %)**Rain / Snow Detect**
1520
1521 [[image:1656058451456-166.png]]
1522
1523
1524
1525 (% style="color:blue" %)**Rain Gauge**
1526
1527 [[image:1656058463455-569.png||height="499" width="550"]]
1528
1529