Version 86.7 by Xiaoling on 2022/07/06 15:35

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 (((
88 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
89 )))
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
98
99 == 2.3 Example to use for LoRaWAN network ==
100
101 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
102
103
104 [[image:1656042612899-422.png]]
105
106
107
108 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
109
110
111 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
112
113 Each WSC1-L is shipped with a sticker with the default device EUI as below:
114
115 [[image:image-20220624115043-1.jpeg]]
116
117
118 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
119
120 **Add APP EUI in the application.**
121
122 [[image:1656042662694-311.png]]
123
124 [[image:1656042673910-429.png]]
125
126
127
128
129 **Choose Manually to add WSC1-L**
130
131 [[image:1656042695755-103.png]]
132
133
134
135 **Add APP KEY and DEV EUI**
136
137 [[image:1656042723199-746.png]]
138
139
140
141 (((
142 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
143 )))
144
145
146 [[image:1656042745346-283.png]]
147
148
149
150 == 2.4 Uplink Payload ==
151
152 Uplink payloads include two types: Valid Sensor Value and other status / control command.
153
154 * Valid Sensor Value: Use FPORT=2
155 * Other control command: Use FPORT other than 2.
156
157 === 2.4.1 Uplink FPORT~=5, Device Status ===
158
159 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
160
161
162 (((
163 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
164 )))
165
166 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
167 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
168 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
169
170 [[image:1656043061044-343.png]]
171
172
173 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
174
175
176
177 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
178
179 For WSC1-L, this value is 0x0D.
180
181
182
183 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
184
185 0x0100, Means: v1.0.0 version.
186
187
188
189 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
190
191 *0x01: EU868
192
193 *0x02: US915
194
195 *0x03: IN865
196
197 *0x04: AU915
198
199 *0x05: KZ865
200
201 *0x06: RU864
202
203 *0x07: AS923
204
205 *0x08: AS923-1
206
207 *0x09: AS923-2
208
209 *0x0a: AS923-3
210
211
212
213 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
214
215 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
216
217
218
219 ==== (% style="color:#037691" %)**BAT:**(%%) ====
220
221 (((
222 shows the battery voltage for WSC1-L MCU.
223 )))
224
225 (((
226 Ex1: 0x0BD6/1000 = 3.03 V
227 )))
228
229
230
231 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
232
233 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
234 |Byte3|Byte2|Byte1
235
236 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
237
238 [[image:image-20220624134713-1.png]]
239
240
241 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
242
243 External sensors detected by WSC1-L include :
244
245 custom sensor A1,
246
247 PAR sensor (WSS-07),
248
249 Total Solar Radiation sensor (WSS-06),
250
251 CO2/PM2.5/PM10 (WSS-03),
252
253 Wind Speed/Direction (WSS-02)
254
255
256 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
257
258 (% style="color:#037691" %)**Downlink:0x26 01**
259
260 [[image:1656049673488-415.png]]
261
262
263
264 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
265
266 (((
267 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
268 )))
269
270 (((
271 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
272 )))
273
274
275 (((
276 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
277 )))
278
279
280 (% style="color:#4472c4" %)** Uplink Payload**:
281
282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
283 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
284
285 (% style="color:#4472c4" %)** Sensor Segment Define**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
288 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
289
290 (% style="color:#4472c4" %)**Sensor Type Table:**
291
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
294 |=(% style="width: 70px;" %)**Sensor Type**|=(% style="width: 60px;" %)**Type Code**|=(% style="width: 100px;" %)**Range**|=(% style="width: 60px;" %)**Length ( Bytes)**|=(% style="width: 200px;" %)**Example**
295 |(% style="width:126px" %)**Wind Speed**|(% style="width:104px" %)0x01|(% style="width:135px" %)(((
296 Speed: 0~60m/s
297
298 Level: 0~17
299 )))|(% style="width:147px" %)0x03 |(% style="width:295px" %)(((
300 0x0024/10=3.6m/s
301
302 (0x02FE: No Sensor, 0x02FF: Value Error)
303
304 0x02=2
305
306 (0x14: No Sensor, 0x15: Value Error)
307 )))
308 |(% style="width:126px" %)**Wind Direction**|(% style="width:104px" %)0x02|(% style="width:135px" %)(((
309 Angel: 0~360°
310
311 Direction: 16 positions
312 )))|(% style="width:147px" %)0x03|(% style="width:295px" %)(((
313 0x029A/10=66.6°
314
315 (0x0EFE: No Sensor,0x0EFF: Value Error)
316
317 0X03=3(ENE)
318
319 (0x14: No Sensor,0x15: Value Error)
320 )))
321 |(% style="width:126px" %)**Illumination**|(% style="width:104px" %)0x03|(% style="width:135px" %)0~200000Lux|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
322 0x04D2 *10=12340Lux
323
324 (0x4EFE: No Sensor,0x4EFF: Value Error)
325 )))
326 |(% style="width:126px" %)**Rain / Snow**|(% style="width:104px" %)0x04|(% style="width:135px" %)00: No, 01 Yes.|(% style="width:147px" %)0x01|(% style="width:295px" %)(((
327 0x00 (00) No Rain or snow detected
328
329 (0x02: No Sensor,0x03: Value Error)
330 )))
331 |(% style="width:126px" %)**CO2**|(% style="width:104px" %)0x05|(% style="width:135px" %)0~5000ppm|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
332 0x0378=888ppm
333
334 (0x14FE: No Sensor,0x14FF: Value Error)
335 )))
336 |(% style="width:126px" %)**Temperature**|(% style="width:104px" %)0x06|(% style="width:135px" %)-30℃~70℃|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
337 0xFFDD/10=-3.5℃
338
339 (0x02FE: No Sensor,0x02FF: Value Error)
340 )))
341 |(% style="width:126px" %)**Humidity**|(% style="width:104px" %)0x07|(% style="width:135px" %)0~100%RH|(% style="width:147px" %)0x02|(% style="width:295px" %)0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
342 |(% style="width:126px" %)**Pressure**|(% style="width:104px" %)0x08|(% style="width:135px" %)10~1100hPa|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
343 0x2748/10=1005.6hPa
344
345 (0x00: No Sensor,0x01: Value Error)
346 )))
347 |(% style="width:126px" %)**Rain Gauge**|(% style="width:104px" %)0x09|(% style="width:135px" %)0mm~~100mm(Rainfall in the last 24 hours)|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
348 0x0050/10=8mm(Rainfall within 24 hours: 8.0mm)
349
350 (0x03FE: No Sensor,0x03FF: Value Error)
351 )))
352 |(% style="width:126px" %)**PM2.5**|(% style="width:104px" %)0x0A|(% style="width:135px" %)0~1000μg/m^^3^^|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
353 0x0023=35μg/m^^3 ^^
354
355 (0x03FE: No Sensor,0x03FF: Value Error)
356 )))
357 |(% style="width:126px" %)**PM10**|(% style="width:104px" %)0x0B|(% style="width:135px" %)0~1000μg/m^^3^^|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
358 0x002D=45μg/m^^3 ^^
359
360 (0x03FE: No Sensor,0x03FF: Value Error)
361 )))
362 |(% style="width:126px" %)**PAR**|(% style="width:104px" %)0x0C|(% style="width:135px" %)0~2500μmol/m^^2^^•s|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
363 0x00B3=179μmol/m^^2^^•s
364
365 (0x09FE: No Sensor,0x9FF: Value Error)
366 )))
367 |(% style="width:126px" %)(((
368 **Total Solar**
369
370 **Radiation**
371 )))|(% style="width:104px" %)0x0D|(% style="width:135px" %)0~2000W/m^^2^^|(% style="width:147px" %)0x02|(% style="width:295px" %)(((
372 0x0073/10=11.5W/m^^2^^
373
374 (0x4EFE: No Sensor,0x4EFF: Value Error)
375 )))
376
377 [[image:image-20220624140352-2.png]]
378
379
380 (((
381 Below is an example payload:  [[image:image-20220624140615-3.png]]
382 )))
383
384 (((
385
386 )))
387
388 (((
389 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
390 )))
391
392 * (((
393 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
394 )))
395
396 (((
397 Uplink 1:  [[image:image-20220624140735-4.png]]
398 )))
399
400 (((
401
402 )))
403
404 (((
405 Uplink 2:  [[image:image-20220624140842-5.png]]
406 )))
407
408 (((
409
410 )))
411
412 * (((
413 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
414 )))
415
416 (((
417 Uplink 1:  [[image:image-20220624141025-6.png]]
418 )))
419
420 (((
421
422 )))
423
424 Uplink 2:  [[image:image-20220624141100-7.png]]
425
426
427
428 === 2.4.3 Decoder in TTN V3 ===
429
430 (((
431 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
432 )))
433
434 (((
435
436 )))
437
438 (((
439 Download decoder for suitable platform from:
440 )))
441
442 (((
443 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
444 )))
445
446 (((
447 and put as below:
448 )))
449
450 [[image:1656051152438-578.png]]
451
452
453
454 == 2.5 Show data on Application Server ==
455
456 (((
457 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
458 )))
459
460 (((
461
462 )))
463
464 (((
465 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
466 )))
467
468 (((
469 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
470 )))
471
472 [[image:1656051197172-131.png]]
473
474
475 **Add TagoIO:**
476
477 [[image:1656051223585-631.png]]
478
479
480 **Authorization:**
481
482 [[image:1656051248318-368.png]]
483
484
485 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
486
487 [[image:1656051277767-168.png]]
488
489
490
491 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
492
493 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
494
495 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
496 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
497
498 There are two kinds of commands to configure WSC1-L, they are:
499
500 * (% style="color:#4472c4" %)**General Commands**.
501
502 These commands are to configure:
503
504 * General system settings like: uplink interval.
505 * LoRaWAN protocol & radio related command.
506
507 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
508
509 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
510
511
512 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
513
514 These commands only valid for WSC1-L, as below:
515
516
517
518 == 3.1 Set Transmit Interval Time ==
519
520 Feature: Change LoRaWAN End Node Transmit Interval.
521
522 (% style="color:#037691" %)**AT Command: AT+TDC**
523
524 [[image:image-20220624142619-8.png]]
525
526
527 (% style="color:#037691" %)**Downlink Command: 0x01**
528
529 Format: Command Code (0x01) followed by 3 bytes time value.
530
531 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
532
533 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
534 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
535
536 == 3.2 Set Emergency Mode ==
537
538 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
539
540 (% style="color:#037691" %)**AT Command:**
541
542 [[image:image-20220624142956-9.png]]
543
544
545 (% style="color:#037691" %)**Downlink Command:**
546
547 * 0xE101     Same as: AT+ALARMMOD=1
548 * 0xE100     Same as: AT+ALARMMOD=0
549
550 == 3.3 Add or Delete RS485 Sensor ==
551
552 (((
553 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
554 )))
555
556 (((
557 (% style="color:#037691" %)**AT Command: **
558 )))
559
560 (((
561 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
562 )))
563
564 * (((
565 Type_Code range:  A1 ~~ A4
566 )))
567 * (((
568 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
569 )))
570 * (((
571 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
572 )))
573 * (((
574 Read_Length:  RS485 response frame length supposed to receive. Max can receive
575 )))
576 * (((
577 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
578 )))
579 * (((
580 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
581 )))
582 * (((
583 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
584 )))
585
586 (((
587 **Example:**
588 )))
589
590 (((
591 User need to change external sensor use the type code as address code.
592 )))
593
594 (((
595 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
596 )))
597
598 [[image:image-20220624143553-10.png]]
599
600
601 The response frame of the sensor is as follows:
602
603 [[image:image-20220624143618-11.png]]
604
605
606
607 **Then the following parameters should be:**
608
609 * Address_Code range: A1
610 * Query_Length: 8
611 * Query_Command: A103000000019CAA
612 * Read_Length: 8
613 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
614 * has_CRC: 1
615 * timeout: 1500 (Fill in the test according to the actual situation)
616
617 **So the input command is:**
618
619 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
620
621
622 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
623
624 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
625 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
626 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
627
628 **Related commands:**
629
630 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
631
632 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
633
634
635 (% style="color:#037691" %)**Downlink Command:  **
636
637 **delete custom sensor A1:**
638
639 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
640
641 **Remove all custom sensors**
642
643 * 0xE5FF  
644
645 == 3.4 RS485 Test Command ==
646
647 (% style="color:#037691" %)**AT Command:**
648
649 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
650 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
651 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
652 (((
653 Send command to 485 sensor
654 )))
655
656 (((
657 Range : no more than 10 bytes
658 )))
659 )))|(% style="width:85px" %)OK
660
661 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
662
663 AT+RSWRITE=0103000001840A
664
665
666 (% style="color:#037691" %)**Downlink Command:**
667
668 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
669
670 == 3.5 RS485 response timeout ==
671
672 Feature: Set or get extended time to receive 485 sensor data.
673
674 (% style="color:#037691" %)**AT Command:**
675
676 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
677 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
678 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
679 (((
680 Set response timeout to:
681 )))
682
683 (((
684 Range : 0~~10000
685 )))
686 )))|(% style="width:85px" %)OK
687
688 (% style="color:#037691" %)**Downlink Command:**
689
690 Format: Command Code (0xE0) followed by 3 bytes time value.
691
692 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
693
694 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
695 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
696
697 == 3.6 Set Sensor Type ==
698
699 (((
700 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
701 )))
702
703 (((
704 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
705 )))
706
707 [[image:image-20220624144904-12.png]]
708
709
710 (% style="color:#037691" %)**AT Command:**
711
712 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
713 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
714 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
715
716 Eg: The setting command **AT+STYPE=802212** means:
717
718 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
719 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
720 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
721 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
722 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
723 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
724 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
725
726 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
727
728
729 (% style="color:#037691" %)**Downlink Command:**
730
731 * 0xE400802212     Same as: AT+STYPE=80221
732
733 (% style="color:red" %)**Note:**
734
735 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
736
737
738
739
740 = 4. Power consumption and battery =
741
742 == 4.1 Total Power Consumption ==
743
744 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
745
746
747 == 4.2 Reduce power consumption ==
748
749 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
750
751
752 == 4.3 Battery ==
753
754 (((
755 All sensors are only power by external power source. If external power source is off. All sensor won't work.
756 )))
757
758 (((
759 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
760 )))
761
762
763 = 5. Main Process Unit WSC1-L =
764
765 == 5.1 Features ==
766
767 * Wall Attachable.
768 * LoRaWAN v1.0.3 Class A protocol.
769 * RS485 / Modbus protocol
770 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
771 * AT Commands to change parameters
772 * Remote configure parameters via LoRaWAN Downlink
773 * Firmware upgradable via program port
774 * Powered by external 12v battery
775 * Back up rechargeable 1000mAh battery
776 * IP Rating: IP65
777 * Support default sensors or 3rd party RS485 sensors
778
779 == 5.2 Power Consumption ==
780
781 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
782
783
784 == 5.3 Storage & Operation Temperature ==
785
786 -20°C to +60°C
787
788
789 == 5.4 Pin Mapping ==
790
791 [[image:1656054149793-239.png]]
792
793
794 == 5.5 Mechanical ==
795
796 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
797
798
799 == 5.6 Connect to RS485 Sensors ==
800
801 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
802
803
804 [[image:1656054389031-379.png]]
805
806
807 Hardware Design for the Converter Board please see:
808
809 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
810
811
812 = 6. Weather Sensors =
813
814 == 6.1 Rain Gauge ~-~- WSS-01 ==
815
816
817 (((
818 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
819 )))
820
821 (((
822 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
823 )))
824
825 (((
826 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
827 )))
828
829 (((
830 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
831 )))
832
833 (((
834 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
835 )))
836
837
838 === 6.1.1 Feature ===
839
840 * RS485 Rain Gauge
841 * Small dimension, easy to install
842 * Vents under funnel, avoid leaf or other things to avoid rain flow.
843 * ABS enclosure.
844 * Horizontal adjustable.
845
846 === 6.1.2 Specification ===
847
848 * Resolution: 0.2mm
849 * Accuracy: ±3%
850 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
851 * Input Power: DC 5~~24v
852 * Interface: RS485
853 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
854 * Working Humidity: <100% (no dewing)
855 * Power Consumption: 4mA @ 12v.
856
857 === 6.1.3 Dimension ===
858
859 [[image:1656054957406-980.png]]
860
861
862 === 6.1.4 Pin Mapping ===
863
864 [[image:1656054972828-692.png]]
865
866
867 === 6.1.5 Installation Notice ===
868
869 (((
870 Do not power on while connect the cables. Double check the wiring before power on.
871 )))
872
873 (((
874 Installation Photo as reference:
875 )))
876
877
878 (((
879 (% style="color:#4472c4" %)** Install on Ground:**
880 )))
881
882 (((
883 WSS-01 Rain Gauge include screws so can install in ground directly .
884 )))
885
886
887 (((
888 (% style="color:#4472c4" %)** Install on pole:**
889 )))
890
891 (((
892 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
893 )))
894
895 [[image:image-20220624152218-1.png||height="526" width="276"]]
896
897 WS-K2: Bracket Kit for Pole installation
898
899
900 WSSC-K2 dimension document, please see:
901
902 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
903
904
905 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
906
907 [[image:1656055444035-179.png]]
908
909 (((
910 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
911 )))
912
913 (((
914 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
915 )))
916
917 (((
918 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
919 )))
920
921
922 === 6.2.1 Feature ===
923
924 * RS485 wind speed / direction sensor
925 * PC enclosure, resist corrosion
926
927 === 6.2.2 Specification ===
928
929 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
930 * Wind direction range: 0 ~~ 360°
931 * Start wind speed: ≤0.3m/s
932 * Accuracy: ±(0.3+0.03V)m/s , ±1°
933 * Input Power: DC 5~~24v
934 * Interface: RS485
935 * Working Temperature: -30℃~70℃
936 * Working Humidity: <100% (no dewing)
937 * Power Consumption: 13mA ~~ 12v.
938 * Cable Length: 2 meters
939
940 === 6.2.3 Dimension ===
941
942 [[image:image-20220624152813-2.png]]
943
944
945 === 6.2.4 Pin Mapping ===
946
947 [[image:1656056281231-994.png]]
948
949
950 === 6.2.5  Angle Mapping ===
951
952 [[image:1656056303845-585.png]]
953
954
955 === 6.2.6  Installation Notice ===
956
957 (((
958 Do not power on while connect the cables. Double check the wiring before power on.
959 )))
960
961 (((
962 The sensor must be installed with below direction, towards North.
963 )))
964
965 [[image:image-20220624153901-3.png]]
966
967
968 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
969
970
971 (((
972 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
973 )))
974
975 (((
976 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
977 )))
978
979 (((
980 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
981 )))
982
983
984 === 6.3.1 Feature ===
985
986 * RS485 CO2, PM2.5, PM10 sensor
987 * NDIR to measure CO2 with Internal Temperature Compensation
988 * Laser Beam Scattering to PM2.5 and PM10
989
990 === 6.3.2 Specification ===
991
992 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
993 * CO2 resolution: 1ppm
994 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
995 * PM2.5/PM10 resolution: 1μg/m3
996 * Input Power: DC 7 ~~ 24v
997 * Preheat time: 3min
998 * Interface: RS485
999 * Working Temperature:
1000 ** CO2: 0℃~50℃;
1001 ** PM2.5/PM10: -30 ~~ 50℃
1002 * Working Humidity:
1003 ** PM2.5/PM10: 15~80%RH (no dewing)
1004 ** CO2: 0~95%RH
1005 * Power Consumption: 50mA@ 12v.
1006
1007 === 6.3.3 Dimension ===
1008
1009 [[image:1656056708366-230.png]]
1010
1011
1012 === 6.3.4 Pin Mapping ===
1013
1014 [[image:1656056722648-743.png]]
1015
1016
1017 === 6.3.5 Installation Notice ===
1018
1019 Do not power on while connect the cables. Double check the wiring before power on.
1020
1021 [[image:1656056751153-304.png]]
1022
1023 [[image:1656056766224-773.png]]
1024
1025
1026 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1027
1028
1029 (((
1030 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1031 )))
1032
1033 (((
1034 WSS-04 has auto heating feature, this ensures measurement more reliable.
1035 )))
1036
1037 (((
1038 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1039 )))
1040
1041
1042
1043 === 6.4.1 Feature ===
1044
1045 * RS485 Rain/Snow detect sensor
1046 * Surface heating to dry
1047 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1048
1049 === 6.4.2 Specification ===
1050
1051 * Detect if there is rain or snow
1052 * Input Power: DC 12 ~~ 24v
1053 * Interface: RS485
1054 * Working Temperature: -30℃~70℃
1055 * Working Humidity: 10~90%RH
1056 * Power Consumption:
1057 ** No heating: 12mA @ 12v,
1058 ** heating: 94ma @ 12v.
1059
1060 === 6.4.3 Dimension ===
1061
1062 [[image:1656056844782-155.png]]
1063
1064
1065 === 6.4.4 Pin Mapping ===
1066
1067 [[image:1656056855590-754.png]]
1068
1069
1070 === 6.4.5 Installation Notice ===
1071
1072 Do not power on while connect the cables. Double check the wiring before power on.
1073
1074
1075 (((
1076 Install with 15°degree.
1077 )))
1078
1079 [[image:1656056873783-780.png]]
1080
1081
1082 [[image:1656056883736-804.png]]
1083
1084
1085 === 6.4.6 Heating ===
1086
1087 (((
1088 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1089 )))
1090
1091
1092 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1093
1094
1095 (((
1096 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1097 )))
1098
1099 (((
1100 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1101 )))
1102
1103
1104 === 6.5.1 Feature ===
1105
1106 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1107
1108 === 6.5.2 Specification ===
1109
1110 * Input Power: DC 12 ~~ 24v
1111 * Interface: RS485
1112 * Temperature Sensor Spec:
1113 ** Range: -30 ~~ 70℃
1114 ** resolution 0.1℃
1115 ** Accuracy: ±0.5℃
1116 * Humidity Sensor Spec:
1117 ** Range: 0 ~~ 100% RH
1118 ** resolution 0.1 %RH
1119 ** Accuracy: 3% RH
1120 * Pressure Sensor Spec:
1121 ** Range: 10~1100hPa
1122 ** Resolution: 0.1hPa
1123 ** Accuracy: ±0.1hPa
1124 * Illuminate sensor:
1125 ** Range: 0~2/20/200kLux
1126 ** Resolution: 10 Lux
1127 ** Accuracy: ±3%FS
1128 * Working Temperature: -30℃~70℃
1129 * Working Humidity: 10~90%RH
1130 * Power Consumption: 4mA @ 12v
1131
1132 === 6.5.3 Dimension ===
1133
1134 [[image:1656057170639-522.png]]
1135
1136
1137 === 6.5.4 Pin Mapping ===
1138
1139 [[image:1656057181899-910.png]]
1140
1141
1142 === 6.5.5 Installation Notice ===
1143
1144 Do not power on while connect the cables. Double check the wiring before power on.
1145
1146 [[image:1656057199955-514.png]]
1147
1148
1149 [[image:1656057212438-475.png]]
1150
1151
1152 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1153
1154
1155 (((
1156 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1157 )))
1158
1159 (((
1160 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1161 )))
1162
1163 (((
1164 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1165 )))
1166
1167
1168
1169 === 6.6.1 Feature ===
1170
1171 * RS485 Total Solar Radiation sensor
1172 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1173 * Measure Reflected Radiation if sense area towards ground.
1174
1175 === 6.6.2 Specification ===
1176
1177 * Input Power: DC 5 ~~ 24v
1178 * Interface: RS485
1179 * Detect spectrum: 0.3~3μm(300~3000nm)
1180 * Measure strength range: 0~2000W/m2
1181 * Resolution: 0.1W/m2
1182 * Accuracy: ±3%
1183 * Yearly Stability: ≤±2%
1184 * Cosine response: ≤7% (@ Sun angle 10°)
1185 * Temperature Effect: ±2%(-10℃~40℃)
1186 * Working Temperature: -40℃~70℃
1187 * Working Humidity: 10~90%RH
1188 * Power Consumption: 4mA @ 12v
1189
1190 === 6.6.3 Dimension ===
1191
1192 [[image:1656057348695-898.png]]
1193
1194
1195 === 6.6.4 Pin Mapping ===
1196
1197 [[image:1656057359343-744.png]]
1198
1199
1200 === 6.6.5 Installation Notice ===
1201
1202 Do not power on while connect the cables. Double check the wiring before power on.
1203
1204 [[image:1656057369259-804.png]]
1205
1206
1207 [[image:1656057377943-564.png]]
1208
1209
1210 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1211
1212
1213 (((
1214 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1215 )))
1216
1217 (((
1218 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1219 )))
1220
1221 (((
1222 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1223 )))
1224
1225
1226 === 6.7.1 Feature ===
1227
1228 (((
1229 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1230 )))
1231
1232 (((
1233 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1234 )))
1235
1236
1237 === 6.7.2 Specification ===
1238
1239 * Input Power: DC 5 ~~ 24v
1240 * Interface: RS485
1241 * Response Spectrum: 400~700nm
1242 * Measure range: 0~2500μmol/m2•s
1243 * Resolution: 1μmol/m2•s
1244 * Accuracy: ±2%
1245 * Yearly Stability: ≤±2%
1246 * Working Temperature: -30℃~75℃
1247 * Working Humidity: 10~90%RH
1248 * Power Consumption: 3mA @ 12v
1249
1250 === 6.7.3 Dimension ===
1251
1252 [[image:1656057538793-888.png]]
1253
1254
1255 === 6.7.4 Pin Mapping ===
1256
1257 [[image:1656057548116-203.png]]
1258
1259
1260 === 6.7.5 Installation Notice ===
1261
1262 Do not power on while connect the cables. Double check the wiring before power on.
1263
1264
1265 [[image:1656057557191-895.png]]
1266
1267
1268 [[image:1656057565783-251.png]]
1269
1270
1271 = 7. FAQ =
1272
1273 == 7.1 What else do I need to purchase to build Weather Station? ==
1274
1275 Below is the installation photo and structure:
1276
1277 [[image:1656057598349-319.png]]
1278
1279
1280 [[image:1656057608049-693.png]]
1281
1282
1283
1284 == 7.2 How to upgrade firmware for WSC1-L? ==
1285
1286 (((
1287 Firmware Location & Change log:
1288 )))
1289
1290 (((
1291 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1292 )))
1293
1294
1295 (((
1296 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1297 )))
1298
1299
1300 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1301
1302 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1303
1304
1305 == 7.4 Can I add my weather sensors? ==
1306
1307 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1308
1309
1310 = 8. Trouble Shooting =
1311
1312 == 8.1 AT Command input doesn't work ==
1313
1314 (((
1315 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1316 )))
1317
1318
1319 = 9. Order Info =
1320
1321 == 9.1 Main Process Unit ==
1322
1323 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1324
1325 (% style="color:blue" %)**XX**(%%): The default frequency band
1326
1327 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1328 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1329 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1330 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1331 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1332 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1333 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1334 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1335
1336 == 9.2 Sensors ==
1337
1338 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1339 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1340 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1341 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1342 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1343 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1344 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1345 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1346 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1347 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1348
1349 = 10. Support =
1350
1351 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1352 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1353
1354 = 11. Appendix I: Field Installation Photo =
1355
1356
1357 [[image:1656058346362-132.png||height="685" width="732"]]
1358
1359 **Storage Battery**: 12v,12AH li battery
1360
1361
1362
1363 **Wind Speed/Direction**
1364
1365 [[image:1656058373174-421.png||height="356" width="731"]]
1366
1367
1368
1369 **Total Solar Radiation sensor**
1370
1371 [[image:1656058397364-282.png||height="453" width="732"]]
1372
1373
1374
1375 **PAR Sensor**
1376
1377 [[image:1656058416171-615.png]]
1378
1379
1380
1381 **CO2/PM2.5/PM10 3 in 1 sensor**
1382
1383 [[image:1656058441194-827.png||height="672" width="523"]]
1384
1385
1386
1387 **Rain / Snow Detect**
1388
1389 [[image:1656058451456-166.png]]
1390
1391
1392
1393 **Rain Gauge**
1394
1395 [[image:1656058463455-569.png||height="499" width="550"]]