Version 78.4 by Xiaoling on 2022/06/24 16:20

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81
82
83
84
85
86 == 2.2 How it works? ==
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
102
103
104
105
106
107
108 == 2.3 Example to use for LoRaWAN network ==
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112
113 [[image:1656042612899-422.png]]
114
115
116
117 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
118
119
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
121
122 Each WSC1-L is shipped with a sticker with the default device EUI as below:
123
124 [[image:image-20220624115043-1.jpeg]]
125
126
127 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
128
129 **Add APP EUI in the application.**
130
131 [[image:1656042662694-311.png]]
132
133 [[image:1656042673910-429.png]]
134
135
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151
152
153 [[image:1656042745346-283.png]]
154
155
156
157 == 2.4 Uplink Payload ==
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164
165
166
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 shows the battery voltage for WSC1-L MCU.
234
235 Ex1: 0x0BD6/1000 = 3.03 V
236
237
238
239 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
240
241 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
242 |Byte3|Byte2|Byte1
243
244 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
245
246 [[image:image-20220624134713-1.png]]
247
248
249 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
250
251 External sensors detected by WSC1-L include :
252
253 custom sensor A1,
254
255 PAR sensor (WSS-07),
256
257 Total Solar Radiation sensor (WSS-06),
258
259 CO2/PM2.5/PM10 (WSS-03),
260
261 Wind Speed/Direction (WSS-02)
262
263
264 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
265
266 (% style="color:#037691" %)**Downlink:0x26 01**
267
268 [[image:1656049673488-415.png]]
269
270
271
272 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
273
274 (((
275 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
276 )))
277
278 (((
279 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
280 )))
281
282
283 (((
284 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
285 )))
286
287
288 (% style="color:#4472c4" %)** Uplink Payload**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
291 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
292
293 (% style="color:#4472c4" %)** Sensor Segment Define**:
294
295 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
296 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
297
298 (% style="color:#4472c4" %)**Sensor Type Table:**
299
300 [[image:image-20220624140352-2.png]]
301
302
303 Below is an example payload:  [[image:image-20220624140615-3.png]]
304
305
306 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
307
308 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
309
310 Uplink 1:  [[image:image-20220624140735-4.png]]
311
312 Uplink 2:  [[image:image-20220624140842-5.png]]
313
314
315 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
316
317 Uplink 1:  [[image:image-20220624141025-6.png]]
318
319 Uplink 2:  [[image:image-20220624141100-7.png]]
320
321
322
323
324 === 2.4.3 Decoder in TTN V3 ===
325
326 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
327
328
329 Download decoder for suitable platform from:
330
331 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
332
333 and put as below:
334
335 [[image:1656051152438-578.png]]
336
337
338
339 == 2.5 Show data on Application Server ==
340
341 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
342
343
344 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
345
346 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
347
348 [[image:1656051197172-131.png]]
349
350
351 **Add TagoIO:**
352
353 [[image:1656051223585-631.png]]
354
355
356 **Authorization:**
357
358 [[image:1656051248318-368.png]]
359
360
361 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
362
363 [[image:1656051277767-168.png]]
364
365
366
367 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
368
369 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
370
371 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
372 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
373
374 There are two kinds of commands to configure WSC1-L, they are:
375
376 * (% style="color:#4472c4" %)**General Commands**.
377
378 These commands are to configure:
379
380 * General system settings like: uplink interval.
381 * LoRaWAN protocol & radio related command.
382
383 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
384
385 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
386
387
388 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
389
390 These commands only valid for WSC1-L, as below:
391
392
393
394
395
396
397 == 3.1 Set Transmit Interval Time ==
398
399 Feature: Change LoRaWAN End Node Transmit Interval.
400
401 (% style="color:#037691" %)**AT Command: AT+TDC**
402
403 [[image:image-20220624142619-8.png]]
404
405
406 (% style="color:#037691" %)**Downlink Command: 0x01**
407
408 Format: Command Code (0x01) followed by 3 bytes time value.
409
410 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
411
412 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
413 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
414
415
416
417
418
419
420 == 3.2 Set Emergency Mode ==
421
422 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
423
424 (% style="color:#037691" %)**AT Command:**
425
426 [[image:image-20220624142956-9.png]]
427
428
429 (% style="color:#037691" %)**Downlink Command:**
430
431 * 0xE101     Same as: AT+ALARMMOD=1
432 * 0xE100     Same as: AT+ALARMMOD=0
433
434
435
436
437
438
439 == 3.3 Add or Delete RS485 Sensor ==
440
441 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
442
443 (% style="color:#037691" %)**AT Command: **
444
445 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
446
447 * Type_Code range:  A1 ~~ A4
448 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
449 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
450 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
451 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
452 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
453 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
454
455 **Example:**
456
457 User need to change external sensor use the type code as address code.
458
459 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
460
461 [[image:image-20220624143553-10.png]]
462
463
464 The response frame of the sensor is as follows:
465
466 [[image:image-20220624143618-11.png]]
467
468
469
470 **Then the following parameters should be:**
471
472 * Address_Code range: A1
473 * Query_Length: 8
474 * Query_Command: A103000000019CAA
475 * Read_Length: 8
476 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
477 * has_CRC: 1
478 * timeout: 1500 (Fill in the test according to the actual situation)
479
480 **So the input command is:**
481
482 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
483
484
485 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
486
487 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
488 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
489 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
490
491 **Related commands:**
492
493 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
494
495 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
496
497
498 (% style="color:#037691" %)**Downlink Command:  **
499
500 **delete custom sensor A1:**
501
502 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
503
504 **Remove all custom sensors**
505
506 * 0xE5FF  
507
508
509
510
511
512
513 == 3.4 RS485 Test Command ==
514
515 (% style="color:#037691" %)**AT Command:**
516
517 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
518 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
519 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
520 Send command to 485 sensor
521
522 Range : no more than 10 bytes
523 )))|(% style="width:85px" %)OK
524
525 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
526
527 AT+RSWRITE=0103000001840A
528
529
530 (% style="color:#037691" %)**Downlink Command:**
531
532 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
533
534
535
536
537
538
539 == 3.5 RS485 response timeout ==
540
541 Feature: Set or get extended time to receive 485 sensor data.
542
543 (% style="color:#037691" %)**AT Command:**
544
545 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
546 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
547 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
548 Set response timeout to:
549
550 Range : 0~~10000
551 )))|(% style="width:85px" %)OK
552
553 (% style="color:#037691" %)**Downlink Command:**
554
555 Format: Command Code (0xE0) followed by 3 bytes time value.
556
557 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
558
559 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
560 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
561
562
563
564
565
566
567 == 3.6 Set Sensor Type ==
568
569 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
570
571 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
572
573 [[image:image-20220624144904-12.png]]
574
575
576 (% style="color:#037691" %)**AT Command:**
577
578 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
579 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
580 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
581
582 Eg: The setting command **AT+STYPE=802212** means:
583
584 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
585 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
586 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
587 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
588 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
589 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
590 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
591
592 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
593
594
595 (% style="color:#037691" %)**Downlink Command:**
596
597 * 0xE400802212     Same as: AT+STYPE=80221
598
599 (% style="color:red" %)**Note:**
600
601 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
602
603
604
605
606 = 4. Power consumption and battery =
607
608 == 4.1 Total Power Consumption ==
609
610 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
611
612
613 == 4.2 Reduce power consumption ==
614
615 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
616
617
618 == 4.3 Battery ==
619
620 (((
621 All sensors are only power by external power source. If external power source is off. All sensor won't work.
622 )))
623
624 (((
625 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
626 )))
627
628
629 = 5. Main Process Unit WSC1-L =
630
631 == 5.1 Features ==
632
633 * Wall Attachable.
634 * LoRaWAN v1.0.3 Class A protocol.
635 * RS485 / Modbus protocol
636 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
637 * AT Commands to change parameters
638 * Remote configure parameters via LoRaWAN Downlink
639 * Firmware upgradable via program port
640 * Powered by external 12v battery
641 * Back up rechargeable 1000mAh battery
642 * IP Rating: IP65
643 * Support default sensors or 3rd party RS485 sensors
644
645
646
647
648
649
650 == 5.2 Power Consumption ==
651
652 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
653
654
655 == 5.3 Storage & Operation Temperature ==
656
657 -20°C to +60°C
658
659
660 == 5.4 Pin Mapping ==
661
662 [[image:1656054149793-239.png]]
663
664
665 == 5.5 Mechanical ==
666
667 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
668
669
670 == 5.6 Connect to RS485 Sensors ==
671
672 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
673
674
675 [[image:1656054389031-379.png]]
676
677
678 Hardware Design for the Converter Board please see:
679
680 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
681
682
683 = 6. Weather Sensors =
684
685 == 6.1 Rain Gauge ~-~- WSS-01 ==
686
687
688 (((
689 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
690 )))
691
692 (((
693 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
694 )))
695
696 (((
697 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
698 )))
699
700 (((
701 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
702 )))
703
704 (((
705 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
706 )))
707
708
709 === 6.1.1 Feature ===
710
711 * RS485 Rain Gauge
712 * Small dimension, easy to install
713 * Vents under funnel, avoid leaf or other things to avoid rain flow.
714 * ABS enclosure.
715 * Horizontal adjustable.
716
717
718
719
720
721
722 === 6.1.2 Specification ===
723
724 * Resolution: 0.2mm
725 * Accuracy: ±3%
726 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
727 * Input Power: DC 5~~24v
728 * Interface: RS485
729 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
730 * Working Humidity: <100% (no dewing)
731 * Power Consumption: 4mA @ 12v.
732
733
734
735
736
737
738 === 6.1.3 Dimension ===
739
740 [[image:1656054957406-980.png]]
741
742
743 === 6.1.4 Pin Mapping ===
744
745 [[image:1656054972828-692.png]]
746
747
748 === 6.1.5 Installation Notice ===
749
750 Do not power on while connect the cables. Double check the wiring before power on.
751
752 Installation Photo as reference:
753
754
755 (% style="color:#4472c4" %)** Install on Ground:**
756
757 WSS-01 Rain Gauge include screws so can install in ground directly .
758
759
760 (% style="color:#4472c4" %)** Install on pole:**
761
762 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
763
764 [[image:image-20220624152218-1.png||height="526" width="276"]]
765
766 WS-K2: Bracket Kit for Pole installation
767
768
769 WSSC-K2 dimension document, please see:
770
771 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
772
773
774 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
775
776 [[image:1656055444035-179.png]]
777
778 (((
779 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
780 )))
781
782 (((
783 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
784 )))
785
786 (((
787 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
788 )))
789
790
791 === 6.2.1 Feature ===
792
793 * RS485 wind speed / direction sensor
794 * PC enclosure, resist corrosion
795
796
797
798
799
800
801 === 6.2.2 Specification ===
802
803 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
804 * Wind direction range: 0 ~~ 360°
805 * Start wind speed: ≤0.3m/s
806 * Accuracy: ±(0.3+0.03V)m/s , ±1°
807 * Input Power: DC 5~~24v
808 * Interface: RS485
809 * Working Temperature: -30℃~70℃
810 * Working Humidity: <100% (no dewing)
811 * Power Consumption: 13mA ~~ 12v.
812 * Cable Length: 2 meters
813
814
815
816
817
818
819 === 6.2.3 Dimension ===
820
821 [[image:image-20220624152813-2.png]]
822
823
824 === 6.2.4 Pin Mapping ===
825
826 [[image:1656056281231-994.png]]
827
828
829 === 6.2.5  Angle Mapping ===
830
831 [[image:1656056303845-585.png]]
832
833
834 === 6.2.6  Installation Notice ===
835
836 Do not power on while connect the cables. Double check the wiring before power on.
837
838 The sensor must be installed with below direction, towards North.
839
840 [[image:image-20220624153901-3.png]]
841
842
843 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
844
845
846 (((
847 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
848 )))
849
850 (((
851 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
852 )))
853
854 (((
855 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
856 )))
857
858
859 === 6.3.1 Feature ===
860
861 * RS485 CO2, PM2.5, PM10 sensor
862 * NDIR to measure CO2 with Internal Temperature Compensation
863 * Laser Beam Scattering to PM2.5 and PM10
864
865
866
867
868
869
870 === 6.3.2 Specification ===
871
872 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
873 * CO2 resolution: 1ppm
874 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
875 * PM2.5/PM10 resolution: 1μg/m3
876 * Input Power: DC 7 ~~ 24v
877 * Preheat time: 3min
878 * Interface: RS485
879 * Working Temperature:
880 ** CO2: 0℃~50℃;
881 ** PM2.5/PM10: -30 ~~ 50℃
882 * Working Humidity:
883 ** PM2.5/PM10: 15~80%RH (no dewing)
884 ** CO2: 0~95%RH
885 * Power Consumption: 50mA@ 12v.
886
887
888
889
890
891
892 === 6.3.3 Dimension ===
893
894 [[image:1656056708366-230.png]]
895
896
897 === 6.3.4 Pin Mapping ===
898
899 [[image:1656056722648-743.png]]
900
901
902 === 6.3.5 Installation Notice ===
903
904 Do not power on while connect the cables. Double check the wiring before power on.
905
906 [[image:1656057016033-551.png]]
907
908 [[image:1656056751153-304.png]]
909
910 [[image:1656056766224-773.png]]
911
912
913 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
914
915
916 (((
917 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
918 )))
919
920 (((
921 WSS-04 has auto heating feature, this ensures measurement more reliable.
922 )))
923
924 (((
925 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
926 )))
927
928
929
930 === 6.4.1 Feature ===
931
932 * RS485 Rain/Snow detect sensor
933 * Surface heating to dry
934 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
935
936
937
938
939
940
941 === 6.4.2 Specification ===
942
943 * Detect if there is rain or snow
944 * Input Power: DC 12 ~~ 24v
945 * Interface: RS485
946 * Working Temperature: -30℃~70℃
947 * Working Humidity: 10~90%RH
948 * Power Consumption:
949 ** No heating: 12mA @ 12v,
950 ** heating: 94ma @ 12v.
951
952
953
954
955
956
957 === 6.4.3 Dimension ===
958
959 [[image:1656056844782-155.png]]
960
961
962 === 6.4.4 Pin Mapping ===
963
964 [[image:1656056855590-754.png]]
965
966
967 === 6.4.5 Installation Notice ===
968
969 Do not power on while connect the cables. Double check the wiring before power on.
970
971
972 Install with 15°degree.
973
974 [[image:1656056873783-780.png]]
975
976
977 [[image:1656056883736-804.png]]
978
979
980 === 6.4.6 Heating ===
981
982 (((
983 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
984 )))
985
986
987 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
988
989
990 (((
991 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
992 )))
993
994 (((
995 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
996 )))
997
998
999 === 6.5.1 Feature ===
1000
1001 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1002
1003
1004
1005
1006
1007
1008 === 6.5.2 Specification ===
1009
1010 * Input Power: DC 12 ~~ 24v
1011 * Interface: RS485
1012 * Temperature Sensor Spec:
1013 ** Range: -30 ~~ 70℃
1014 ** resolution 0.1℃
1015 ** Accuracy: ±0.5℃
1016 * Humidity Sensor Spec:
1017 ** Range: 0 ~~ 100% RH
1018 ** resolution 0.1 %RH
1019 ** Accuracy: 3% RH
1020 * Pressure Sensor Spec:
1021 ** Range: 10~1100hPa
1022 ** Resolution: 0.1hPa
1023 ** Accuracy: ±0.1hPa
1024 * Illuminate sensor:
1025 ** Range: 0~2/20/200kLux
1026 ** Resolution: 10 Lux
1027 ** Accuracy: ±3%FS
1028 * Working Temperature: -30℃~70℃
1029 * Working Humidity: 10~90%RH
1030 * Power Consumption: 4mA @ 12v
1031
1032
1033
1034
1035
1036
1037 === 6.5.3 Dimension ===
1038
1039 [[image:1656057170639-522.png]]
1040
1041
1042 === 6.5.4 Pin Mapping ===
1043
1044 [[image:1656057181899-910.png]]
1045
1046
1047 === 6.5.5 Installation Notice ===
1048
1049 Do not power on while connect the cables. Double check the wiring before power on.
1050
1051 [[image:1656057199955-514.png]]
1052
1053
1054 [[image:1656057212438-475.png]]
1055
1056
1057 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1058
1059
1060 (((
1061 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1062 )))
1063
1064 (((
1065 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1066 )))
1067
1068 (((
1069 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1070 )))
1071
1072
1073
1074 === 6.6.1 Feature ===
1075
1076 * RS485 Total Solar Radiation sensor
1077 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1078 * Measure Reflected Radiation if sense area towards ground.
1079
1080
1081
1082
1083
1084
1085 === 6.6.2 Specification ===
1086
1087 * Input Power: DC 5 ~~ 24v
1088 * Interface: RS485
1089 * Detect spectrum: 0.3~3μm(300~3000nm)
1090 * Measure strength range: 0~2000W/m2
1091 * Resolution: 0.1W/m2
1092 * Accuracy: ±3%
1093 * Yearly Stability: ≤±2%
1094 * Cosine response: ≤7% (@ Sun angle 10°)
1095 * Temperature Effect: ±2%(-10℃~40℃)
1096 * Working Temperature: -40℃~70℃
1097 * Working Humidity: 10~90%RH
1098 * Power Consumption: 4mA @ 12v
1099
1100
1101
1102
1103
1104
1105 === 6.6.3 Dimension ===
1106
1107 [[image:1656057348695-898.png]]
1108
1109
1110 === 6.6.4 Pin Mapping ===
1111
1112 [[image:1656057359343-744.png]]
1113
1114
1115 === 6.6.5 Installation Notice ===
1116
1117 Do not power on while connect the cables. Double check the wiring before power on.
1118
1119 [[image:1656057369259-804.png]]
1120
1121
1122 [[image:1656057377943-564.png]]
1123
1124
1125 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1126
1127
1128 (((
1129 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1130 )))
1131
1132 (((
1133 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1134 )))
1135
1136 (((
1137 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1138 )))
1139
1140
1141 === 6.7.1 Feature ===
1142
1143 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1144
1145 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1146
1147
1148 === 6.7.2 Specification ===
1149
1150 * Input Power: DC 5 ~~ 24v
1151 * Interface: RS485
1152 * Response Spectrum: 400~700nm
1153 * Measure range: 0~2500μmol/m2•s
1154 * Resolution: 1μmol/m2•s
1155 * Accuracy: ±2%
1156 * Yearly Stability: ≤±2%
1157 * Working Temperature: -30℃~75℃
1158 * Working Humidity: 10~90%RH
1159 * Power Consumption: 3mA @ 12v
1160
1161
1162
1163
1164
1165
1166 === 6.7.3 Dimension ===
1167
1168 [[image:1656057538793-888.png]]
1169
1170
1171 === 6.7.4 Pin Mapping ===
1172
1173 [[image:1656057548116-203.png]]
1174
1175
1176 === 6.7.5 Installation Notice ===
1177
1178 Do not power on while connect the cables. Double check the wiring before power on.
1179
1180
1181 [[image:1656057557191-895.png]]
1182
1183
1184 [[image:1656057565783-251.png]]
1185
1186
1187 = 7. FAQ =
1188
1189 == 7.1 What else do I need to purchase to build Weather Station? ==
1190
1191 Below is the installation photo and structure:
1192
1193 [[image:1656057598349-319.png]]
1194
1195
1196 [[image:1656057608049-693.png]]
1197
1198
1199
1200 == 7.2 How to upgrade firmware for WSC1-L? ==
1201
1202 (((
1203 Firmware Location & Change log:
1204 )))
1205
1206 (((
1207 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1208 )))
1209
1210
1211 (((
1212 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1213 )))
1214
1215
1216 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1217
1218 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1219
1220
1221 == 7.4 Can I add my weather sensors? ==
1222
1223 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1224
1225
1226 = 8. Trouble Shooting =
1227
1228 == 8.1 AT Command input doesn't work ==
1229
1230 (((
1231 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1232 )))
1233
1234
1235 = 9. Order Info =
1236
1237 == 9.1 Main Process Unit ==
1238
1239 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1240
1241 (% style="color:blue" %)**XX**(%%): The default frequency band
1242
1243 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1244 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1245 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1246 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1247 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1248 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1249 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1250 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1251
1252
1253
1254 == 9.2 Sensors ==
1255
1256 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1257 |=(% style="width: 462px;" %)**Sensor Model**|=(% style="width: 110px;" %)**Part Number**
1258 |(% style="width:462px" %)**Rain Gauge**|(% style="width:110px" %)WSS-01
1259 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:110px" %)WS-K2
1260 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:110px" %)WSS-02
1261 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:110px" %)WSS-03
1262 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:110px" %)WSS-04
1263 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:110px" %)WSS-05
1264 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:110px" %)WSS-06
1265 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:110px" %)WSS-07
1266
1267
1268
1269
1270 = 10. Support =
1271
1272 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1273 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1274
1275
1276
1277
1278 = 11. Appendix I: Field Installation Photo =
1279
1280
1281 [[image:1656058346362-132.png]]
1282
1283 **Storage Battery**: 12v,12AH li battery
1284
1285
1286
1287 **Wind Speed/Direction**
1288
1289 [[image:1656058373174-421.png]]
1290
1291
1292
1293 **Total Solar Radiation sensor**
1294
1295 [[image:1656058397364-282.png]]
1296
1297
1298
1299 **PAR Sensor**
1300
1301 [[image:1656058416171-615.png]]
1302
1303
1304
1305 **CO2/PM2.5/PM10 3 in 1 sensor**
1306
1307 [[image:1656058441194-827.png]]
1308
1309
1310
1311 **Rain / Snow Detect**
1312
1313 [[image:1656058451456-166.png]]
1314
1315
1316
1317 **Rain Gauge**
1318
1319 [[image:1656058463455-569.png]]