Version 32.12 by Xiaoling on 2022/06/24 15:00

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)** Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80
81 == 2.2 How it works? ==
82
83 (((
84 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
85 )))
86
87
88 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
89
90 [[image:1656042192857-709.png]]
91
92
93 (% style="color:red" %)**Notice:**
94
95 1. WSC1-L will auto scan available weather sensors when power on or reboot.
96 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
97
98
99 == 2.3 Example to use for LoRaWAN network ==
100
101 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
102
103
104 [[image:1656042612899-422.png]]
105
106
107
108 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
109
110
111 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
112
113 Each WSC1-L is shipped with a sticker with the default device EUI as below:
114
115 [[image:image-20220624115043-1.jpeg]]
116
117
118 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
119
120 **Add APP EUI in the application.**
121
122 [[image:1656042662694-311.png]]
123
124 [[image:1656042673910-429.png]]
125
126
127
128
129 **Choose Manually to add WSC1-L**
130
131 [[image:1656042695755-103.png]]
132
133
134
135 **Add APP KEY and DEV EUI**
136
137 [[image:1656042723199-746.png]]
138
139
140
141 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
142
143
144 [[image:1656042745346-283.png]]
145
146
147
148 == 2.4 Uplink Payload ==
149
150 Uplink payloads include two types: Valid Sensor Value and other status / control command.
151
152 * Valid Sensor Value: Use FPORT=2
153 * Other control command: Use FPORT other than 2.
154
155
156
157
158
159 === 2.4.1 Uplink FPORT~=5, Device Status ===
160
161 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
162
163
164 (((
165 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
166 )))
167
168 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
169 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
170 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
171
172 [[image:1656043061044-343.png]]
173
174
175 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
176
177
178
179 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
180
181 For WSC1-L, this value is 0x0D.
182
183
184
185 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
186
187 0x0100, Means: v1.0.0 version.
188
189
190
191 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
192
193 *0x01: EU868
194
195 *0x02: US915
196
197 *0x03: IN865
198
199 *0x04: AU915
200
201 *0x05: KZ865
202
203 *0x06: RU864
204
205 *0x07: AS923
206
207 *0x08: AS923-1
208
209 *0x09: AS923-2
210
211 *0x0a: AS923-3
212
213
214
215 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
216
217 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
218
219
220
221 ==== (% style="color:#037691" %)**BAT:**(%%) ====
222
223 shows the battery voltage for WSC1-L MCU.
224
225 Ex1: 0x0BD6/1000 = 3.03 V
226
227
228
229 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
230
231 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
232 |Byte3|Byte2|Byte1
233
234 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
235
236 [[image:image-20220624134713-1.png]]
237
238
239 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
240
241 External sensors detected by WSC1-L include :
242
243 custom sensor A1,
244
245 PAR sensor (WSS-07),
246
247 Total Solar Radiation sensor (WSS-06),
248
249 CO2/PM2.5/PM10 (WSS-03),
250
251 Wind Speed/Direction (WSS-02)
252
253
254 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
255
256 (% style="color:#037691" %)**Downlink:0x26 01**
257
258 [[image:1656049673488-415.png]]
259
260
261
262 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
263
264 (((
265 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
266 )))
267
268 (((
269 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
270 )))
271
272
273 (((
274 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
275 )))
276
277
278 (% style="color:#4472c4" %)** Uplink Payload**:
279
280 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
281 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
282
283 (% style="color:#4472c4" %)** Sensor Segment Define**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
286 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
287
288 (% style="color:#4472c4" %)**Sensor Type Table:**
289
290 [[image:image-20220624140352-2.png]]
291
292
293 Below is an example payload:  [[image:image-20220624140615-3.png]]
294
295
296 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
297
298 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
299
300 Uplink 1:  [[image:image-20220624140735-4.png]]
301
302 Uplink 2:  [[image:image-20220624140842-5.png]]
303
304
305 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
306
307 Uplink 1:  [[image:image-20220624141025-6.png]]
308
309 Uplink 2:  [[image:image-20220624141100-7.png]]
310
311
312
313
314 === 2.4.3 Decoder in TTN V3 ===
315
316 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
317
318
319 Download decoder for suitable platform from:
320
321 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
322
323 and put as below:
324
325 [[image:1656051152438-578.png]]
326
327
328
329 == 2.5 Show data on Application Server ==
330
331 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
332
333
334 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
335
336 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
337
338 [[image:1656051197172-131.png]]
339
340
341 **Add TagoIO:**
342
343 [[image:1656051223585-631.png]]
344
345
346 **Authorization:**
347
348 [[image:1656051248318-368.png]]
349
350
351 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
352
353 [[image:1656051277767-168.png]]
354
355
356
357 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
358
359 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
360
361 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
362 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
363
364 There are two kinds of commands to configure WSC1-L, they are:
365
366 * (% style="color:#4472c4" %)**General Commands**.
367
368 These commands are to configure:
369
370 * General system settings like: uplink interval.
371 * LoRaWAN protocol & radio related command.
372
373 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
374
375 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
376
377
378 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
379
380 These commands only valid for WSC1-L, as below:
381
382
383
384 == 3.1 Set Transmit Interval Time ==
385
386 Feature: Change LoRaWAN End Node Transmit Interval.
387
388 (% style="color:#037691" %)**AT Command: AT+TDC**
389
390 [[image:image-20220624142619-8.png]]
391
392
393 (% style="color:#037691" %)**Downlink Command: 0x01**
394
395 Format: Command Code (0x01) followed by 3 bytes time value.
396
397 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
398
399 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
400 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
401
402
403
404 == 3.2 Set Emergency Mode ==
405
406 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
407
408 (% style="color:#037691" %)**AT Command:**
409
410 [[image:image-20220624142956-9.png]]
411
412
413 (% style="color:#037691" %)**Downlink Command:**
414
415 * 0xE101     Same as: AT+ALARMMOD=1
416 * 0xE100     Same as: AT+ALARMMOD=0
417
418
419
420 == 3.3 Add or Delete RS485 Sensor ==
421
422 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
423
424 (% style="color:#037691" %)**AT Command: **
425
426 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
427
428 * Type_Code range:  A1 ~~ A4
429 * Query_Length:  RS485 Query frame length, Value cannot be greater than 10
430 * Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
431 * Read_Length:  RS485 response frame length supposed to receive. Max can receive
432 * Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
433 * has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
434 * timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
435
436
437 **Example:**
438
439 User need to change external sensor use the type code as address code.
440
441 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
442
443 [[image:image-20220624143553-10.png]]
444
445
446 The response frame of the sensor is as follows:
447
448 [[image:image-20220624143618-11.png]]
449
450
451 **Then the following parameters should be:**
452
453 * Address_Code range: A1
454 * Query_Length: 8
455 * Query_Command: A103000000019CAA
456 * Read_Length: 8
457 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
458 * has_CRC: 1
459 * timeout: 1500 (Fill in the test according to the actual situation)
460
461 **So the input command is:**
462
463 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
464
465
466 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
467
468 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
469 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
470 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
471
472 **Related commands:**
473
474 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
475
476 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
477
478
479 (% style="color:#037691" %)**Downlink Command:  **
480
481 **delete custom sensor A1:**
482
483 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
484
485 **Remove all custom sensors**
486
487 * 0xE5FF  
488
489
490
491 == 3.4 RS485 Test Command ==
492
493 (% style="color:#037691" %)**AT Command:**
494
495 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
496 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
497 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
498 Send command to 485 sensor
499
500 Range : no more than 10 bytes
501 )))|(% style="width:85px" %)OK
502
503 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
504
505 AT+RSWRITE=0103000001840A
506
507
508 (% style="color:#037691" %)**Downlink Command:**
509
510 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
511
512
513
514 == 3.5 RS485 response timeout ==
515
516 Feature: Set or get extended time to receive 485 sensor data.
517
518 (% style="color:#037691" %)**AT Command:**
519
520 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
521 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
522 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
523 Set response timeout to:
524
525 Range : 0~~10000
526 )))|(% style="width:85px" %)OK
527
528 (% style="color:#037691" %)**Downlink Command:**
529
530 Format: Command Code (0xE0) followed by 3 bytes time value.
531
532 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
533
534 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
535 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
536
537
538
539 == 3.6 Set Sensor Type ==
540
541 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
542
543 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
544
545 [[image:image-20220624144904-12.png]]
546
547
548 (% style="color:#037691" %)**AT Command:**
549
550 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
551 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
552 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
553
554 Eg: The setting command **AT+STYPE=802212** means:
555
556 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
557 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
558 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
559 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
560 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
561 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
562 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
563
564 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
565
566
567 (% style="color:#037691" %)**Downlink Command:**
568
569 * 0xE400802212     Same as: AT+STYPE=80221
570
571 (% style="color:red" %)**Note:**
572
573 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
574
575
576
577
578 = 4. Power consumption and battery =
579
580 == 4.1 Total Power Consumption ==
581
582 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
583
584
585 == 4.2 Reduce power consumption ==
586
587 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
588
589
590 == 4.3 Battery ==
591
592 (((
593 All sensors are only power by external power source. If external power source is off. All sensor won't work.
594 )))
595
596 (((
597 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
598 )))
599
600
601
602 = 5. Main Process Unit WSC1-L =
603
604 == 5.1 Features ==
605
606 * Wall Attachable.
607 * LoRaWAN v1.0.3 Class A protocol.
608 * RS485 / Modbus protocol
609 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
610 * AT Commands to change parameters
611 * Remote configure parameters via LoRaWAN Downlink
612 * Firmware upgradable via program port
613 * Powered by external 12v battery
614 * Back up rechargeable 1000mAh battery
615 * IP Rating: IP65
616 * Support default sensors or 3rd party RS485 sensors
617
618
619
620 == 5.2 Power Consumption ==
621
622 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
623
624
625
626 == 5.3 Storage & Operation Temperature ==
627
628 -20°C to +60°C
629
630
631 == 5.4 Pin Mapping ==
632
633 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
634
635
636 == 5.5 Mechanical ==
637
638 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
639
640
641
642
643 == 5.6 Connect to RS485 Sensors ==
644
645 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
646
647
648 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
649
650
651 Hardware Design for the Converter Board please see:
652
653 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
654
655
656
657
658
659 = 6. Weather Sensors =
660
661 == 6.1 Rain Gauge ~-~- WSS-01 ==
662
663 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
664
665
666 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
667
668 shape to make sure it works smoothly and is easy to clean.
669
670
671 WSS-01 is designed to support the Dragino Weather station solution.
672
673 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
674
675 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
676
677
678 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
679
680 to screw up and adjust the bottom horizontally.
681
682
683 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
684
685
686
687 === 6.1.1 Feature ===
688
689 * RS485 Rain Gauge
690 * Small dimension, easy to install
691 * Vents under funnel, avoid leaf or other things to avoid rain flow.
692 * ABS enclosure.
693 * Horizontal adjustable.
694
695 === 6.1.2 Specification ===
696
697 * Resolution: 0.2mm
698 * Accuracy: ±3%
699 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
700 * Input Power: DC 5~~24v
701 * Interface: RS485
702 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
703 * Working Humidity: <100% (no dewing)
704 * Power Consumption: 4mA @ 12v.
705
706 === 6.1.3 Dimension ===
707
708 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
709
710
711 === 6.1.4 Pin Mapping ===
712
713 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
714
715
716
717
718 === 6.1.5 Installation Notice ===
719
720 Do not power on while connect the cables. Double check the wiring before power on.
721
722 Installation Photo as reference:
723
724
725 (% style="color:#4472c4" %)** Install on Ground:**
726
727 WSS-01 Rain Gauge include screws so can install in ground directly .
728
729
730 (% style="color:#4472c4" %)** Install on pole:**
731
732 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
733
734 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
735
736
737 WS-K2: Bracket Kit for Pole installation:
738
739 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
740
741 WSSC-K2 dimension document, please see:
742
743 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
744
745
746
747 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
748
749 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
750
751 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
752
753
754 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
755
756
757 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
758
759 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
760
761
762 === 6.2.1 Feature ===
763
764 * RS485 wind speed / direction sensor
765 * PC enclosure, resist corrosion
766
767 === 6.2.2 Specification ===
768
769 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
770 * Wind direction range: 0 ~~ 360°
771 * Start wind speed: ≤0.3m/s
772 * Accuracy: ±(0.3+0.03V)m/s , ±1°
773 * Input Power: DC 5~~24v
774 * Interface: RS485
775 * Working Temperature: -30℃~70℃
776 * Working Humidity: <100% (no dewing)
777 * Power Consumption: 13mA ~~ 12v.
778 * Cable Length: 2 meters
779
780 === 6.2.3 Dimension ===
781
782 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
783
784
785 === 6.2.4 Pin Mapping ===
786
787 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
788
789
790 === 6.2.4 Angle Mapping ===
791
792 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
793
794
795 === 6.2.5 Installation Notice ===
796
797 Do not power on while connect the cables. Double check the wiring before power on.
798
799
800 The sensor must be installed with below direction, towards North.
801
802
803 |(((
804 North
805 )))
806
807 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
808
809
810
811
812
813
814
815
816 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
817
818 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
819
820
821 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
822
823
824 WSS-03 is designed to support the Dragino Weather station solution.
825
826 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
827
828 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
829
830
831 === 6.3.1 Feature ===
832
833 * RS485 CO2, PM2.5, PM10 sensor
834 * NDIR to measure CO2 with Internal Temperature Compensation
835 * Laser Beam Scattering to PM2.5 and PM10
836
837 === 6.3.2 Specification ===
838
839 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
840 * CO2 resolution: 1ppm
841 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
842 * PM2.5/PM10 resolution: 1μg/m3
843 * Input Power: DC 7 ~~ 24v
844 * Preheat time: 3min
845 * Interface: RS485
846 * Working Temperature:
847 ** CO2: 0℃~50℃;
848 ** PM2.5/PM10: -30 ~~ 50℃
849 * Working Humidity:
850 ** PM2.5/PM10: 15~80%RH (no dewing)
851 ** CO2: 0~95%RH
852 * Power Consumption: 50mA@ 12v.
853
854 === 6.3.3 Dimension ===
855
856 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
857
858
859 === 6.3.4 Pin Mapping ===
860
861 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
862
863
864 === 6.3.5 Installation Notice ===
865
866 Do not power on while connect the cables. Double check the wiring before power on.
867
868 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
869
870 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
871
872
873
874
875
876
877 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
878
879 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
880
881
882 WSS-04 has auto heating feature, this ensures measurement more reliable.
883
884
885 WSS-04 is designed to support the Dragino Weather station solution.
886
887 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
888
889 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
890
891
892
893 === 6.4.1 Feature ===
894
895 * RS485 Rain/Snow detect sensor
896 * Surface heating to dry
897 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
898
899 === 6.4.2 Specification ===
900
901 * Detect if there is rain or snow
902 * Input Power: DC 12 ~~ 24v
903 * Interface: RS485
904 * Working Temperature: -30℃~70℃
905 * Working Humidity: 10~90%RH
906 * Power Consumption:
907 ** No heating: 12mA @ 12v,
908 ** heating: 94ma @ 12v.
909
910 === 6.4.3 Dimension ===
911
912 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
913
914
915 === 6.4.4 Pin Mapping ===
916
917 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
918
919
920 === 6.4.5 Installation Notice ===
921
922 Do not power on while connect the cables. Double check the wiring before power on.
923
924
925 Install with 15°degree.
926
927 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
928
929 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
930
931
932
933
934 === 6.4.6 Heating ===
935
936
937 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
938
939
940
941
942
943 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
944
945 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
946
947
948 WSS-05 is designed to support the Dragino Weather station solution.
949
950 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
951
952 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
953
954
955 === 6.5.1 Feature ===
956
957 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
958
959 === 6.5.2 Specification ===
960
961 * Input Power: DC 12 ~~ 24v
962 * Interface: RS485
963 * Temperature Sensor Spec:
964 ** Range: -30 ~~ 70℃
965 ** resolution 0.1℃
966 ** Accuracy: ±0.5℃
967 * Humidity Sensor Spec:
968 ** Range: 0 ~~ 100% RH
969 ** resolution 0.1 %RH
970 ** Accuracy: 3% RH
971 * Pressure Sensor Spec:
972 ** Range: 10~1100hPa
973 ** Resolution: 0.1hPa
974 ** Accuracy: ±0.1hPa
975 * Illuminate sensor:
976 ** Range: 0~2/20/200kLux
977 ** Resolution: 10 Lux
978 ** Accuracy: ±3%FS
979 * Working Temperature: -30℃~70℃
980 * Working Humidity: 10~90%RH
981 * Power Consumption: 4mA @ 12v
982
983 === 6.5.3 Dimension ===
984
985 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
986
987
988 === 6.5.4 Pin Mapping ===
989
990 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
991
992
993 === 6.5.5 Installation Notice ===
994
995 Do not power on while connect the cables. Double check the wiring before power on.
996
997
998
999 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1000
1001
1002 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1003
1004
1005 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1006
1007 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1008
1009
1010 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1011
1012
1013 WSS-06 is designed to support the Dragino Weather station solution.
1014
1015
1016 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1017
1018 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1019
1020
1021
1022 === 6.6.1 Feature ===
1023
1024 * RS485 Total Solar Radiation sensor
1025 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1026 * Measure Reflected Radiation if sense area towards ground.
1027
1028 === 6.6.2 Specification ===
1029
1030 * Input Power: DC 5 ~~ 24v
1031 * Interface: RS485
1032 * Detect spectrum: 0.3~3μm(300~3000nm)
1033 * Measure strength range: 0~2000W/m2
1034 * Resolution: 0.1W/m2
1035 * Accuracy: ±3%
1036 * Yearly Stability: ≤±2%
1037 * Cosine response: ≤7% (@ Sun angle 10°)
1038 * Temperature Effect: ±2%(-10℃~40℃)
1039 * Working Temperature: -40℃~70℃
1040 * Working Humidity: 10~90%RH
1041 * Power Consumption: 4mA @ 12v
1042
1043 === 6.6.3 Dimension ===
1044
1045 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1046
1047
1048 === 6.6.4 Pin Mapping ===
1049
1050 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1051
1052
1053 === 6.6.5 Installation Notice ===
1054
1055 Do not power on while connect the cables. Double check the wiring before power on.
1056
1057 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1058
1059 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1060
1061
1062 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1063
1064 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1065
1066
1067 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1068
1069
1070
1071 WSS-07 is designed to support the Dragino Weather station solution.
1072
1073
1074 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1075
1076 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1077
1078
1079 === 6.7.1 Feature ===
1080
1081 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1082
1083
1084 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1085
1086
1087 === 6.7.2 Specification ===
1088
1089 * Input Power: DC 5 ~~ 24v
1090 * Interface: RS485
1091 * Response Spectrum: 400~700nm
1092 * Measure range: 0~2500μmol/m2•s
1093 * Resolution: 1μmol/m2•s
1094 * Accuracy: ±2%
1095 * Yearly Stability: ≤±2%
1096 * Working Temperature: -30℃~75℃
1097 * Working Humidity: 10~90%RH
1098 * Power Consumption: 3mA @ 12v
1099
1100 === 6.7.3 Dimension ===
1101
1102 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1103
1104
1105 === 6.7.4 Pin Mapping ===
1106
1107 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1108
1109
1110 === 6.7.5 Installation Notice ===
1111
1112 Do not power on while connect the cables. Double check the wiring before power on.
1113
1114
1115 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1116
1117 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1118
1119
1120 = 7. FAQ =
1121
1122 == 7.1 What else do I need to purchase to build Weather Station? ==
1123
1124 Below is the installation photo and structure:
1125
1126 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1127
1128
1129 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1130
1131
1132
1133
1134 == 7.2 How to upgrade firmware for WSC1-L? ==
1135
1136 Firmware Location & Change log:
1137
1138 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1139
1140
1141 Firmware Upgrade instruction:
1142
1143 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1144
1145
1146 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1147
1148 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1149
1150
1151
1152 == 7.4 Can I add my weather sensors? ==
1153
1154 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1155
1156
1157 = 8. Trouble Shooting =
1158
1159
1160
1161
1162
1163
1164 = 9. Order Info =
1165
1166
1167 == 9.1 Main Process Unit ==
1168
1169 Part Number: **WSC1-L-XX**
1170
1171 **XX**: The default frequency band
1172
1173 * **AS923**: LoRaWAN AS923 band
1174 * **AU915**: LoRaWAN AU915 band
1175 * **EU433**: LoRaWAN EU433 band
1176 * **EU868**: LoRaWAN EU868 band
1177 * **KR920**: LoRaWAN KR920 band
1178 * **US915**: LoRaWAN US915 band
1179 * **IN865**: LoRaWAN IN865 band
1180 * **CN470**: LoRaWAN CN470 band
1181
1182 == 9.2 Sensors ==
1183
1184 |**Sensor Model**|**Part Number**
1185 |**Rain Gauge**|WSS-01
1186 |**Rain Gauge installation Bracket for Pole**|WS-K2
1187 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1188 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1189 |**Rain/Snow Detect Sensor**|WSS-04
1190 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1191 |**Total Solar Radiation Sensor**|WSS-06
1192 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1193
1194 = 10. Support =
1195
1196 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1197 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1198
1199 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1200
1201
1202
1203
1204
1205 = 11. Appendix I: Field Installation Photo =
1206
1207
1208 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1209
1210
1211 **Storage Battery**: 12v,12AH li battery
1212
1213
1214 Wind Speed/Direction.
1215
1216 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1217
1218
1219 Total Solar Radiation sensor
1220
1221 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1222
1223
1224
1225 PAR Sensor
1226
1227 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1228
1229
1230 CO2/PM2.5/PM10 3 in 1 sensor
1231
1232 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1233
1234
1235 Rain / Snow Detect:
1236
1237 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1238
1239
1240 Rain Gauge.
1241
1242 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]