Version 3.6 by Xiaoling on 2022/06/24 10:44

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image001.png]]
7
8
9
10
11
12
13
14
15
16
17 = 1. Introduction =
18
19 == 1.1 Overview ==
20
21
22 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. They consist of a main process device (WSC1-L) and various sensors.
23
24
25 The sensors include various type such as: Rain Gauge, Temperature/Humidity/Pressure sensor, Wind Speed/direction sensor, Illumination sensor, CO2 sensor, Rain/Snow sensor, PM2.5/10 sensor, PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor and so on.
26
27
28 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external 12v solar power and have a built-in li-on backup battery. WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
29
30
31 WSC1-L is full compatible with LoRaWAN Class C protocol, it can work with standard LoRaWAN gateway.
32
33
34
35
36 = 2. How to use =
37
38 == 2.1 Installation ==
39
40 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>path:#Installation_Photo]] 
41
42 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
43
44 **Wiring:**
45
46 ~1. WSC1-L and sensors all powered by solar power via MPPT
47
48 2. WSC1-L and sensors connect to each other via RS485/Modbus.
49
50 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
51
52
53 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
54
55 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image003.png]]
56
57
58
59
60 Notice 1:
61
62 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
63 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
64 * Weather sensors won’t work if solar panel and storage battery fails.
65
66 Notice 2:
67
68 Due to shipment and importation limitation, user is better to purchase below parts locally:
69
70 * Solar Panel
71 * Storage Battery
72 * MPPT Solar Recharger
73 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
74 * Cabinet.
75
76
77
78
79 == 2.2 How it works? ==
80
81 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
82
83
84 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
85
86 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
87
88
89 Notice:
90
91 1. WSC1-L will auto scan available weather sensors when power on or reboot.
92 1. User can send a downlink command( 增加下发命令的连接) to WSC1-L to do a re-scan on the available sensors.
93
94
95
96 == 2.3 Example to use for LoRaWAN network ==
97
98 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
99
100
101 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image005.png]]
102
103
104
105 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
106
107
108 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
109
110 Each WSC1-L is shipped with a sticker with the default device EUI as below:
111
112 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image006.png]]
113
114
115 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
116
117 Add APP EUI in the application.
118
119 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image007.png]]
120
121 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image008.png]]
122
123
124
125
126
127
128
129
130
131 Choose Manually to add WSC1-L
132
133
134 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.png]]
135
136 Add APP KEY and DEV EUI
137
138 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image010.png]]
139
140
141
142
143 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
144
145
146 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
147
148
149
150
151 == 2.4 Uplink Payload ==
152
153 Uplink payloads include two types: Valid Sensor Value and other status / control command.
154
155 * Valid Sensor Value: Use FPORT=2
156 * Other control command: Use FPORT other than 2.
157
158
159
160
161
162 === 2.4.1 Uplink FPORT ===
163
164 5, Device Status ===
165
166 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
167
168
169 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
170
171 |**Size (bytes)**|**1**|**2**|**1**|**1**|**2**|**3**
172 |**Value**|[[Sensor Model>>||anchor="HSensorModel:"]]|[[Firmware Version>>||anchor="HFirmwareVersion:"]]|[[Frequency Band>>||anchor="HFrequencyBand:"]]|[[Sub-band>>||anchor="HSub-Band:"]]|[[BAT>>||anchor="HBAT:"]]|[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
173
174 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model:** ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186 ==== (% style="color:#037691" %)**Firmware Version:** ====
187
188 0x0100, Means: v1.0.0 version.
189
190
191 ==== (% style="color:#037691" %)**Frequency Band:** ====
192
193 *0x01: EU868
194
195 *0x02: US915
196
197 *0x03: IN865
198
199 *0x04: AU915
200
201 *0x05: KZ865
202
203 *0x06: RU864
204
205 *0x07: AS923
206
207 *0x08: AS923-1
208
209 *0x09: AS923-2
210
211 *0x0a: AS923-3
212
213
214 ==== (% style="color:#037691" %)**Sub-Band:** ====
215
216 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
217
218
219 ==== (% style="color:#037691" %)**BAT:** ====
220
221 shows the battery voltage for WSC1-L MCU.
222
223 Ex1: 0x0BD6/1000 = 3.03 V
224
225
226 ==== (% style="color:#037691" %)**Weather Sensor Types:** ====
227
228 |Byte3|Byte2|Byte1
229
230 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
231
232
233 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
234 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
235 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
236 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
237 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
238 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
239
240 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
241
242 External sensors detected by WSC1-L include :
243
244 custom sensor A1,
245
246 PAR sensor (WSS-07),
247
248 Total Solar Radiation sensor (WSS-06),
249
250 CO2/PM2.5/PM10 (WSS-03),
251
252 Wind Speed/Direction (WSS-02)
253
254
255
256
257 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
258
259 (% style="color:#037691" %)**Downlink:0x26 01**
260
261 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
262
263
264
265
266 === 2.4.2 Uplink FPORT=2, Real time sensor value ===
267
268 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
269
270 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
271
272
273 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
274
275 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
276
277 **(% style="color:#4472C4" %) Uplink Payload**:
278
279 |Type Code|Length (Bytes)|Measured Value
280
281 **(% style="color:#4472C4" %) Sensor Segment Define**:
282
283
284
285 Sensor Type Table:
286
287 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
288 |**Wind Speed**|0x01|(((
289 Speed: 0~60m/s
290
291 Level: 0~17
292 )))|0x03 |(((
293 0x0024/10=3.6m/s
294
295 (0x02FE: No Sensor, 0x02FF: Value Error)
296
297 0x02=2
298
299 (0x14: No Sensor, 0x15: Value Error)
300 )))
301 |**Wind Direction**|0x02|(((
302 Angel: 0~360°
303
304 Direction: 16 positions
305 )))|0x03|(((
306 0x029A/10=66.6°
307
308 (0x0EFE: No Sensor,0x0EFF: Value Error)
309
310 0X03=3(ENE)
311
312 (0x14: No Sensor,0x15: Value Error)
313 )))
314 |**Illumination**|0x03|0~200000Lux|0x02|(((
315 0x04D2 *10=12340Lux
316
317 (0x4EFE: No Sensor,0x4EFF: Value Error)
318 )))
319 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
320 0x00 (00) No Rain or snow detected
321
322 (0x02: No Sensor,0x03: Value Error)
323 )))
324 |**CO2**|0x05|0~5000ppm|0x02|(((
325 0x0378=888ppm
326
327 (0x14FE: No Sensor,0x14FF: Value Error)
328 )))
329 |**Temperature**|0x06|-30℃~70℃|0x02|(((
330 0xFFDD/10=-3.5℃
331
332 (0x02FE: No Sensor,0x02FF: Value Error)
333 )))
334 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
335 |**Pressure**|0x08|10~1100hPa|0x02|(((
336 0x2748/10=1005.6hPa
337
338 (0x00: No Sensor,0x01: Value Error)
339 )))
340 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
341 0x0000/10=0mm /min
342
343 (0x03FE: No Sensor,0x03FF: Value Error)
344 )))
345 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
346 0x0023=35μg/m^^3 ^^
347
348 (0x03FE: No Sensor,0x03FF: Value Error)
349 )))
350 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
351 0x002D=45μg/m^^3 ^^
352
353 (0x03FE: No Sensor,0x03FF: Value Error)
354 )))
355 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
356 0x00B3=179μmol/m^^2^^•s
357
358 (0x09FE: No Sensor,0x9FF: Value Error)
359 )))
360 |(((
361 **Total Solar**
362
363 **Radiation**
364 )))|0x0D|0~2000W/m^^2^^|0x02|(((
365 0x0073/10=11.5W/m^^2^^
366
367 (0x4EFE: No Sensor,0x4EFF: Value Error)
368 )))
369
370 Below is an example payload:
371
372 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
373
374
375 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
376
377 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
378
379 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
380
381
382 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
383
384 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
385
386 Uplink 2: 0D 02 00 73
387
388
389
390
391 === 2.4.3 Decoder in TTN V3 ===
392
393 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
394
395
396 Download decoder for suitable platform from:
397
398 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
399
400 and put as below:
401
402 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
403
404
405
406 == 2.5 Show data on Application Server ==
407
408 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
409
410
411 **(% style="color:blue" %)Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
412
413 **(% style="color:blue" %)Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
414
415 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
416
417
418 Add TagoIO:
419
420 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
421
422 Authorization:
423
424 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
425
426
427 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
428
429 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
430
431
432
433 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
434
435 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
436
437 * AT Command Connection: See [[FAQ>>||anchor="H"]].
438 * LoRaWAN Downlink instruction for different platforms:
439
440 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
441
442
443 There are two kinds of commands to configure WSC1-L, they are:
444
445 * **(% style="color:#4472C4" %)General Commands**.
446
447 These commands are to configure:
448
449 * General system settings like: uplink interval.
450 * LoRaWAN protocol & radio related command.
451
452 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
453
454 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
455
456 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
457
458
459 * **(% style="color:#4472C4" %)Commands special design for WSC1-L**
460
461 These commands only valid for WSC1-L, as below:
462
463
464 == 3.1 Set Transmit Interval Time ==
465
466 Feature: Change LoRaWAN End Node Transmit Interval.
467
468 **(% style="color:#037691" %)AT Command: AT+TDC**
469
470 |**Command Example**|**Function**|**Response**
471 |AT+TDC?|Show current transmit Interval|(((
472 30000
473
474 OK
475
476 the interval is 30000ms = 30s
477 )))
478 |AT+TDC=60000|Set Transmit Interval|(((
479 OK
480
481 Set transmit interval to 60000ms = 60 seconds
482 )))
483
484 **(% style="color:#037691" %)Downlink Command: 0x01**
485
486 Format: Command Code (0x01) followed by 3 bytes time value.
487
488 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
489
490 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
491 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
492
493
494
495
496
497 == 3.2 Set Emergency Mode ==
498
499 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
500
501
502 **(% style="color:#037691" %)AT Command:**
503
504 |**Command Example**|**Function**|**Response**
505 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
506 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
507
508 **(% style="color:#037691" %)Downlink Command:**
509
510 * 0xE101     Same as: AT+ALARMMOD=1
511 * 0xE100     Same as: AT+ALARMMOD=0
512
513
514
515
516
517 == 3.3 Add or Delete RS485 Sensor ==
518
519 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
520
521 **(% style="color:#037691" %)AT Command: **
522
523 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
524
525 * Type_Code range: A1 ~~ A4
526 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
527 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
528 * Read_Length: RS485 response frame length supposed to receive. Max can receive
529 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
530 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
531 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
532
533
534 Example:
535
536 User need to change external sensor use the type code as address code.
537
538 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
539
540 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
541 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
542 | | | | | | | |
543
544 The response frame of the sensor is as follows:
545
546 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
547 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
548 | | | | | | | |
549
550 Then the following parameters should be:
551
552 * Address_Code range: A1
553 * Query_Length: 8
554 * Query_Command: A103000000019CAA
555 * Read_Length: 8
556 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
557 * has_CRC: 1
558 * timeout: 1500 (Fill in the test according to the actual situation)
559
560 So the input command is:
561
562 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
563
564
565 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
566
567 |Type Code|Length (Bytes)|Measured Value
568 |A1|2|0x000A
569
570
571
572
573 Related commands:
574
575 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
576
577 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
578
579
580 **(% style="color:#037691" %)Downlink Command:  **
581
582 **delete custom sensor A1:**
583
584 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
585
586 **Remove all custom sensors**
587
588 * 0xE5FF  
589
590
591
592
593
594 == 3.4 RS485 Test Command ==
595
596 **(% style="color:#037691" %)AT Command:**
597
598 |**Command Example**|**Function**|**Response**
599 |AT+RSWRITE=xxxxxx|(((
600 Send command to 485 sensor
601
602 Range : no more than 10 bytes
603 )))|OK
604
605 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
606
607 AT+RSWRITE=0103000001840A
608
609
610 **(% style="color:#037691" %)Downlink Command:**
611
612 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
613
614
615
616 == 3.5 RS485 response timeout ==
617
618 Feature: Set or get extended time to receive 485 sensor data.
619
620 **(% style="color:#037691" %)AT Command:**
621
622 |**Command Example**|**Function**|**Response**
623 |AT+DTR=1000|(((
624 Set response timeout to:
625
626 Range : 0~~10000
627 )))|OK
628
629 **(% style="color:#037691" %)Downlink Command:**
630
631 Format: Command Code (0xE0) followed by 3 bytes time value.
632
633 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
634
635 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
636 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
637
638
639
640
641
642 == 3.6 Set Sensor Type ==
643
644 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
645
646 See [[definition>>||anchor="H"]] for the sensor type.
647
648
649 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
650 | |A4|A3|A2|A1| | |
651 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
652 | | |Solar Radiation|PAR|PM10|PM2.5|(((
653 Rain
654
655 Gauge
656 )))|(((
657 Air
658
659 Pressure
660 )))
661 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
662 |Humidity|Temperature|CO2|(((
663 Rain/Snow
664
665 Detect
666 )))|illuminance|(((
667 Wind
668
669 Direction
670 )))|Wind Speed|BAT
671
672 **(% style="color:#037691" %)AT Command:**
673
674 |**Command Example**|**Function**|**Response**
675 |AT+STYPE=80221|Set sensor types|OK
676
677 Eg: The setting command **AT+STYPE=802212** means:
678
679 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
680 |0|0|0|0|1|0|0|0
681 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
682 |0|0|0|0|0|0|1|0
683 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
684 |0|0|1|0|0|0|0|1
685
686 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
687
688
689 **(% style="color:#037691" %)Downlink Command:**
690
691 * 0xE400802212     Same as: AT+STYPE=80221
692
693 (% style="color:red" %)**Note:**
694
695 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
696
697
698
699
700
701 = 4. Power consumption and battery =
702
703 == 4.1 Total Power Consumption ==
704
705 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
706
707
708 == 4.2 Reduce power consumption ==
709
710 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
711
712
713
714 == 4.3 Battery ==
715
716 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
717
718
719 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
720
721
722
723 = 5. Main Process Unit WSC1-L =
724
725 == 5.1 Features ==
726
727 * Wall Attachable.
728 * LoRaWAN v1.0.3 Class A protocol.
729 * RS485 / Modbus protocol
730 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
731 * AT Commands to change parameters
732 * Remote configure parameters via LoRaWAN Downlink
733 * Firmware upgradable via program port
734 * Powered by external 12v battery
735 * Back up rechargeable 1000mAh battery
736 * IP Rating: IP65
737 * Support default sensors or 3rd party RS485 sensors
738
739
740
741
742
743 == 5.2 Power Consumption ==
744
745 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
746
747
748
749 == 5.3 Storage & Operation Temperature ==
750
751 -20°C to +60°C
752
753
754 == 5.4 Pin Mapping ==
755
756 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
757
758
759 == 5.5 Mechanical ==
760
761 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
762
763
764
765
766 == 5.6 Connect to RS485 Sensors ==
767
768 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
769
770
771 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
772
773
774 Hardware Design for the Converter Board please see:
775
776 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
777
778
779
780
781
782 = 6. Weather Sensors =
783
784 == 6.1 Rain Gauge ~-~- WSS-01 ==
785
786 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
787
788
789 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
790
791 shape to make sure it works smoothly and is easy to clean.
792
793
794 WSS-01 is designed to support the Dragino Weather station solution.
795
796 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
797
798 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
799
800
801 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
802
803 to screw up and adjust the bottom horizontally.
804
805
806 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
807
808
809
810 === 6.1.1 Feature ===
811 * RS485 Rain Gauge
812 * Small dimension, easy to install
813 * Vents under funnel, avoid leaf or other things to avoid rain flow.
814 * ABS enclosure.
815 * Horizontal adjustable.
816
817
818
819
820
821 === 6.1.2 Specification ===
822 * Resolution: 0.2mm
823 * Accuracy: ±3%
824 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
825 * Input Power: DC 5~~24v
826 * Interface: RS485
827 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
828 * Working Humidity: <100% (no dewing)
829 * Power Consumption: 4mA @ 12v.
830
831
832
833
834
835 === 6.1.3 Dimension ===
836
837 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
838
839 1.
840 11.
841 111. Pin Mapping
842
843 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
844
845
846
847
848 === 6.1.5 Installation Notice ===
849
850 Do not power on while connect the cables. Double check the wiring before power on.
851
852 Installation Photo as reference:
853
854
855 **(% style="color:#4472C4" %) Install on Ground:**
856
857 WSS-01 Rain Gauge include screws so can install in ground directly .
858
859
860 **(% style="color:#4472C4" %) Install on pole:**
861
862 If user want to install on pole, they can purchase the **(% style="color:#4472C4" %) WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
863
864 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
865
866
867 WS-K2: Bracket Kit for Pole installation:
868
869 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
870
871 WSSC-K2 dimension document, please see:
872
873 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
874
875
876
877 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
878
879 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
880
881 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
882
883
884 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
885
886
887 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
888
889 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
890
891
892 === 6.2.1 Feature ===
893 * RS485 wind speed / direction sensor
894 * PC enclosure, resist corrosion
895
896
897
898
899
900 === 6.2.2 Specification ===
901 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
902 * Wind direction range: 0 ~~ 360°
903 * Start wind speed: ≤0.3m/s
904 * Accuracy: ±(0.3+0.03V)m/s , ±1°
905 * Input Power: DC 5~~24v
906 * Interface: RS485
907 * Working Temperature: -30℃~70℃
908 * Working Humidity: <100% (no dewing)
909 * Power Consumption: 13mA ~~ 12v.
910 * Cable Length: 2 meters
911
912
913
914
915
916 === 6.2.3 Dimension ===
917
918 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
919
920
921 === 6.2.4 Pin Mapping ===
922
923 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
924
925
926 === 6.2.4 Angle Mapping ===
927
928 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
929
930
931 === 6.2.5 Installation Notice ===
932
933 Do not power on while connect the cables. Double check the wiring before power on.
934
935
936 The sensor must be installed with below direction, towards North.
937
938
939 |(((
940 North
941 )))
942
943 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
944
945
946
947
948
949
950
951
952 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
953
954 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
955
956
957 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
958
959
960 WSS-03 is designed to support the Dragino Weather station solution.
961
962 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
963
964 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
965
966
967 === 6.3.1 Feature ===
968 * RS485 CO2, PM2.5, PM10 sensor
969 * NDIR to measure CO2 with Internal Temperature Compensation
970 * Laser Beam Scattering to PM2.5 and PM10
971
972
973
974
975
976 === 6.3.2 Specification ===
977 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
978 * CO2 resolution: 1ppm
979 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
980 * PM2.5/PM10 resolution: 1μg/m3
981 * Input Power: DC 7 ~~ 24v
982 * Preheat time: 3min
983 * Interface: RS485
984 * Working Temperature:
985 ** CO2: 0℃~50℃;
986 ** PM2.5/PM10: -30 ~~ 50℃
987 * Working Humidity:
988 ** PM2.5/PM10: 15~80%RH (no dewing)
989 ** CO2: 0~95%RH
990 * Power Consumption: 50mA@ 12v.
991
992
993
994
995
996 === 6.3.3 Dimension ===
997
998 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
999
1000
1001 === 6.3.4 Pin Mapping ===
1002
1003 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1004
1005
1006 1.
1007 11.
1008 111. Installation Notice
1009
1010 Do not power on while connect the cables. Double check the wiring before power on.
1011
1012 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1013
1014 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1015
1016
1017
1018
1019
1020
1021 1.
1022 11. Rain/Snow Detect ~-~- WSS-04
1023
1024 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1025
1026
1027 WSS-04 has auto heating feature, this ensures measurement more reliable.
1028
1029
1030 WSS-04 is designed to support the Dragino Weather station solution.
1031
1032 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
1033
1034 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1035
1036
1037
1038 *
1039 *1.
1040 *11. Feature
1041 * RS485 Rain/Snow detect sensor
1042 * Surface heating to dry
1043 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1044
1045 *
1046 *1.
1047 *11. Specification
1048 * Detect if there is rain or snow
1049 * Input Power: DC 12 ~~ 24v
1050 * Interface: RS485
1051 * Working Temperature: -30℃~70℃
1052 * Working Humidity: 10~90%RH
1053 * Power Consumption:
1054 ** No heating: 12mA @ 12v,
1055 ** heating: 94ma @ 12v.
1056
1057 1.
1058 11.
1059 111. Dimension
1060
1061 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1062
1063
1064 1.
1065 11.
1066 111. Pin Mapping
1067
1068 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1069
1070
1071 1.
1072 11.
1073 111. Installation Notice
1074
1075 Do not power on while connect the cables. Double check the wiring before power on.
1076
1077
1078 Install with 15°degree.
1079
1080 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1081
1082 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1083
1084
1085
1086
1087 1.
1088 11.
1089 111. Heating 
1090
1091 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1092
1093
1094
1095
1096
1097 1.
1098 11. Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05
1099
1100 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1101
1102
1103 WSS-05 is designed to support the Dragino Weather station solution.
1104
1105 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1106
1107 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1108
1109
1110 *
1111 *1.
1112 *11. Feature
1113 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1114
1115 *
1116 *1.
1117 *11. Specification
1118 * Input Power: DC 12 ~~ 24v
1119 * Interface: RS485
1120 * Temperature Sensor Spec:
1121 ** Range: -30 ~~ 70℃
1122 ** resolution 0.1℃
1123 ** Accuracy: ±0.5℃
1124 * Humidity Sensor Spec:
1125 ** Range: 0 ~~ 100% RH
1126 ** resolution 0.1 %RH
1127 ** Accuracy: 3% RH
1128 * Pressure Sensor Spec:
1129 ** Range: 10~1100hPa
1130 ** Resolution: 0.1hPa
1131 ** Accuracy: ±0.1hPa
1132 * Illuminate sensor:
1133 ** Range: 0~2/20/200kLux
1134 ** Resolution: 10 Lux
1135 ** Accuracy: ±3%FS
1136 * Working Temperature: -30℃~70℃
1137 * Working Humidity: 10~90%RH
1138 * Power Consumption: 4mA @ 12v
1139
1140
1141 1.
1142 11.
1143 111. Dimension
1144
1145 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1146
1147
1148 1.
1149 11.
1150 111. Pin Mapping
1151
1152 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1153
1154 1.
1155 11.
1156 111. Installation Notice
1157
1158 Do not power on while connect the cables. Double check the wiring before power on.
1159
1160
1161
1162 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1163
1164
1165 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1166
1167
1168 1.
1169 11. Total Solar Radiation sensor ~-~- WSS-06
1170
1171 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1172
1173
1174 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1175
1176
1177 WSS-06 is designed to support the Dragino Weather station solution.
1178
1179
1180 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1181
1182 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1183
1184
1185
1186 *
1187 *1.
1188 *11. Feature
1189 * RS485 Total Solar Radiation sensor
1190 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1191 * Measure Reflected Radiation if sense area towards ground.
1192
1193 *
1194 *1.
1195 *11. Specification
1196 * Input Power: DC 5 ~~ 24v
1197 * Interface: RS485
1198 * Detect spectrum: 0.3~3μm(300~3000nm)
1199 * Measure strength range: 0~2000W/m2
1200 * Resolution: 0.1W/m2
1201 * Accuracy: ±3%
1202 * Yearly Stability: ≤±2%
1203 * Cosine response: ≤7% (@ Sun angle 10°)
1204 * Temperature Effect: ±2%(-10℃~40℃)
1205 * Working Temperature: -40℃~70℃
1206 * Working Humidity: 10~90%RH
1207 * Power Consumption: 4mA @ 12v
1208
1209
1210 1.
1211 11.
1212 111. Dimension
1213
1214 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1215
1216
1217 1.
1218 11.
1219 111. Pin Mapping
1220
1221 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1222
1223
1224 1.
1225 11.
1226 111. Installation Notice
1227
1228 Do not power on while connect the cables. Double check the wiring before power on.
1229
1230 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1231
1232 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1233
1234 1.
1235 11. PAR (Photosynthetically Available Radiation) ~-~- WSS-07
1236
1237 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1238
1239
1240 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1241
1242
1243
1244 WSS-07 is designed to support the Dragino Weather station solution.
1245
1246
1247 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1248
1249 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1250
1251
1252 1.
1253 11.
1254 111. Feature
1255
1256 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1257
1258
1259 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1260
1261
1262 *
1263 *1.
1264 *11. Specification
1265 * Input Power: DC 5 ~~ 24v
1266 * Interface: RS485
1267 * Response Spectrum: 400~700nm
1268 * Measure range: 0~2500μmol/m2•s
1269 * Resolution: 1μmol/m2•s
1270 * Accuracy: ±2%
1271 * Yearly Stability: ≤±2%
1272 * Working Temperature: -30℃~75℃
1273 * Working Humidity: 10~90%RH
1274 * Power Consumption: 3mA @ 12v
1275
1276
1277 1.
1278 11.
1279 111. Dimension
1280
1281 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1282
1283 1.
1284 11.
1285 111. Pin Mapping
1286
1287 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1288
1289
1290 1.
1291 11.
1292 111. Installation Notice
1293
1294 Do not power on while connect the cables. Double check the wiring before power on.
1295
1296
1297 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1298
1299 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1300
1301
1302 = 7. FAQ =
1303
1304 == 7.1 What else do I need to purchase to build Weather Station? ==
1305
1306 Below is the installation photo and structure:
1307
1308 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1309
1310
1311 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1312
1313
1314
1315
1316 == 7.2 How to upgrade firmware for WSC1-L? ==
1317
1318 Firmware Location & Change log:
1319
1320 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1321
1322
1323 Firmware Upgrade instruction:
1324
1325 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1326
1327
1328 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1329
1330 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1331
1332
1333
1334 == 7.4 Can I add my weather sensors? ==
1335
1336 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1337
1338
1339 = 8. Trouble Shooting =
1340
1341
1342
1343
1344
1345
1346 = 9. Order Info =
1347
1348
1349 == 9.1 Main Process Unit ==
1350
1351 Part Number: **WSC1-L-XX**
1352
1353 **XX**: The default frequency band
1354
1355 * **AS923**: LoRaWAN AS923 band
1356 * **AU915**: LoRaWAN AU915 band
1357 * **EU433**: LoRaWAN EU433 band
1358 * **EU868**: LoRaWAN EU868 band
1359 * **KR920**: LoRaWAN KR920 band
1360 * **US915**: LoRaWAN US915 band
1361 * **IN865**: LoRaWAN IN865 band
1362 * **CN470**: LoRaWAN CN470 band
1363
1364 == 9.2 Sensors ==
1365
1366 |**Sensor Model**|**Part Number**
1367 |**Rain Gauge**|WSS-01
1368 |**Rain Gauge installation Bracket for Pole**|WS-K2
1369 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1370 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1371 |**Rain/Snow Detect Sensor**|WSS-04
1372 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1373 |**Total Solar Radiation Sensor**|WSS-06
1374 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1375
1376
1377 = 10. Support =
1378
1379 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1380 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1381
1382 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1383
1384
1385
1386
1387
1388 = 11. Appendix I: Field Installation Photo =
1389
1390
1391 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1392
1393
1394 **Storage Battery**: 12v,12AH li battery
1395
1396
1397 Wind Speed/Direction.
1398
1399 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1400
1401
1402 Total Solar Radiation sensor
1403
1404 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1405
1406
1407
1408 PAR Sensor
1409
1410 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1411
1412
1413 CO2/PM2.5/PM10 3 in 1 sensor
1414
1415 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1416
1417
1418 Rain / Snow Detect:
1419
1420 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1421
1422
1423 Rain Gauge.
1424
1425 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]