Version 27.7 by Xiaoling on 2022/06/24 14:21

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71 (% style="color:red" %)** Notice 2:**
72
73 Due to shipment and importation limitation, user is better to purchase below parts locally:
74
75 * Solar Panel
76 * Storage Battery
77 * MPPT Solar Recharger
78 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
79 * Cabinet.
80
81
82 == 2.2 How it works? ==
83
84 (((
85 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
86 )))
87
88
89 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
98
99
100 == 2.3 Example to use for LoRaWAN network ==
101
102 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
103
104
105 [[image:1656042612899-422.png]]
106
107
108
109 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
110
111
112 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
113
114 Each WSC1-L is shipped with a sticker with the default device EUI as below:
115
116 [[image:image-20220624115043-1.jpeg]]
117
118
119 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
120
121 **Add APP EUI in the application.**
122
123 [[image:1656042662694-311.png]]
124
125 [[image:1656042673910-429.png]]
126
127
128
129
130 **Choose Manually to add WSC1-L**
131
132 [[image:1656042695755-103.png]]
133
134
135
136 **Add APP KEY and DEV EUI**
137
138 [[image:1656042723199-746.png]]
139
140
141
142 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
143
144
145 [[image:1656042745346-283.png]]
146
147
148
149 == 2.4 Uplink Payload ==
150
151 Uplink payloads include two types: Valid Sensor Value and other status / control command.
152
153 * Valid Sensor Value: Use FPORT=2
154 * Other control command: Use FPORT other than 2.
155
156
157 === 2.4.1 Uplink FPORT~=5, Device Status ===
158
159 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
160
161
162 (((
163 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
164 )))
165
166 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
167 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
168 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
169
170 [[image:1656043061044-343.png]]
171
172
173 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
174
175
176
177 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
178
179 For WSC1-L, this value is 0x0D.
180
181
182
183 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
184
185 0x0100, Means: v1.0.0 version.
186
187
188
189 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
190
191 *0x01: EU868
192
193 *0x02: US915
194
195 *0x03: IN865
196
197 *0x04: AU915
198
199 *0x05: KZ865
200
201 *0x06: RU864
202
203 *0x07: AS923
204
205 *0x08: AS923-1
206
207 *0x09: AS923-2
208
209 *0x0a: AS923-3
210
211
212
213 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
214
215 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
216
217
218
219 ==== (% style="color:#037691" %)**BAT:**(%%) ====
220
221 shows the battery voltage for WSC1-L MCU.
222
223 Ex1: 0x0BD6/1000 = 3.03 V
224
225
226
227 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
228
229 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
230 |Byte3|Byte2|Byte1
231
232 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
233
234 [[image:image-20220624134713-1.png]]
235
236
237 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
238
239 External sensors detected by WSC1-L include :
240
241 custom sensor A1,
242
243 PAR sensor (WSS-07),
244
245 Total Solar Radiation sensor (WSS-06),
246
247 CO2/PM2.5/PM10 (WSS-03),
248
249 Wind Speed/Direction (WSS-02)
250
251
252 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
253
254 (% style="color:#037691" %)**Downlink:0x26 01**
255
256 [[image:1656049673488-415.png]]
257
258
259
260 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
261
262 (((
263 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
264 )))
265
266 (((
267 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
268 )))
269
270
271 (((
272 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
273 )))
274
275
276 (% style="color:#4472c4" %)** Uplink Payload**:
277
278 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
279 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
280
281 (% style="color:#4472c4" %)** Sensor Segment Define**:
282
283 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
284 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
285
286 (% style="color:#4472c4" %)**Sensor Type Table:**
287
288 [[image:image-20220624140352-2.png]]
289
290
291 Below is an example payload:  [[image:image-20220624140615-3.png]]
292
293
294 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
295
296 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
297
298 Uplink 1:  [[image:image-20220624140735-4.png]]
299
300 Uplink 2:  [[image:image-20220624140842-5.png]]
301
302
303 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
304
305 Uplink 1:  [[image:image-20220624141025-6.png]]
306
307 Uplink 2:  [[image:image-20220624141100-7.png]]
308
309
310
311
312 === 2.4.3 Decoder in TTN V3 ===
313
314 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
315
316
317 Download decoder for suitable platform from:
318
319 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
320
321 and put as below:
322
323 [[image:1656051152438-578.png]]
324
325
326
327 == 2.5 Show data on Application Server ==
328
329 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
330
331
332 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
333
334 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
335
336 [[image:1656051197172-131.png]]
337
338
339 **Add TagoIO:**
340
341 [[image:1656051223585-631.png]]
342
343
344 **Authorization:**
345
346 [[image:1656051248318-368.png]]
347
348
349 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
350
351 [[image:1656051277767-168.png]]
352
353
354
355 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
356
357 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
358
359 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
360 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
361
362
363 There are two kinds of commands to configure WSC1-L, they are:
364
365 * (% style="color:#4472c4" %)**General Commands**.
366
367 These commands are to configure:
368
369 * General system settings like: uplink interval.
370 * LoRaWAN protocol & radio related command.
371
372 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
373
374 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
375
376
377 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
378
379 These commands only valid for WSC1-L, as below:
380
381
382 == 3.1 Set Transmit Interval Time ==
383
384 Feature: Change LoRaWAN End Node Transmit Interval.
385
386 (% style="color:#037691" %)**AT Command: AT+TDC**
387
388 |**Command Example**|**Function**|**Response**
389 |AT+TDC?|Show current transmit Interval|(((
390 30000
391
392 OK
393
394 the interval is 30000ms = 30s
395 )))
396 |AT+TDC=60000|Set Transmit Interval|(((
397 OK
398
399 Set transmit interval to 60000ms = 60 seconds
400 )))
401
402 (% style="color:#037691" %)**Downlink Command: 0x01**
403
404 Format: Command Code (0x01) followed by 3 bytes time value.
405
406 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
407
408 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
409 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
410
411 == 3.2 Set Emergency Mode ==
412
413 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
414
415
416 (% style="color:#037691" %)**AT Command:**
417
418 |**Command Example**|**Function**|**Response**
419 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
420 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
421
422 (% style="color:#037691" %)**Downlink Command:**
423
424 * 0xE101     Same as: AT+ALARMMOD=1
425 * 0xE100     Same as: AT+ALARMMOD=0
426
427 == 3.3 Add or Delete RS485 Sensor ==
428
429 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
430
431 (% style="color:#037691" %)**AT Command: **
432
433 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
434
435 * Type_Code range: A1 ~~ A4
436 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
437 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
438 * Read_Length: RS485 response frame length supposed to receive. Max can receive
439 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
440 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
441 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
442
443 Example:
444
445 User need to change external sensor use the type code as address code.
446
447 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
448
449 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
450 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
451 | | | | | | | |
452
453 The response frame of the sensor is as follows:
454
455 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
456 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
457 | | | | | | | |
458
459 Then the following parameters should be:
460
461 * Address_Code range: A1
462 * Query_Length: 8
463 * Query_Command: A103000000019CAA
464 * Read_Length: 8
465 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
466 * has_CRC: 1
467 * timeout: 1500 (Fill in the test according to the actual situation)
468
469 So the input command is:
470
471 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
472
473
474 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
475
476 |Type Code|Length (Bytes)|Measured Value
477 |A1|2|0x000A
478
479 Related commands:
480
481 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
482
483 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
484
485
486 (% style="color:#037691" %)**Downlink Command:  **
487
488 **delete custom sensor A1:**
489
490 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
491
492 **Remove all custom sensors**
493
494 * 0xE5FF  
495
496 == 3.4 RS485 Test Command ==
497
498 (% style="color:#037691" %)**AT Command:**
499
500 |**Command Example**|**Function**|**Response**
501 |AT+RSWRITE=xxxxxx|(((
502 Send command to 485 sensor
503
504 Range : no more than 10 bytes
505 )))|OK
506
507 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
508
509 AT+RSWRITE=0103000001840A
510
511
512 (% style="color:#037691" %)**Downlink Command:**
513
514 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
515
516 == 3.5 RS485 response timeout ==
517
518 Feature: Set or get extended time to receive 485 sensor data.
519
520 (% style="color:#037691" %)**AT Command:**
521
522 |**Command Example**|**Function**|**Response**
523 |AT+DTR=1000|(((
524 Set response timeout to:
525
526 Range : 0~~10000
527 )))|OK
528
529 (% style="color:#037691" %)**Downlink Command:**
530
531 Format: Command Code (0xE0) followed by 3 bytes time value.
532
533 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
534
535 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
536 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
537
538 == 3.6 Set Sensor Type ==
539
540 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
541
542 See [[definition>>||anchor="H"]] for the sensor type.
543
544
545 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
546 | |A4|A3|A2|A1| | |
547 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
548 | | |Solar Radiation|PAR|PM10|PM2.5|(((
549 Rain
550
551 Gauge
552 )))|(((
553 Air
554
555 Pressure
556 )))
557 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
558 |Humidity|Temperature|CO2|(((
559 Rain/Snow
560
561 Detect
562 )))|illuminance|(((
563 Wind
564
565 Direction
566 )))|Wind Speed|BAT
567
568 (% style="color:#037691" %)**AT Command:**
569
570 |**Command Example**|**Function**|**Response**
571 |AT+STYPE=80221|Set sensor types|OK
572
573 Eg: The setting command **AT+STYPE=802212** means:
574
575 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
576 |0|0|0|0|1|0|0|0
577 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
578 |0|0|0|0|0|0|1|0
579 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
580 |0|0|1|0|0|0|0|1
581
582 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
583
584
585 (% style="color:#037691" %)**Downlink Command:**
586
587 * 0xE400802212     Same as: AT+STYPE=80221
588
589 (% style="color:red" %)**Note:**
590
591 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
592
593
594
595
596
597 = 4. Power consumption and battery =
598
599 == 4.1 Total Power Consumption ==
600
601 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
602
603
604 == 4.2 Reduce power consumption ==
605
606 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
607
608
609
610 == 4.3 Battery ==
611
612 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
613
614
615 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
616
617
618
619 = 5. Main Process Unit WSC1-L =
620
621 == 5.1 Features ==
622
623 * Wall Attachable.
624 * LoRaWAN v1.0.3 Class A protocol.
625 * RS485 / Modbus protocol
626 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
627 * AT Commands to change parameters
628 * Remote configure parameters via LoRaWAN Downlink
629 * Firmware upgradable via program port
630 * Powered by external 12v battery
631 * Back up rechargeable 1000mAh battery
632 * IP Rating: IP65
633 * Support default sensors or 3rd party RS485 sensors
634
635 == 5.2 Power Consumption ==
636
637 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
638
639
640
641 == 5.3 Storage & Operation Temperature ==
642
643 -20°C to +60°C
644
645
646 == 5.4 Pin Mapping ==
647
648 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
649
650
651 == 5.5 Mechanical ==
652
653 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
654
655
656
657
658 == 5.6 Connect to RS485 Sensors ==
659
660 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
661
662
663 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
664
665
666 Hardware Design for the Converter Board please see:
667
668 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
669
670
671
672
673
674 = 6. Weather Sensors =
675
676 == 6.1 Rain Gauge ~-~- WSS-01 ==
677
678 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
679
680
681 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
682
683 shape to make sure it works smoothly and is easy to clean.
684
685
686 WSS-01 is designed to support the Dragino Weather station solution.
687
688 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
689
690 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
691
692
693 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
694
695 to screw up and adjust the bottom horizontally.
696
697
698 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
699
700
701
702 === 6.1.1 Feature ===
703
704 * RS485 Rain Gauge
705 * Small dimension, easy to install
706 * Vents under funnel, avoid leaf or other things to avoid rain flow.
707 * ABS enclosure.
708 * Horizontal adjustable.
709
710 === 6.1.2 Specification ===
711
712 * Resolution: 0.2mm
713 * Accuracy: ±3%
714 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
715 * Input Power: DC 5~~24v
716 * Interface: RS485
717 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
718 * Working Humidity: <100% (no dewing)
719 * Power Consumption: 4mA @ 12v.
720
721 === 6.1.3 Dimension ===
722
723 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
724
725
726 === 6.1.4 Pin Mapping ===
727
728 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
729
730
731
732
733 === 6.1.5 Installation Notice ===
734
735 Do not power on while connect the cables. Double check the wiring before power on.
736
737 Installation Photo as reference:
738
739
740 (% style="color:#4472c4" %)** Install on Ground:**
741
742 WSS-01 Rain Gauge include screws so can install in ground directly .
743
744
745 (% style="color:#4472c4" %)** Install on pole:**
746
747 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
748
749 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
750
751
752 WS-K2: Bracket Kit for Pole installation:
753
754 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
755
756 WSSC-K2 dimension document, please see:
757
758 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
759
760
761
762 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
763
764 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
765
766 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
767
768
769 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
770
771
772 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
773
774 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
775
776
777 === 6.2.1 Feature ===
778
779 * RS485 wind speed / direction sensor
780 * PC enclosure, resist corrosion
781
782 === 6.2.2 Specification ===
783
784 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
785 * Wind direction range: 0 ~~ 360°
786 * Start wind speed: ≤0.3m/s
787 * Accuracy: ±(0.3+0.03V)m/s , ±1°
788 * Input Power: DC 5~~24v
789 * Interface: RS485
790 * Working Temperature: -30℃~70℃
791 * Working Humidity: <100% (no dewing)
792 * Power Consumption: 13mA ~~ 12v.
793 * Cable Length: 2 meters
794
795 === 6.2.3 Dimension ===
796
797 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
798
799
800 === 6.2.4 Pin Mapping ===
801
802 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
803
804
805 === 6.2.4 Angle Mapping ===
806
807 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
808
809
810 === 6.2.5 Installation Notice ===
811
812 Do not power on while connect the cables. Double check the wiring before power on.
813
814
815 The sensor must be installed with below direction, towards North.
816
817
818 |(((
819 North
820 )))
821
822 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
823
824
825
826
827
828
829
830
831 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
832
833 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
834
835
836 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
837
838
839 WSS-03 is designed to support the Dragino Weather station solution.
840
841 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
842
843 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
844
845
846 === 6.3.1 Feature ===
847
848 * RS485 CO2, PM2.5, PM10 sensor
849 * NDIR to measure CO2 with Internal Temperature Compensation
850 * Laser Beam Scattering to PM2.5 and PM10
851
852 === 6.3.2 Specification ===
853
854 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
855 * CO2 resolution: 1ppm
856 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
857 * PM2.5/PM10 resolution: 1μg/m3
858 * Input Power: DC 7 ~~ 24v
859 * Preheat time: 3min
860 * Interface: RS485
861 * Working Temperature:
862 ** CO2: 0℃~50℃;
863 ** PM2.5/PM10: -30 ~~ 50℃
864 * Working Humidity:
865 ** PM2.5/PM10: 15~80%RH (no dewing)
866 ** CO2: 0~95%RH
867 * Power Consumption: 50mA@ 12v.
868
869 === 6.3.3 Dimension ===
870
871 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
872
873
874 === 6.3.4 Pin Mapping ===
875
876 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
877
878
879 === 6.3.5 Installation Notice ===
880
881 Do not power on while connect the cables. Double check the wiring before power on.
882
883 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
884
885 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
886
887
888
889
890
891
892 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
893
894 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
895
896
897 WSS-04 has auto heating feature, this ensures measurement more reliable.
898
899
900 WSS-04 is designed to support the Dragino Weather station solution.
901
902 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
903
904 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
905
906
907
908 === 6.4.1 Feature ===
909
910 * RS485 Rain/Snow detect sensor
911 * Surface heating to dry
912 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
913
914 === 6.4.2 Specification ===
915
916 * Detect if there is rain or snow
917 * Input Power: DC 12 ~~ 24v
918 * Interface: RS485
919 * Working Temperature: -30℃~70℃
920 * Working Humidity: 10~90%RH
921 * Power Consumption:
922 ** No heating: 12mA @ 12v,
923 ** heating: 94ma @ 12v.
924
925 === 6.4.3 Dimension ===
926
927 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
928
929
930 === 6.4.4 Pin Mapping ===
931
932 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
933
934
935 === 6.4.5 Installation Notice ===
936
937 Do not power on while connect the cables. Double check the wiring before power on.
938
939
940 Install with 15°degree.
941
942 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
943
944 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
945
946
947
948
949 === 6.4.6 Heating ===
950
951
952 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
953
954
955
956
957
958 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
959
960 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
961
962
963 WSS-05 is designed to support the Dragino Weather station solution.
964
965 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
966
967 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
968
969
970 === 6.5.1 Feature ===
971
972 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
973
974 === 6.5.2 Specification ===
975
976 * Input Power: DC 12 ~~ 24v
977 * Interface: RS485
978 * Temperature Sensor Spec:
979 ** Range: -30 ~~ 70℃
980 ** resolution 0.1℃
981 ** Accuracy: ±0.5℃
982 * Humidity Sensor Spec:
983 ** Range: 0 ~~ 100% RH
984 ** resolution 0.1 %RH
985 ** Accuracy: 3% RH
986 * Pressure Sensor Spec:
987 ** Range: 10~1100hPa
988 ** Resolution: 0.1hPa
989 ** Accuracy: ±0.1hPa
990 * Illuminate sensor:
991 ** Range: 0~2/20/200kLux
992 ** Resolution: 10 Lux
993 ** Accuracy: ±3%FS
994 * Working Temperature: -30℃~70℃
995 * Working Humidity: 10~90%RH
996 * Power Consumption: 4mA @ 12v
997
998 === 6.5.3 Dimension ===
999
1000 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1001
1002
1003 === 6.5.4 Pin Mapping ===
1004
1005 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1006
1007
1008 === 6.5.5 Installation Notice ===
1009
1010 Do not power on while connect the cables. Double check the wiring before power on.
1011
1012
1013
1014 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1015
1016
1017 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1018
1019
1020 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1021
1022 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1023
1024
1025 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1026
1027
1028 WSS-06 is designed to support the Dragino Weather station solution.
1029
1030
1031 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1032
1033 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1034
1035
1036
1037 === 6.6.1 Feature ===
1038
1039 * RS485 Total Solar Radiation sensor
1040 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1041 * Measure Reflected Radiation if sense area towards ground.
1042
1043 === 6.6.2 Specification ===
1044
1045 * Input Power: DC 5 ~~ 24v
1046 * Interface: RS485
1047 * Detect spectrum: 0.3~3μm(300~3000nm)
1048 * Measure strength range: 0~2000W/m2
1049 * Resolution: 0.1W/m2
1050 * Accuracy: ±3%
1051 * Yearly Stability: ≤±2%
1052 * Cosine response: ≤7% (@ Sun angle 10°)
1053 * Temperature Effect: ±2%(-10℃~40℃)
1054 * Working Temperature: -40℃~70℃
1055 * Working Humidity: 10~90%RH
1056 * Power Consumption: 4mA @ 12v
1057
1058 === 6.6.3 Dimension ===
1059
1060 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1061
1062
1063 === 6.6.4 Pin Mapping ===
1064
1065 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1066
1067
1068 === 6.6.5 Installation Notice ===
1069
1070 Do not power on while connect the cables. Double check the wiring before power on.
1071
1072 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1073
1074 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1075
1076
1077 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1078
1079 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1080
1081
1082 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1083
1084
1085
1086 WSS-07 is designed to support the Dragino Weather station solution.
1087
1088
1089 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1090
1091 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1092
1093
1094 === 6.7.1 Feature ===
1095
1096 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1097
1098
1099 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1100
1101
1102 === 6.7.2 Specification ===
1103
1104 * Input Power: DC 5 ~~ 24v
1105 * Interface: RS485
1106 * Response Spectrum: 400~700nm
1107 * Measure range: 0~2500μmol/m2•s
1108 * Resolution: 1μmol/m2•s
1109 * Accuracy: ±2%
1110 * Yearly Stability: ≤±2%
1111 * Working Temperature: -30℃~75℃
1112 * Working Humidity: 10~90%RH
1113 * Power Consumption: 3mA @ 12v
1114
1115 === 6.7.3 Dimension ===
1116
1117 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1118
1119
1120 === 6.7.4 Pin Mapping ===
1121
1122 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1123
1124
1125 === 6.7.5 Installation Notice ===
1126
1127 Do not power on while connect the cables. Double check the wiring before power on.
1128
1129
1130 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1131
1132 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1133
1134
1135 = 7. FAQ =
1136
1137 == 7.1 What else do I need to purchase to build Weather Station? ==
1138
1139 Below is the installation photo and structure:
1140
1141 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1142
1143
1144 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1145
1146
1147
1148
1149 == 7.2 How to upgrade firmware for WSC1-L? ==
1150
1151 Firmware Location & Change log:
1152
1153 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1154
1155
1156 Firmware Upgrade instruction:
1157
1158 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1159
1160
1161 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1162
1163 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1164
1165
1166
1167 == 7.4 Can I add my weather sensors? ==
1168
1169 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1170
1171
1172 = 8. Trouble Shooting =
1173
1174
1175
1176
1177
1178
1179 = 9. Order Info =
1180
1181
1182 == 9.1 Main Process Unit ==
1183
1184 Part Number: **WSC1-L-XX**
1185
1186 **XX**: The default frequency band
1187
1188 * **AS923**: LoRaWAN AS923 band
1189 * **AU915**: LoRaWAN AU915 band
1190 * **EU433**: LoRaWAN EU433 band
1191 * **EU868**: LoRaWAN EU868 band
1192 * **KR920**: LoRaWAN KR920 band
1193 * **US915**: LoRaWAN US915 band
1194 * **IN865**: LoRaWAN IN865 band
1195 * **CN470**: LoRaWAN CN470 band
1196
1197 == 9.2 Sensors ==
1198
1199 |**Sensor Model**|**Part Number**
1200 |**Rain Gauge**|WSS-01
1201 |**Rain Gauge installation Bracket for Pole**|WS-K2
1202 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1203 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1204 |**Rain/Snow Detect Sensor**|WSS-04
1205 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1206 |**Total Solar Radiation Sensor**|WSS-06
1207 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1208
1209 = 10. Support =
1210
1211 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1212 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1213
1214 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1215
1216
1217
1218
1219
1220 = 11. Appendix I: Field Installation Photo =
1221
1222
1223 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1224
1225
1226 **Storage Battery**: 12v,12AH li battery
1227
1228
1229 Wind Speed/Direction.
1230
1231 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1232
1233
1234 Total Solar Radiation sensor
1235
1236 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1237
1238
1239
1240 PAR Sensor
1241
1242 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1243
1244
1245 CO2/PM2.5/PM10 3 in 1 sensor
1246
1247 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1248
1249
1250 Rain / Snow Detect:
1251
1252 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1253
1254
1255 Rain Gauge.
1256
1257 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]