Version 27.2 by Xiaoling on 2022/06/24 14:14

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %) ** Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70
71
72 (% style="color:red" %)** Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84 == 2.2 How it works? ==
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92
93 [[image:1656042192857-709.png]]
94
95
96 (% style="color:red" %)**Notice:**
97
98 1. WSC1-L will auto scan available weather sensors when power on or reboot.
99 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
100
101
102
103 == 2.3 Example to use for LoRaWAN network ==
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20220624115043-1.jpeg]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 **Add APP EUI in the application.**
125
126 [[image:1656042662694-311.png]]
127
128 [[image:1656042673910-429.png]]
129
130
131
132
133 **Choose Manually to add WSC1-L**
134
135 [[image:1656042695755-103.png]]
136
137
138
139 **Add APP KEY and DEV EUI**
140
141 [[image:1656042723199-746.png]]
142
143
144
145 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159
160
161 === 2.4.1 Uplink FPORT~=5, Device Status ===
162
163 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
164
165
166 (((
167 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
168 )))
169
170 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
171 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
172 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
173
174 [[image:1656043061044-343.png]]
175
176
177 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
178
179
180
181 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
182
183 For WSC1-L, this value is 0x0D.
184
185
186
187 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
188
189 0x0100, Means: v1.0.0 version.
190
191
192
193 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
194
195 *0x01: EU868
196
197 *0x02: US915
198
199 *0x03: IN865
200
201 *0x04: AU915
202
203 *0x05: KZ865
204
205 *0x06: RU864
206
207 *0x07: AS923
208
209 *0x08: AS923-1
210
211 *0x09: AS923-2
212
213 *0x0a: AS923-3
214
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 shows the battery voltage for WSC1-L MCU.
226
227 Ex1: 0x0BD6/1000 = 3.03 V
228
229
230
231 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
232
233 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
234 |Byte3|Byte2|Byte1
235
236 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
237
238 [[image:image-20220624134713-1.png]]
239
240
241 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
242
243 External sensors detected by WSC1-L include :
244
245 custom sensor A1,
246
247 PAR sensor (WSS-07),
248
249 Total Solar Radiation sensor (WSS-06),
250
251 CO2/PM2.5/PM10 (WSS-03),
252
253 Wind Speed/Direction (WSS-02)
254
255
256 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
257
258 (% style="color:#037691" %)**Downlink:0x26 01**
259
260 [[image:1656049673488-415.png]]
261
262
263
264 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
265
266 (((
267 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
268 )))
269
270 (((
271 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
272 )))
273
274
275 (((
276 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
277 )))
278
279
280 (% style="color:#4472c4" %)** Uplink Payload**:
281
282 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
283 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
284
285 (% style="color:#4472c4" %)** Sensor Segment Define**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
288 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
289
290 (% style="color:#4472c4" %)**Sensor Type Table:**
291
292 [[image:image-20220624140352-2.png]]
293
294
295 Below is an example payload:  [[image:image-20220624140615-3.png]]
296
297
298 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
299
300 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
301
302 Uplink 1:  [[image:image-20220624140735-4.png]]
303
304 Uplink 2:  [[image:image-20220624140842-5.png]]
305
306
307 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
308
309 Uplink 1:  [[image:image-20220624141025-6.png]]
310
311 Uplink 2:  [[image:image-20220624141100-7.png]]
312
313
314
315
316 === 2.4.3 Decoder in TTN V3 ===
317
318 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
319
320
321 Download decoder for suitable platform from:
322
323 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
324
325 and put as below:
326
327 [[image:1656051152438-578.png]]
328
329
330
331 == 2.5 Show data on Application Server ==
332
333 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
334
335
336 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
337
338 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
339
340 [[image:1656051197172-131.png]]
341
342
343 **Add TagoIO:**
344
345 [[image:1656051223585-631.png]]
346
347
348 **Authorization:**
349
350 [[image:1656051248318-368.png]]
351
352
353 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
354
355 [[image:1656051277767-168.png]]
356
357
358
359 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
360
361 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
362
363 * AT Command Connection: See [[FAQ>>||anchor="H"]].
364 * LoRaWAN Downlink instruction for different platforms:
365
366 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
367
368
369 There are two kinds of commands to configure WSC1-L, they are:
370
371 * (% style="color:#4472c4" %)**General Commands**.
372
373 These commands are to configure:
374
375 * General system settings like: uplink interval.
376 * LoRaWAN protocol & radio related command.
377
378 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
379
380 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
381
382 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
383
384
385 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
386
387 These commands only valid for WSC1-L, as below:
388
389
390 == 3.1 Set Transmit Interval Time ==
391
392 Feature: Change LoRaWAN End Node Transmit Interval.
393
394 (% style="color:#037691" %)**AT Command: AT+TDC**
395
396 |**Command Example**|**Function**|**Response**
397 |AT+TDC?|Show current transmit Interval|(((
398 30000
399
400 OK
401
402 the interval is 30000ms = 30s
403 )))
404 |AT+TDC=60000|Set Transmit Interval|(((
405 OK
406
407 Set transmit interval to 60000ms = 60 seconds
408 )))
409
410 (% style="color:#037691" %)**Downlink Command: 0x01**
411
412 Format: Command Code (0x01) followed by 3 bytes time value.
413
414 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
415
416 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
417 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
418
419 == 3.2 Set Emergency Mode ==
420
421 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
422
423
424 (% style="color:#037691" %)**AT Command:**
425
426 |**Command Example**|**Function**|**Response**
427 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
428 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
429
430 (% style="color:#037691" %)**Downlink Command:**
431
432 * 0xE101     Same as: AT+ALARMMOD=1
433 * 0xE100     Same as: AT+ALARMMOD=0
434
435 == 3.3 Add or Delete RS485 Sensor ==
436
437 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
438
439 (% style="color:#037691" %)**AT Command: **
440
441 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
442
443 * Type_Code range: A1 ~~ A4
444 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
445 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
446 * Read_Length: RS485 response frame length supposed to receive. Max can receive
447 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
448 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
449 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
450
451 Example:
452
453 User need to change external sensor use the type code as address code.
454
455 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
456
457 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
458 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
459 | | | | | | | |
460
461 The response frame of the sensor is as follows:
462
463 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
464 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
465 | | | | | | | |
466
467 Then the following parameters should be:
468
469 * Address_Code range: A1
470 * Query_Length: 8
471 * Query_Command: A103000000019CAA
472 * Read_Length: 8
473 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
474 * has_CRC: 1
475 * timeout: 1500 (Fill in the test according to the actual situation)
476
477 So the input command is:
478
479 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
480
481
482 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
483
484 |Type Code|Length (Bytes)|Measured Value
485 |A1|2|0x000A
486
487 Related commands:
488
489 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
490
491 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
492
493
494 (% style="color:#037691" %)**Downlink Command:  **
495
496 **delete custom sensor A1:**
497
498 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
499
500 **Remove all custom sensors**
501
502 * 0xE5FF  
503
504 == 3.4 RS485 Test Command ==
505
506 (% style="color:#037691" %)**AT Command:**
507
508 |**Command Example**|**Function**|**Response**
509 |AT+RSWRITE=xxxxxx|(((
510 Send command to 485 sensor
511
512 Range : no more than 10 bytes
513 )))|OK
514
515 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
516
517 AT+RSWRITE=0103000001840A
518
519
520 (% style="color:#037691" %)**Downlink Command:**
521
522 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
523
524 == 3.5 RS485 response timeout ==
525
526 Feature: Set or get extended time to receive 485 sensor data.
527
528 (% style="color:#037691" %)**AT Command:**
529
530 |**Command Example**|**Function**|**Response**
531 |AT+DTR=1000|(((
532 Set response timeout to:
533
534 Range : 0~~10000
535 )))|OK
536
537 (% style="color:#037691" %)**Downlink Command:**
538
539 Format: Command Code (0xE0) followed by 3 bytes time value.
540
541 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
542
543 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
544 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
545
546 == 3.6 Set Sensor Type ==
547
548 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
549
550 See [[definition>>||anchor="H"]] for the sensor type.
551
552
553 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
554 | |A4|A3|A2|A1| | |
555 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
556 | | |Solar Radiation|PAR|PM10|PM2.5|(((
557 Rain
558
559 Gauge
560 )))|(((
561 Air
562
563 Pressure
564 )))
565 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
566 |Humidity|Temperature|CO2|(((
567 Rain/Snow
568
569 Detect
570 )))|illuminance|(((
571 Wind
572
573 Direction
574 )))|Wind Speed|BAT
575
576 (% style="color:#037691" %)**AT Command:**
577
578 |**Command Example**|**Function**|**Response**
579 |AT+STYPE=80221|Set sensor types|OK
580
581 Eg: The setting command **AT+STYPE=802212** means:
582
583 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
584 |0|0|0|0|1|0|0|0
585 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
586 |0|0|0|0|0|0|1|0
587 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
588 |0|0|1|0|0|0|0|1
589
590 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
591
592
593 (% style="color:#037691" %)**Downlink Command:**
594
595 * 0xE400802212     Same as: AT+STYPE=80221
596
597 (% style="color:red" %)**Note:**
598
599 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
600
601
602
603
604
605 = 4. Power consumption and battery =
606
607 == 4.1 Total Power Consumption ==
608
609 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
610
611
612 == 4.2 Reduce power consumption ==
613
614 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
615
616
617
618 == 4.3 Battery ==
619
620 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
621
622
623 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
624
625
626
627 = 5. Main Process Unit WSC1-L =
628
629 == 5.1 Features ==
630
631 * Wall Attachable.
632 * LoRaWAN v1.0.3 Class A protocol.
633 * RS485 / Modbus protocol
634 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
635 * AT Commands to change parameters
636 * Remote configure parameters via LoRaWAN Downlink
637 * Firmware upgradable via program port
638 * Powered by external 12v battery
639 * Back up rechargeable 1000mAh battery
640 * IP Rating: IP65
641 * Support default sensors or 3rd party RS485 sensors
642
643 == 5.2 Power Consumption ==
644
645 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
646
647
648
649 == 5.3 Storage & Operation Temperature ==
650
651 -20°C to +60°C
652
653
654 == 5.4 Pin Mapping ==
655
656 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
657
658
659 == 5.5 Mechanical ==
660
661 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
662
663
664
665
666 == 5.6 Connect to RS485 Sensors ==
667
668 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
669
670
671 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
672
673
674 Hardware Design for the Converter Board please see:
675
676 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
677
678
679
680
681
682 = 6. Weather Sensors =
683
684 == 6.1 Rain Gauge ~-~- WSS-01 ==
685
686 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
687
688
689 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
690
691 shape to make sure it works smoothly and is easy to clean.
692
693
694 WSS-01 is designed to support the Dragino Weather station solution.
695
696 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
697
698 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
699
700
701 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
702
703 to screw up and adjust the bottom horizontally.
704
705
706 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
707
708
709
710 === 6.1.1 Feature ===
711
712 * RS485 Rain Gauge
713 * Small dimension, easy to install
714 * Vents under funnel, avoid leaf or other things to avoid rain flow.
715 * ABS enclosure.
716 * Horizontal adjustable.
717
718 === 6.1.2 Specification ===
719
720 * Resolution: 0.2mm
721 * Accuracy: ±3%
722 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
723 * Input Power: DC 5~~24v
724 * Interface: RS485
725 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
726 * Working Humidity: <100% (no dewing)
727 * Power Consumption: 4mA @ 12v.
728
729 === 6.1.3 Dimension ===
730
731 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
732
733
734 === 6.1.4 Pin Mapping ===
735
736 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
737
738
739
740
741 === 6.1.5 Installation Notice ===
742
743 Do not power on while connect the cables. Double check the wiring before power on.
744
745 Installation Photo as reference:
746
747
748 (% style="color:#4472c4" %)** Install on Ground:**
749
750 WSS-01 Rain Gauge include screws so can install in ground directly .
751
752
753 (% style="color:#4472c4" %)** Install on pole:**
754
755 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
756
757 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
758
759
760 WS-K2: Bracket Kit for Pole installation:
761
762 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
763
764 WSSC-K2 dimension document, please see:
765
766 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
767
768
769
770 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
771
772 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
773
774 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
775
776
777 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
778
779
780 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
781
782 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
783
784
785 === 6.2.1 Feature ===
786
787 * RS485 wind speed / direction sensor
788 * PC enclosure, resist corrosion
789
790 === 6.2.2 Specification ===
791
792 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
793 * Wind direction range: 0 ~~ 360°
794 * Start wind speed: ≤0.3m/s
795 * Accuracy: ±(0.3+0.03V)m/s , ±1°
796 * Input Power: DC 5~~24v
797 * Interface: RS485
798 * Working Temperature: -30℃~70℃
799 * Working Humidity: <100% (no dewing)
800 * Power Consumption: 13mA ~~ 12v.
801 * Cable Length: 2 meters
802
803 === 6.2.3 Dimension ===
804
805 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
806
807
808 === 6.2.4 Pin Mapping ===
809
810 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
811
812
813 === 6.2.4 Angle Mapping ===
814
815 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
816
817
818 === 6.2.5 Installation Notice ===
819
820 Do not power on while connect the cables. Double check the wiring before power on.
821
822
823 The sensor must be installed with below direction, towards North.
824
825
826 |(((
827 North
828 )))
829
830 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
831
832
833
834
835
836
837
838
839 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
840
841 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
842
843
844 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
845
846
847 WSS-03 is designed to support the Dragino Weather station solution.
848
849 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
850
851 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
852
853
854 === 6.3.1 Feature ===
855
856 * RS485 CO2, PM2.5, PM10 sensor
857 * NDIR to measure CO2 with Internal Temperature Compensation
858 * Laser Beam Scattering to PM2.5 and PM10
859
860 === 6.3.2 Specification ===
861
862 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
863 * CO2 resolution: 1ppm
864 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
865 * PM2.5/PM10 resolution: 1μg/m3
866 * Input Power: DC 7 ~~ 24v
867 * Preheat time: 3min
868 * Interface: RS485
869 * Working Temperature:
870 ** CO2: 0℃~50℃;
871 ** PM2.5/PM10: -30 ~~ 50℃
872 * Working Humidity:
873 ** PM2.5/PM10: 15~80%RH (no dewing)
874 ** CO2: 0~95%RH
875 * Power Consumption: 50mA@ 12v.
876
877 === 6.3.3 Dimension ===
878
879 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
880
881
882 === 6.3.4 Pin Mapping ===
883
884 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
885
886
887 === 6.3.5 Installation Notice ===
888
889 Do not power on while connect the cables. Double check the wiring before power on.
890
891 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
892
893 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
894
895
896
897
898
899
900 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
901
902 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
903
904
905 WSS-04 has auto heating feature, this ensures measurement more reliable.
906
907
908 WSS-04 is designed to support the Dragino Weather station solution.
909
910 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
911
912 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
913
914
915
916 === 6.4.1 Feature ===
917
918 * RS485 Rain/Snow detect sensor
919 * Surface heating to dry
920 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
921
922 === 6.4.2 Specification ===
923
924 * Detect if there is rain or snow
925 * Input Power: DC 12 ~~ 24v
926 * Interface: RS485
927 * Working Temperature: -30℃~70℃
928 * Working Humidity: 10~90%RH
929 * Power Consumption:
930 ** No heating: 12mA @ 12v,
931 ** heating: 94ma @ 12v.
932
933 === 6.4.3 Dimension ===
934
935 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
936
937
938 === 6.4.4 Pin Mapping ===
939
940 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
941
942
943 === 6.4.5 Installation Notice ===
944
945 Do not power on while connect the cables. Double check the wiring before power on.
946
947
948 Install with 15°degree.
949
950 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
951
952 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
953
954
955
956
957 === 6.4.6 Heating ===
958
959
960 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
961
962
963
964
965
966 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
967
968 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
969
970
971 WSS-05 is designed to support the Dragino Weather station solution.
972
973 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
974
975 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
976
977
978 === 6.5.1 Feature ===
979
980 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
981
982 === 6.5.2 Specification ===
983
984 * Input Power: DC 12 ~~ 24v
985 * Interface: RS485
986 * Temperature Sensor Spec:
987 ** Range: -30 ~~ 70℃
988 ** resolution 0.1℃
989 ** Accuracy: ±0.5℃
990 * Humidity Sensor Spec:
991 ** Range: 0 ~~ 100% RH
992 ** resolution 0.1 %RH
993 ** Accuracy: 3% RH
994 * Pressure Sensor Spec:
995 ** Range: 10~1100hPa
996 ** Resolution: 0.1hPa
997 ** Accuracy: ±0.1hPa
998 * Illuminate sensor:
999 ** Range: 0~2/20/200kLux
1000 ** Resolution: 10 Lux
1001 ** Accuracy: ±3%FS
1002 * Working Temperature: -30℃~70℃
1003 * Working Humidity: 10~90%RH
1004 * Power Consumption: 4mA @ 12v
1005
1006 === 6.5.3 Dimension ===
1007
1008 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1009
1010
1011 === 6.5.4 Pin Mapping ===
1012
1013 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1014
1015
1016 === 6.5.5 Installation Notice ===
1017
1018 Do not power on while connect the cables. Double check the wiring before power on.
1019
1020
1021
1022 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1023
1024
1025 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1026
1027
1028 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1029
1030 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1031
1032
1033 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1034
1035
1036 WSS-06 is designed to support the Dragino Weather station solution.
1037
1038
1039 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1040
1041 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1042
1043
1044
1045 === 6.6.1 Feature ===
1046
1047 * RS485 Total Solar Radiation sensor
1048 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1049 * Measure Reflected Radiation if sense area towards ground.
1050
1051 === 6.6.2 Specification ===
1052
1053 * Input Power: DC 5 ~~ 24v
1054 * Interface: RS485
1055 * Detect spectrum: 0.3~3μm(300~3000nm)
1056 * Measure strength range: 0~2000W/m2
1057 * Resolution: 0.1W/m2
1058 * Accuracy: ±3%
1059 * Yearly Stability: ≤±2%
1060 * Cosine response: ≤7% (@ Sun angle 10°)
1061 * Temperature Effect: ±2%(-10℃~40℃)
1062 * Working Temperature: -40℃~70℃
1063 * Working Humidity: 10~90%RH
1064 * Power Consumption: 4mA @ 12v
1065
1066 === 6.6.3 Dimension ===
1067
1068 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1069
1070
1071 === 6.6.4 Pin Mapping ===
1072
1073 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1074
1075
1076 === 6.6.5 Installation Notice ===
1077
1078 Do not power on while connect the cables. Double check the wiring before power on.
1079
1080 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1081
1082 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1083
1084
1085 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1086
1087 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1088
1089
1090 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1091
1092
1093
1094 WSS-07 is designed to support the Dragino Weather station solution.
1095
1096
1097 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1098
1099 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1100
1101
1102 === 6.7.1 Feature ===
1103
1104 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1105
1106
1107 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1108
1109
1110 === 6.7.2 Specification ===
1111
1112 * Input Power: DC 5 ~~ 24v
1113 * Interface: RS485
1114 * Response Spectrum: 400~700nm
1115 * Measure range: 0~2500μmol/m2•s
1116 * Resolution: 1μmol/m2•s
1117 * Accuracy: ±2%
1118 * Yearly Stability: ≤±2%
1119 * Working Temperature: -30℃~75℃
1120 * Working Humidity: 10~90%RH
1121 * Power Consumption: 3mA @ 12v
1122
1123 === 6.7.3 Dimension ===
1124
1125 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1126
1127
1128 === 6.7.4 Pin Mapping ===
1129
1130 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1131
1132
1133 === 6.7.5 Installation Notice ===
1134
1135 Do not power on while connect the cables. Double check the wiring before power on.
1136
1137
1138 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1139
1140 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1141
1142
1143 = 7. FAQ =
1144
1145 == 7.1 What else do I need to purchase to build Weather Station? ==
1146
1147 Below is the installation photo and structure:
1148
1149 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1150
1151
1152 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1153
1154
1155
1156
1157 == 7.2 How to upgrade firmware for WSC1-L? ==
1158
1159 Firmware Location & Change log:
1160
1161 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1162
1163
1164 Firmware Upgrade instruction:
1165
1166 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1167
1168
1169 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1170
1171 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1172
1173
1174
1175 == 7.4 Can I add my weather sensors? ==
1176
1177 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1178
1179
1180 = 8. Trouble Shooting =
1181
1182
1183
1184
1185
1186
1187 = 9. Order Info =
1188
1189
1190 == 9.1 Main Process Unit ==
1191
1192 Part Number: **WSC1-L-XX**
1193
1194 **XX**: The default frequency band
1195
1196 * **AS923**: LoRaWAN AS923 band
1197 * **AU915**: LoRaWAN AU915 band
1198 * **EU433**: LoRaWAN EU433 band
1199 * **EU868**: LoRaWAN EU868 band
1200 * **KR920**: LoRaWAN KR920 band
1201 * **US915**: LoRaWAN US915 band
1202 * **IN865**: LoRaWAN IN865 band
1203 * **CN470**: LoRaWAN CN470 band
1204
1205 == 9.2 Sensors ==
1206
1207 |**Sensor Model**|**Part Number**
1208 |**Rain Gauge**|WSS-01
1209 |**Rain Gauge installation Bracket for Pole**|WS-K2
1210 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1211 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1212 |**Rain/Snow Detect Sensor**|WSS-04
1213 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1214 |**Total Solar Radiation Sensor**|WSS-06
1215 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1216
1217 = 10. Support =
1218
1219 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1220 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1221
1222 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1223
1224
1225
1226
1227
1228 = 11. Appendix I: Field Installation Photo =
1229
1230
1231 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1232
1233
1234 **Storage Battery**: 12v,12AH li battery
1235
1236
1237 Wind Speed/Direction.
1238
1239 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1240
1241
1242 Total Solar Radiation sensor
1243
1244 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1245
1246
1247
1248 PAR Sensor
1249
1250 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1251
1252
1253 CO2/PM2.5/PM10 3 in 1 sensor
1254
1255 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1256
1257
1258 Rain / Snow Detect:
1259
1260 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1261
1262
1263 Rain Gauge.
1264
1265 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]