Version 14.5 by Xiaoling on 2022/06/24 13:35

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28
29 )))
30
31 (((
32 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
33 )))
34
35 (((
36
37 )))
38
39 (((
40 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
41 )))
42
43 (((
44
45 )))
46
47 (((
48 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
49 )))
50
51
52
53 = 2. How to use =
54
55 == 2.1 Installation ==
56
57 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
58
59 [[image:1656041948552-849.png]]
60
61
62 (% style="color:blue" %)** Wiring:**
63
64 ~1. WSC1-L and sensors all powered by solar power via MPPT
65
66 2. WSC1-L and sensors connect to each other via RS485/Modbus.
67
68 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
69
70
71 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
72
73 [[image:1656042136605-251.png]]
74
75
76 (% style="color:red" %) ** Notice 1:**
77
78 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
79 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
80 * Weather sensors won’t work if solar panel and storage battery fails.
81
82
83 (% style="color:red" %)** Notice 2:**
84
85 Due to shipment and importation limitation, user is better to purchase below parts locally:
86
87 * Solar Panel
88 * Storage Battery
89 * MPPT Solar Recharger
90 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
91 * Cabinet.
92
93 == 2.2 How it works? ==
94
95 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
96
97
98 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
99
100 [[image:1656042192857-709.png]]
101
102
103 (% style="color:red" %)**Notice:**
104
105 1. WSC1-L will auto scan available weather sensors when power on or reboot.
106 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
107
108
109 == 2.3 Example to use for LoRaWAN network ==
110
111 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
112
113
114 [[image:1656042612899-422.png]]
115
116
117
118 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
119
120
121 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
122
123 Each WSC1-L is shipped with a sticker with the default device EUI as below:
124
125 [[image:image-20220624115043-1.jpeg]]
126
127
128 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152
153
154 [[image:1656042745346-283.png]]
155
156
157
158 == 2.4 Uplink Payload ==
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165
166 === 2.4.1 Uplink FPORT~=5, Device Status ===
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
172
173 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
174 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
175 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
176
177 [[image:1656043061044-343.png]]
178
179
180 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
181
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189
190 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
191
192 0x0100, Means: v1.0.0 version.
193
194
195
196 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
197
198 *0x01: EU868
199
200 *0x02: US915
201
202 *0x03: IN865
203
204 *0x04: AU915
205
206 *0x05: KZ865
207
208 *0x06: RU864
209
210 *0x07: AS923
211
212 *0x08: AS923-1
213
214 *0x09: AS923-2
215
216 *0x0a: AS923-3
217
218
219
220 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
221
222 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
223
224
225
226 ==== (% style="color:#037691" %)**BAT:**(%%) ====
227
228 shows the battery voltage for WSC1-L MCU.
229
230 Ex1: 0x0BD6/1000 = 3.03 V
231
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240
241 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
242 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
243 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
244 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
245 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
246 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263
264
265 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
266
267 (% style="color:#037691" %)**Downlink:0x26 01**
268
269 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
270
271
272
273
274 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
275
276 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
277
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279
280
281 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
282
283 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
284
285 (% style="color:#4472c4" %)** Uplink Payload**:
286
287 |Type Code|Length (Bytes)|Measured Value
288
289 (% style="color:#4472c4" %)** Sensor Segment Define**:
290
291
292
293 Sensor Type Table:
294
295 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
296 |**Wind Speed**|0x01|(((
297 Speed: 0~60m/s
298
299 Level: 0~17
300 )))|0x03 |(((
301 0x0024/10=3.6m/s
302
303 (0x02FE: No Sensor, 0x02FF: Value Error)
304
305 0x02=2
306
307 (0x14: No Sensor, 0x15: Value Error)
308 )))
309 |**Wind Direction**|0x02|(((
310 Angel: 0~360°
311
312 Direction: 16 positions
313 )))|0x03|(((
314 0x029A/10=66.6°
315
316 (0x0EFE: No Sensor,0x0EFF: Value Error)
317
318 0X03=3(ENE)
319
320 (0x14: No Sensor,0x15: Value Error)
321 )))
322 |**Illumination**|0x03|0~200000Lux|0x02|(((
323 0x04D2 *10=12340Lux
324
325 (0x4EFE: No Sensor,0x4EFF: Value Error)
326 )))
327 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
328 0x00 (00) No Rain or snow detected
329
330 (0x02: No Sensor,0x03: Value Error)
331 )))
332 |**CO2**|0x05|0~5000ppm|0x02|(((
333 0x0378=888ppm
334
335 (0x14FE: No Sensor,0x14FF: Value Error)
336 )))
337 |**Temperature**|0x06|-30℃~70℃|0x02|(((
338 0xFFDD/10=-3.5℃
339
340 (0x02FE: No Sensor,0x02FF: Value Error)
341 )))
342 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
343 |**Pressure**|0x08|10~1100hPa|0x02|(((
344 0x2748/10=1005.6hPa
345
346 (0x00: No Sensor,0x01: Value Error)
347 )))
348 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
349 0x0000/10=0mm /min
350
351 (0x03FE: No Sensor,0x03FF: Value Error)
352 )))
353 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
354 0x0023=35μg/m^^3 ^^
355
356 (0x03FE: No Sensor,0x03FF: Value Error)
357 )))
358 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
359 0x002D=45μg/m^^3 ^^
360
361 (0x03FE: No Sensor,0x03FF: Value Error)
362 )))
363 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
364 0x00B3=179μmol/m^^2^^•s
365
366 (0x09FE: No Sensor,0x9FF: Value Error)
367 )))
368 |(((
369 **Total Solar**
370
371 **Radiation**
372 )))|0x0D|0~2000W/m^^2^^|0x02|(((
373 0x0073/10=11.5W/m^^2^^
374
375 (0x4EFE: No Sensor,0x4EFF: Value Error)
376 )))
377
378 Below is an example payload:
379
380 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
381
382
383 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
384
385 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
386
387 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
388
389
390 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
391
392 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
393
394 Uplink 2: 0D 02 00 73
395
396
397
398
399 === 2.4.3 Decoder in TTN V3 ===
400
401 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
402
403
404 Download decoder for suitable platform from:
405
406 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
407
408 and put as below:
409
410 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
411
412
413
414 == 2.5 Show data on Application Server ==
415
416 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
417
418
419 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
420
421 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
422
423 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
424
425
426 Add TagoIO:
427
428 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
429
430 Authorization:
431
432 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
433
434
435 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
436
437 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
438
439
440
441 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
442
443 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
444
445 * AT Command Connection: See [[FAQ>>||anchor="H"]].
446 * LoRaWAN Downlink instruction for different platforms:
447
448 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
449
450
451 There are two kinds of commands to configure WSC1-L, they are:
452
453 * (% style="color:#4472c4" %)**General Commands**.
454
455 These commands are to configure:
456
457 * General system settings like: uplink interval.
458 * LoRaWAN protocol & radio related command.
459
460 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
461
462 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
463
464 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
465
466
467 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
468
469 These commands only valid for WSC1-L, as below:
470
471
472 == 3.1 Set Transmit Interval Time ==
473
474 Feature: Change LoRaWAN End Node Transmit Interval.
475
476 (% style="color:#037691" %)**AT Command: AT+TDC**
477
478 |**Command Example**|**Function**|**Response**
479 |AT+TDC?|Show current transmit Interval|(((
480 30000
481
482 OK
483
484 the interval is 30000ms = 30s
485 )))
486 |AT+TDC=60000|Set Transmit Interval|(((
487 OK
488
489 Set transmit interval to 60000ms = 60 seconds
490 )))
491
492 (% style="color:#037691" %)**Downlink Command: 0x01**
493
494 Format: Command Code (0x01) followed by 3 bytes time value.
495
496 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
497
498 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
499 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
500
501 == 3.2 Set Emergency Mode ==
502
503 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
504
505
506 (% style="color:#037691" %)**AT Command:**
507
508 |**Command Example**|**Function**|**Response**
509 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
510 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
511
512 (% style="color:#037691" %)**Downlink Command:**
513
514 * 0xE101     Same as: AT+ALARMMOD=1
515 * 0xE100     Same as: AT+ALARMMOD=0
516
517 == 3.3 Add or Delete RS485 Sensor ==
518
519 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
520
521 (% style="color:#037691" %)**AT Command: **
522
523 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
524
525 * Type_Code range: A1 ~~ A4
526 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
527 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
528 * Read_Length: RS485 response frame length supposed to receive. Max can receive
529 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
530 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
531 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
532
533 Example:
534
535 User need to change external sensor use the type code as address code.
536
537 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
538
539 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
540 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
541 | | | | | | | |
542
543 The response frame of the sensor is as follows:
544
545 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
546 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
547 | | | | | | | |
548
549 Then the following parameters should be:
550
551 * Address_Code range: A1
552 * Query_Length: 8
553 * Query_Command: A103000000019CAA
554 * Read_Length: 8
555 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
556 * has_CRC: 1
557 * timeout: 1500 (Fill in the test according to the actual situation)
558
559 So the input command is:
560
561 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
562
563
564 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
565
566 |Type Code|Length (Bytes)|Measured Value
567 |A1|2|0x000A
568
569 Related commands:
570
571 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
572
573 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
574
575
576 (% style="color:#037691" %)**Downlink Command:  **
577
578 **delete custom sensor A1:**
579
580 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
581
582 **Remove all custom sensors**
583
584 * 0xE5FF  
585
586 == 3.4 RS485 Test Command ==
587
588 (% style="color:#037691" %)**AT Command:**
589
590 |**Command Example**|**Function**|**Response**
591 |AT+RSWRITE=xxxxxx|(((
592 Send command to 485 sensor
593
594 Range : no more than 10 bytes
595 )))|OK
596
597 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
598
599 AT+RSWRITE=0103000001840A
600
601
602 (% style="color:#037691" %)**Downlink Command:**
603
604 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
605
606 == 3.5 RS485 response timeout ==
607
608 Feature: Set or get extended time to receive 485 sensor data.
609
610 (% style="color:#037691" %)**AT Command:**
611
612 |**Command Example**|**Function**|**Response**
613 |AT+DTR=1000|(((
614 Set response timeout to:
615
616 Range : 0~~10000
617 )))|OK
618
619 (% style="color:#037691" %)**Downlink Command:**
620
621 Format: Command Code (0xE0) followed by 3 bytes time value.
622
623 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
624
625 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
626 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
627
628 == 3.6 Set Sensor Type ==
629
630 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
631
632 See [[definition>>||anchor="H"]] for the sensor type.
633
634
635 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
636 | |A4|A3|A2|A1| | |
637 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
638 | | |Solar Radiation|PAR|PM10|PM2.5|(((
639 Rain
640
641 Gauge
642 )))|(((
643 Air
644
645 Pressure
646 )))
647 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
648 |Humidity|Temperature|CO2|(((
649 Rain/Snow
650
651 Detect
652 )))|illuminance|(((
653 Wind
654
655 Direction
656 )))|Wind Speed|BAT
657
658 (% style="color:#037691" %)**AT Command:**
659
660 |**Command Example**|**Function**|**Response**
661 |AT+STYPE=80221|Set sensor types|OK
662
663 Eg: The setting command **AT+STYPE=802212** means:
664
665 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
666 |0|0|0|0|1|0|0|0
667 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
668 |0|0|0|0|0|0|1|0
669 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
670 |0|0|1|0|0|0|0|1
671
672 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
673
674
675 (% style="color:#037691" %)**Downlink Command:**
676
677 * 0xE400802212     Same as: AT+STYPE=80221
678
679 (% style="color:red" %)**Note:**
680
681 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
682
683
684
685
686
687 = 4. Power consumption and battery =
688
689 == 4.1 Total Power Consumption ==
690
691 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
692
693
694 == 4.2 Reduce power consumption ==
695
696 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
697
698
699
700 == 4.3 Battery ==
701
702 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
703
704
705 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
706
707
708
709 = 5. Main Process Unit WSC1-L =
710
711 == 5.1 Features ==
712
713 * Wall Attachable.
714 * LoRaWAN v1.0.3 Class A protocol.
715 * RS485 / Modbus protocol
716 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
717 * AT Commands to change parameters
718 * Remote configure parameters via LoRaWAN Downlink
719 * Firmware upgradable via program port
720 * Powered by external 12v battery
721 * Back up rechargeable 1000mAh battery
722 * IP Rating: IP65
723 * Support default sensors or 3rd party RS485 sensors
724
725 == 5.2 Power Consumption ==
726
727 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
728
729
730
731 == 5.3 Storage & Operation Temperature ==
732
733 -20°C to +60°C
734
735
736 == 5.4 Pin Mapping ==
737
738 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
739
740
741 == 5.5 Mechanical ==
742
743 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
744
745
746
747
748 == 5.6 Connect to RS485 Sensors ==
749
750 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
751
752
753 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
754
755
756 Hardware Design for the Converter Board please see:
757
758 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
759
760
761
762
763
764 = 6. Weather Sensors =
765
766 == 6.1 Rain Gauge ~-~- WSS-01 ==
767
768 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
769
770
771 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
772
773 shape to make sure it works smoothly and is easy to clean.
774
775
776 WSS-01 is designed to support the Dragino Weather station solution.
777
778 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
779
780 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
781
782
783 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
784
785 to screw up and adjust the bottom horizontally.
786
787
788 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
789
790
791
792 === 6.1.1 Feature ===
793
794 * RS485 Rain Gauge
795 * Small dimension, easy to install
796 * Vents under funnel, avoid leaf or other things to avoid rain flow.
797 * ABS enclosure.
798 * Horizontal adjustable.
799
800 === 6.1.2 Specification ===
801
802 * Resolution: 0.2mm
803 * Accuracy: ±3%
804 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
805 * Input Power: DC 5~~24v
806 * Interface: RS485
807 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
808 * Working Humidity: <100% (no dewing)
809 * Power Consumption: 4mA @ 12v.
810
811 === 6.1.3 Dimension ===
812
813 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
814
815
816 === 6.1.4 Pin Mapping ===
817
818 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
819
820
821
822
823 === 6.1.5 Installation Notice ===
824
825 Do not power on while connect the cables. Double check the wiring before power on.
826
827 Installation Photo as reference:
828
829
830 (% style="color:#4472c4" %)** Install on Ground:**
831
832 WSS-01 Rain Gauge include screws so can install in ground directly .
833
834
835 (% style="color:#4472c4" %)** Install on pole:**
836
837 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
838
839 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
840
841
842 WS-K2: Bracket Kit for Pole installation:
843
844 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
845
846 WSSC-K2 dimension document, please see:
847
848 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
849
850
851
852 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
853
854 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
855
856 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
857
858
859 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
860
861
862 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
863
864 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
865
866
867 === 6.2.1 Feature ===
868
869 * RS485 wind speed / direction sensor
870 * PC enclosure, resist corrosion
871
872 === 6.2.2 Specification ===
873
874 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
875 * Wind direction range: 0 ~~ 360°
876 * Start wind speed: ≤0.3m/s
877 * Accuracy: ±(0.3+0.03V)m/s , ±1°
878 * Input Power: DC 5~~24v
879 * Interface: RS485
880 * Working Temperature: -30℃~70℃
881 * Working Humidity: <100% (no dewing)
882 * Power Consumption: 13mA ~~ 12v.
883 * Cable Length: 2 meters
884
885 === 6.2.3 Dimension ===
886
887 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
888
889
890 === 6.2.4 Pin Mapping ===
891
892 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
893
894
895 === 6.2.4 Angle Mapping ===
896
897 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
898
899
900 === 6.2.5 Installation Notice ===
901
902 Do not power on while connect the cables. Double check the wiring before power on.
903
904
905 The sensor must be installed with below direction, towards North.
906
907
908 |(((
909 North
910 )))
911
912 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
913
914
915
916
917
918
919
920
921 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
922
923 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
924
925
926 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
927
928
929 WSS-03 is designed to support the Dragino Weather station solution.
930
931 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
932
933 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
934
935
936 === 6.3.1 Feature ===
937
938 * RS485 CO2, PM2.5, PM10 sensor
939 * NDIR to measure CO2 with Internal Temperature Compensation
940 * Laser Beam Scattering to PM2.5 and PM10
941
942 === 6.3.2 Specification ===
943
944 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
945 * CO2 resolution: 1ppm
946 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
947 * PM2.5/PM10 resolution: 1μg/m3
948 * Input Power: DC 7 ~~ 24v
949 * Preheat time: 3min
950 * Interface: RS485
951 * Working Temperature:
952 ** CO2: 0℃~50℃;
953 ** PM2.5/PM10: -30 ~~ 50℃
954 * Working Humidity:
955 ** PM2.5/PM10: 15~80%RH (no dewing)
956 ** CO2: 0~95%RH
957 * Power Consumption: 50mA@ 12v.
958
959 === 6.3.3 Dimension ===
960
961 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
962
963
964 === 6.3.4 Pin Mapping ===
965
966 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
967
968
969 === 6.3.5 Installation Notice ===
970
971 Do not power on while connect the cables. Double check the wiring before power on.
972
973 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
974
975 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
976
977
978
979
980
981
982 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
983
984 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
985
986
987 WSS-04 has auto heating feature, this ensures measurement more reliable.
988
989
990 WSS-04 is designed to support the Dragino Weather station solution.
991
992 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
993
994 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
995
996
997
998 === 6.4.1 Feature ===
999
1000 * RS485 Rain/Snow detect sensor
1001 * Surface heating to dry
1002 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1003
1004 === 6.4.2 Specification ===
1005
1006 * Detect if there is rain or snow
1007 * Input Power: DC 12 ~~ 24v
1008 * Interface: RS485
1009 * Working Temperature: -30℃~70℃
1010 * Working Humidity: 10~90%RH
1011 * Power Consumption:
1012 ** No heating: 12mA @ 12v,
1013 ** heating: 94ma @ 12v.
1014
1015 === 6.4.3 Dimension ===
1016
1017 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1018
1019
1020 === 6.4.4 Pin Mapping ===
1021
1022 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1023
1024
1025 === 6.4.5 Installation Notice ===
1026
1027 Do not power on while connect the cables. Double check the wiring before power on.
1028
1029
1030 Install with 15°degree.
1031
1032 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1033
1034 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1035
1036
1037
1038
1039 === 6.4.6 Heating ===
1040
1041
1042 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1043
1044
1045
1046
1047
1048 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1049
1050 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1051
1052
1053 WSS-05 is designed to support the Dragino Weather station solution.
1054
1055 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1056
1057 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1058
1059
1060 === 6.5.1 Feature ===
1061
1062 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1063
1064 === 6.5.2 Specification ===
1065
1066 * Input Power: DC 12 ~~ 24v
1067 * Interface: RS485
1068 * Temperature Sensor Spec:
1069 ** Range: -30 ~~ 70℃
1070 ** resolution 0.1℃
1071 ** Accuracy: ±0.5℃
1072 * Humidity Sensor Spec:
1073 ** Range: 0 ~~ 100% RH
1074 ** resolution 0.1 %RH
1075 ** Accuracy: 3% RH
1076 * Pressure Sensor Spec:
1077 ** Range: 10~1100hPa
1078 ** Resolution: 0.1hPa
1079 ** Accuracy: ±0.1hPa
1080 * Illuminate sensor:
1081 ** Range: 0~2/20/200kLux
1082 ** Resolution: 10 Lux
1083 ** Accuracy: ±3%FS
1084 * Working Temperature: -30℃~70℃
1085 * Working Humidity: 10~90%RH
1086 * Power Consumption: 4mA @ 12v
1087
1088 === 6.5.3 Dimension ===
1089
1090 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1091
1092
1093 === 6.5.4 Pin Mapping ===
1094
1095 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1096
1097
1098 === 6.5.5 Installation Notice ===
1099
1100 Do not power on while connect the cables. Double check the wiring before power on.
1101
1102
1103
1104 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1105
1106
1107 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1108
1109
1110 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1111
1112 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1113
1114
1115 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1116
1117
1118 WSS-06 is designed to support the Dragino Weather station solution.
1119
1120
1121 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1122
1123 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1124
1125
1126
1127 === 6.6.1 Feature ===
1128
1129 * RS485 Total Solar Radiation sensor
1130 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1131 * Measure Reflected Radiation if sense area towards ground.
1132
1133 === 6.6.2 Specification ===
1134
1135 * Input Power: DC 5 ~~ 24v
1136 * Interface: RS485
1137 * Detect spectrum: 0.3~3μm(300~3000nm)
1138 * Measure strength range: 0~2000W/m2
1139 * Resolution: 0.1W/m2
1140 * Accuracy: ±3%
1141 * Yearly Stability: ≤±2%
1142 * Cosine response: ≤7% (@ Sun angle 10°)
1143 * Temperature Effect: ±2%(-10℃~40℃)
1144 * Working Temperature: -40℃~70℃
1145 * Working Humidity: 10~90%RH
1146 * Power Consumption: 4mA @ 12v
1147
1148 === 6.6.3 Dimension ===
1149
1150 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1151
1152
1153 === 6.6.4 Pin Mapping ===
1154
1155 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1156
1157
1158 === 6.6.5 Installation Notice ===
1159
1160 Do not power on while connect the cables. Double check the wiring before power on.
1161
1162 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1163
1164 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1165
1166
1167 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1168
1169 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1170
1171
1172 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1173
1174
1175
1176 WSS-07 is designed to support the Dragino Weather station solution.
1177
1178
1179 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1180
1181 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1182
1183
1184 === 6.7.1 Feature ===
1185
1186 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1187
1188
1189 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1190
1191
1192 === 6.7.2 Specification ===
1193
1194 * Input Power: DC 5 ~~ 24v
1195 * Interface: RS485
1196 * Response Spectrum: 400~700nm
1197 * Measure range: 0~2500μmol/m2•s
1198 * Resolution: 1μmol/m2•s
1199 * Accuracy: ±2%
1200 * Yearly Stability: ≤±2%
1201 * Working Temperature: -30℃~75℃
1202 * Working Humidity: 10~90%RH
1203 * Power Consumption: 3mA @ 12v
1204
1205 === 6.7.3 Dimension ===
1206
1207 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1208
1209
1210 === 6.7.4 Pin Mapping ===
1211
1212 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1213
1214
1215 === 6.7.5 Installation Notice ===
1216
1217 Do not power on while connect the cables. Double check the wiring before power on.
1218
1219
1220 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1221
1222 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1223
1224
1225 = 7. FAQ =
1226
1227 == 7.1 What else do I need to purchase to build Weather Station? ==
1228
1229 Below is the installation photo and structure:
1230
1231 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1232
1233
1234 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1235
1236
1237
1238
1239 == 7.2 How to upgrade firmware for WSC1-L? ==
1240
1241 Firmware Location & Change log:
1242
1243 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1244
1245
1246 Firmware Upgrade instruction:
1247
1248 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1249
1250
1251 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1252
1253 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1254
1255
1256
1257 == 7.4 Can I add my weather sensors? ==
1258
1259 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1260
1261
1262 = 8. Trouble Shooting =
1263
1264
1265
1266
1267
1268
1269 = 9. Order Info =
1270
1271
1272 == 9.1 Main Process Unit ==
1273
1274 Part Number: **WSC1-L-XX**
1275
1276 **XX**: The default frequency band
1277
1278 * **AS923**: LoRaWAN AS923 band
1279 * **AU915**: LoRaWAN AU915 band
1280 * **EU433**: LoRaWAN EU433 band
1281 * **EU868**: LoRaWAN EU868 band
1282 * **KR920**: LoRaWAN KR920 band
1283 * **US915**: LoRaWAN US915 band
1284 * **IN865**: LoRaWAN IN865 band
1285 * **CN470**: LoRaWAN CN470 band
1286
1287 == 9.2 Sensors ==
1288
1289 |**Sensor Model**|**Part Number**
1290 |**Rain Gauge**|WSS-01
1291 |**Rain Gauge installation Bracket for Pole**|WS-K2
1292 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1293 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1294 |**Rain/Snow Detect Sensor**|WSS-04
1295 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1296 |**Total Solar Radiation Sensor**|WSS-06
1297 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1298
1299 = 10. Support =
1300
1301 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1302 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1303
1304 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1305
1306
1307
1308
1309
1310 = 11. Appendix I: Field Installation Photo =
1311
1312
1313 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1314
1315
1316 **Storage Battery**: 12v,12AH li battery
1317
1318
1319 Wind Speed/Direction.
1320
1321 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1322
1323
1324 Total Solar Radiation sensor
1325
1326 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1327
1328
1329
1330 PAR Sensor
1331
1332 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1333
1334
1335 CO2/PM2.5/PM10 3 in 1 sensor
1336
1337 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1338
1339
1340 Rain / Snow Detect:
1341
1342 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1343
1344
1345 Rain Gauge.
1346
1347 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]