Version 13.3 by Xiaoling on 2022/06/24 11:52

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28
29 )))
30
31 (((
32 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
33 )))
34
35 (((
36
37 )))
38
39 (((
40 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
41 )))
42
43 (((
44
45 )))
46
47 (((
48 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
49 )))
50
51
52
53 = 2. How to use =
54
55 == 2.1 Installation ==
56
57 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
58
59 [[image:1656041948552-849.png]]
60
61
62 (% style="color:blue" %)** Wiring:**
63
64 ~1. WSC1-L and sensors all powered by solar power via MPPT
65
66 2. WSC1-L and sensors connect to each other via RS485/Modbus.
67
68 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
69
70
71 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
72
73 [[image:1656042136605-251.png]]
74
75
76 (% style="color:red" %) ** Notice 1:**
77
78 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
79 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
80 * Weather sensors won’t work if solar panel and storage battery fails.
81
82
83
84
85 (% style="color:red" %)** Notice 2:**
86
87 Due to shipment and importation limitation, user is better to purchase below parts locally:
88
89 * Solar Panel
90 * Storage Battery
91 * MPPT Solar Recharger
92 * Mounting Kit includes pole and mast assembly. Each weather sensor has it’s own mounting assembly, user can check the sensor section in this manual.
93 * Cabinet.
94
95 == 2.2 How it works? ==
96
97 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
98
99
100 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
101
102 [[image:1656042192857-709.png]]
103
104
105 (% style="color:red" %)**Notice:**
106
107 1. WSC1-L will auto scan available weather sensors when power on or reboot.
108 1. User can send a downlink command to WSC1-L to do a re-scan on the available sensors.
109
110
111
112
113 == 2.3 Example to use for LoRaWAN network ==
114
115 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
116
117
118 [[image:1656042612899-422.png]]
119
120
121
122 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
123
124
125 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
126
127 Each WSC1-L is shipped with a sticker with the default device EUI as below:
128
129 [[image:image-20220624115043-1.jpeg]]
130
131
132 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
133
134 **Add APP EUI in the application.**
135
136 [[image:1656042662694-311.png]]
137
138 [[image:1656042673910-429.png]]
139
140
141
142
143 **Choose Manually to add WSC1-L**
144
145 [[image:1656042695755-103.png]]
146
147
148
149 **Add APP KEY and DEV EUI**
150
151 [[image:1656042723199-746.png]]
152
153
154
155 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
156
157
158 [[image:1656042745346-283.png]]
159
160
161
162 == 2.4 Uplink Payload ==
163
164 Uplink payloads include two types: Valid Sensor Value and other status / control command.
165
166 * Valid Sensor Value: Use FPORT=2
167 * Other control command: Use FPORT other than 2.
168
169
170
171
172 === 2.4.1 Uplink FPORT~=5, Device Status ===
173
174 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
175
176
177 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
178
179 |**Size (bytes)**|**1**|**2**|**1**|**1**|**2**|**3**
180 |**Value**|[[Sensor Model>>||anchor="HSensorModel:"]]|[[Firmware Version>>||anchor="HFirmwareVersion:"]]|[[Frequency Band>>||anchor="HFrequencyBand:"]]|[[Sub-band>>||anchor="HSub-Band:"]]|[[BAT>>||anchor="HBAT:"]]|[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194
195 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
196
197 0x0100, Means: v1.0.0 version.
198
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224
225 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233 shows the battery voltage for WSC1-L MCU.
234
235 Ex1: 0x0BD6/1000 = 3.03 V
236
237
238
239 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
240
241 |Byte3|Byte2|Byte1
242
243 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
244
245
246 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
247 |N/A|Customize-A4|Customize-A3|Customize-A2|Customize-A1|N/A|N/A|N/A
248 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
249 |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A
250 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
251 |WSS-07|WSS-06|WSS-05|WSS-04|WSS-03|WSS-02|WSS-01|N/A
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268
269
270 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
271
272 (% style="color:#037691" %)**Downlink:0x26 01**
273
274 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image012.png||alt="1646898147(1)"]]
275
276
277
278
279 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
280
281 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H"]].
282
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284
285
286 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
287
288 |Sensor Segment 1|Sensor Segment 2|……|Sensor Segment n
289
290 (% style="color:#4472c4" %)** Uplink Payload**:
291
292 |Type Code|Length (Bytes)|Measured Value
293
294 (% style="color:#4472c4" %)** Sensor Segment Define**:
295
296
297
298 Sensor Type Table:
299
300 |**Sensor Type**|**Type Code**|**Range**|**Length ( Bytes)**|**Example**
301 |**Wind Speed**|0x01|(((
302 Speed: 0~60m/s
303
304 Level: 0~17
305 )))|0x03 |(((
306 0x0024/10=3.6m/s
307
308 (0x02FE: No Sensor, 0x02FF: Value Error)
309
310 0x02=2
311
312 (0x14: No Sensor, 0x15: Value Error)
313 )))
314 |**Wind Direction**|0x02|(((
315 Angel: 0~360°
316
317 Direction: 16 positions
318 )))|0x03|(((
319 0x029A/10=66.6°
320
321 (0x0EFE: No Sensor,0x0EFF: Value Error)
322
323 0X03=3(ENE)
324
325 (0x14: No Sensor,0x15: Value Error)
326 )))
327 |**Illumination**|0x03|0~200000Lux|0x02|(((
328 0x04D2 *10=12340Lux
329
330 (0x4EFE: No Sensor,0x4EFF: Value Error)
331 )))
332 |**Rain / Snow**|0x04|00: No, 01 Yes.|0x01|(((
333 0x00 (00) No Rain or snow detected
334
335 (0x02: No Sensor,0x03: Value Error)
336 )))
337 |**CO2**|0x05|0~5000ppm|0x02|(((
338 0x0378=888ppm
339
340 (0x14FE: No Sensor,0x14FF: Value Error)
341 )))
342 |**Temperature**|0x06|-30℃~70℃|0x02|(((
343 0xFFDD/10=-3.5℃
344
345 (0x02FE: No Sensor,0x02FF: Value Error)
346 )))
347 |**Humidity**|0x07|0~100%RH|0x02|0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
348 |**Pressure**|0x08|10~1100hPa|0x02|(((
349 0x2748/10=1005.6hPa
350
351 (0x00: No Sensor,0x01: Value Error)
352 )))
353 |**Rain Gauge**|0x09|0mm/min~100mm/min|0x02|(((
354 0x0000/10=0mm /min
355
356 (0x03FE: No Sensor,0x03FF: Value Error)
357 )))
358 |**PM2.5**|0x0A|0~1000μg/m^^3^^|0x02|(((
359 0x0023=35μg/m^^3 ^^
360
361 (0x03FE: No Sensor,0x03FF: Value Error)
362 )))
363 |**PM10**|0x0B|0~1000μg/m^^3^^|0x02|(((
364 0x002D=45μg/m^^3 ^^
365
366 (0x03FE: No Sensor,0x03FF: Value Error)
367 )))
368 |**PAR**|0x0C|0~2500μmol/m^^2^^•s|0x02|(((
369 0x00B3=179μmol/m^^2^^•s
370
371 (0x09FE: No Sensor,0x9FF: Value Error)
372 )))
373 |(((
374 **Total Solar**
375
376 **Radiation**
377 )))|0x0D|0~2000W/m^^2^^|0x02|(((
378 0x0073/10=11.5W/m^^2^^
379
380 (0x4EFE: No Sensor,0x4EFF: Value Error)
381 )))
382
383 Below is an example payload:
384
385 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
386
387
388 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
389
390 * When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink. Uplink 1: 01 03 00 14 02 02 03 02 C9 03
391
392 Uplink 2: 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3 0D 02 00 73
393
394
395 * When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
396
397 Uplink 1: 01 03 00 14 02 02 03 02 C9 03 03 02 11 90 04 02 00 0A 05 02 02 1C 06 02 00 FA 07 02 02 62 08 02 27 63 09 02 00 00 0A 02 00 23 0B 02 00 2D 0C 02 00 B3
398
399 Uplink 2: 0D 02 00 73
400
401
402
403
404 === 2.4.3 Decoder in TTN V3 ===
405
406 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
407
408
409 Download decoder for suitable platform from:
410
411 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
412
413 and put as below:
414
415 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png]]
416
417
418
419 == 2.5 Show data on Application Server ==
420
421 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
422
423
424 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
425
426 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
427
428 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image014.png]]
429
430
431 Add TagoIO:
432
433 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.png]]
434
435 Authorization:
436
437 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image016.png]]
438
439
440 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
441
442 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.png]]
443
444
445
446 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
447
448 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
449
450 * AT Command Connection: See [[FAQ>>||anchor="H"]].
451 * LoRaWAN Downlink instruction for different platforms:
452
453 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server>>url:http://wiki.dragino.com/index.php?title=Main_Page#Use_Note_for_Server]]
454
455
456 There are two kinds of commands to configure WSC1-L, they are:
457
458 * (% style="color:#4472c4" %)**General Commands**.
459
460 These commands are to configure:
461
462 * General system settings like: uplink interval.
463 * LoRaWAN protocol & radio related command.
464
465 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:
466
467 [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_Downlink_Command>>url:http://wiki.dragino.com/index.php?title=End_Device_Downlink_Command]]
468
469 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
470
471
472 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
473
474 These commands only valid for WSC1-L, as below:
475
476
477 == 3.1 Set Transmit Interval Time ==
478
479 Feature: Change LoRaWAN End Node Transmit Interval.
480
481 (% style="color:#037691" %)**AT Command: AT+TDC**
482
483 |**Command Example**|**Function**|**Response**
484 |AT+TDC?|Show current transmit Interval|(((
485 30000
486
487 OK
488
489 the interval is 30000ms = 30s
490 )))
491 |AT+TDC=60000|Set Transmit Interval|(((
492 OK
493
494 Set transmit interval to 60000ms = 60 seconds
495 )))
496
497 (% style="color:#037691" %)**Downlink Command: 0x01**
498
499 Format: Command Code (0x01) followed by 3 bytes time value.
500
501 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
502
503 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
504 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
505
506 == 3.2 Set Emergency Mode ==
507
508 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
509
510
511 (% style="color:#037691" %)**AT Command:**
512
513 |**Command Example**|**Function**|**Response**
514 |AT+ALARMMOD=1|Enter emergency mode. Uplink every 1 minute|OK
515 |AT+ALARMMOD=0|Exit emergency mode. Uplink base on TDC time|OK
516
517 (% style="color:#037691" %)**Downlink Command:**
518
519 * 0xE101     Same as: AT+ALARMMOD=1
520 * 0xE100     Same as: AT+ALARMMOD=0
521
522 == 3.3 Add or Delete RS485 Sensor ==
523
524 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
525
526 (% style="color:#037691" %)**AT Command: **
527
528 AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout
529
530 * Type_Code range: A1 ~~ A4
531 * Query_Length: RS485 Query frame length, Value cannot be greater than 10
532 * Query_Command: RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
533 * Read_Length: RS485 response frame length supposed to receive. Max can receive
534 * Valid_Data: valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
535 * has_CRC: RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
536 * timeout: RS485 receive timeout (uint:ms). Device will close receive window after timeout
537
538 Example:
539
540 User need to change external sensor use the type code as address code.
541
542 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
543
544 |Address Code|Function Code|(% colspan="2" %)Start Register|(% colspan="2" %)Data Length|CRC Check Low|CRC Check High
545 |0xA1|0x03|0x00|0x00|0x00|0x01|0x9C|0xAA
546 | | | | | | | |
547
548 The response frame of the sensor is as follows:
549
550 |Address Code|Function Code|(% colspan="2" %)Data Length|(% colspan="2" %)Data|CRC Check Low|CRC Check High
551 |0xA1|0x03|0x00|0x02|0x00|0x0A|0x7C|0xAD
552 | | | | | | | |
553
554 Then the following parameters should be:
555
556 * Address_Code range: A1
557 * Query_Length: 8
558 * Query_Command: A103000000019CAA
559 * Read_Length: 8
560 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
561 * has_CRC: 1
562 * timeout: 1500 (Fill in the test according to the actual situation)
563
564 So the input command is:
565
566 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
567
568
569 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
570
571 |Type Code|Length (Bytes)|Measured Value
572 |A1|2|0x000A
573
574 Related commands:
575
576 AT+DYSENSOR=A1,0 –> Delete 3^^rd^^ party sensor A1.
577
578 AT+DYSENSOR ~-~-> List All 3^^rd^^ Party Sensor. Like below:
579
580
581 (% style="color:#037691" %)**Downlink Command:  **
582
583 **delete custom sensor A1:**
584
585 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
586
587 **Remove all custom sensors**
588
589 * 0xE5FF  
590
591 == 3.4 RS485 Test Command ==
592
593 (% style="color:#037691" %)**AT Command:**
594
595 |**Command Example**|**Function**|**Response**
596 |AT+RSWRITE=xxxxxx|(((
597 Send command to 485 sensor
598
599 Range : no more than 10 bytes
600 )))|OK
601
602 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
603
604 AT+RSWRITE=0103000001840A
605
606
607 (% style="color:#037691" %)**Downlink Command:**
608
609 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
610
611 == 3.5 RS485 response timeout ==
612
613 Feature: Set or get extended time to receive 485 sensor data.
614
615 (% style="color:#037691" %)**AT Command:**
616
617 |**Command Example**|**Function**|**Response**
618 |AT+DTR=1000|(((
619 Set response timeout to:
620
621 Range : 0~~10000
622 )))|OK
623
624 (% style="color:#037691" %)**Downlink Command:**
625
626 Format: Command Code (0xE0) followed by 3 bytes time value.
627
628 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
629
630 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
631 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
632
633 == 3.6 Set Sensor Type ==
634
635 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
636
637 See [[definition>>||anchor="H"]] for the sensor type.
638
639
640 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
641 | |A4|A3|A2|A1| | |
642 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
643 | | |Solar Radiation|PAR|PM10|PM2.5|(((
644 Rain
645
646 Gauge
647 )))|(((
648 Air
649
650 Pressure
651 )))
652 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
653 |Humidity|Temperature|CO2|(((
654 Rain/Snow
655
656 Detect
657 )))|illuminance|(((
658 Wind
659
660 Direction
661 )))|Wind Speed|BAT
662
663 (% style="color:#037691" %)**AT Command:**
664
665 |**Command Example**|**Function**|**Response**
666 |AT+STYPE=80221|Set sensor types|OK
667
668 Eg: The setting command **AT+STYPE=802212** means:
669
670 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
671 |0|0|0|0|1|0|0|0
672 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
673 |0|0|0|0|0|0|1|0
674 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
675 |0|0|1|0|0|0|0|1
676
677 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
678
679
680 (% style="color:#037691" %)**Downlink Command:**
681
682 * 0xE400802212     Same as: AT+STYPE=80221
683
684 (% style="color:red" %)**Note:**
685
686 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned
687
688
689
690
691
692 = 4. Power consumption and battery =
693
694 == 4.1 Total Power Consumption ==
695
696 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
697
698
699 == 4.2 Reduce power consumption ==
700
701 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
702
703
704
705 == 4.3 Battery ==
706
707 All sensors are only power by external power source. If external power source is off. All sensor won’t work.
708
709
710 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
711
712
713
714 = 5. Main Process Unit WSC1-L =
715
716 == 5.1 Features ==
717
718 * Wall Attachable.
719 * LoRaWAN v1.0.3 Class A protocol.
720 * RS485 / Modbus protocol
721 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
722 * AT Commands to change parameters
723 * Remote configure parameters via LoRaWAN Downlink
724 * Firmware upgradable via program port
725 * Powered by external 12v battery
726 * Back up rechargeable 1000mAh battery
727 * IP Rating: IP65
728 * Support default sensors or 3rd party RS485 sensors
729
730 == 5.2 Power Consumption ==
731
732 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
733
734
735
736 == 5.3 Storage & Operation Temperature ==
737
738 -20°C to +60°C
739
740
741 == 5.4 Pin Mapping ==
742
743 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.png]]
744
745
746 == 5.5 Mechanical ==
747
748 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
749
750
751
752
753 == 5.6 Connect to RS485 Sensors ==
754
755 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
756
757
758 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image018.png]]
759
760
761 Hardware Design for the Converter Board please see:
762
763 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
764
765
766
767
768
769 = 6. Weather Sensors =
770
771 == 6.1 Rain Gauge ~-~- WSS-01 ==
772
773 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
774
775
776 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline
777
778 shape to make sure it works smoothly and is easy to clean.
779
780
781 WSS-01 is designed to support the Dragino Weather station solution.
782
783 Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main
784
785 processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
786
787
788 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs
789
790 to screw up and adjust the bottom horizontally.
791
792
793 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
794
795
796
797 === 6.1.1 Feature ===
798
799 * RS485 Rain Gauge
800 * Small dimension, easy to install
801 * Vents under funnel, avoid leaf or other things to avoid rain flow.
802 * ABS enclosure.
803 * Horizontal adjustable.
804
805 === 6.1.2 Specification ===
806
807 * Resolution: 0.2mm
808 * Accuracy: ±3%
809 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
810 * Input Power: DC 5~~24v
811 * Interface: RS485
812 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
813 * Working Humidity: <100% (no dewing)
814 * Power Consumption: 4mA @ 12v.
815
816 === 6.1.3 Dimension ===
817
818 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.jpg||alt="c2d3aee592ccc873bea6dd891451df2"]]
819
820
821 === 6.1.4 Pin Mapping ===
822
823 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
824
825
826
827
828 === 6.1.5 Installation Notice ===
829
830 Do not power on while connect the cables. Double check the wiring before power on.
831
832 Installation Photo as reference:
833
834
835 (% style="color:#4472c4" %)** Install on Ground:**
836
837 WSS-01 Rain Gauge include screws so can install in ground directly .
838
839
840 (% style="color:#4472c4" %)** Install on pole:**
841
842 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
843
844 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
845
846
847 WS-K2: Bracket Kit for Pole installation:
848
849 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
850
851 WSSC-K2 dimension document, please see:
852
853 https:~/~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/ 
854
855
856
857 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
858
859 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
860
861 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
862
863
864 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
865
866
867 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main
868
869 processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
870
871
872 === 6.2.1 Feature ===
873
874 * RS485 wind speed / direction sensor
875 * PC enclosure, resist corrosion
876
877 === 6.2.2 Specification ===
878
879 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
880 * Wind direction range: 0 ~~ 360°
881 * Start wind speed: ≤0.3m/s
882 * Accuracy: ±(0.3+0.03V)m/s , ±1°
883 * Input Power: DC 5~~24v
884 * Interface: RS485
885 * Working Temperature: -30℃~70℃
886 * Working Humidity: <100% (no dewing)
887 * Power Consumption: 13mA ~~ 12v.
888 * Cable Length: 2 meters
889
890 === 6.2.3 Dimension ===
891
892 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.jpg]][[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
893
894
895 === 6.2.4 Pin Mapping ===
896
897 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
898
899
900 === 6.2.4 Angle Mapping ===
901
902 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
903
904
905 === 6.2.5 Installation Notice ===
906
907 Do not power on while connect the cables. Double check the wiring before power on.
908
909
910 The sensor must be installed with below direction, towards North.
911
912
913 |(((
914 North
915 )))
916
917 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
918
919
920
921
922
923
924
925
926 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
927
928 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
929
930
931 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
932
933
934 WSS-03 is designed to support the Dragino Weather station solution.
935
936 Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main
937
938 processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
939
940
941 === 6.3.1 Feature ===
942
943 * RS485 CO2, PM2.5, PM10 sensor
944 * NDIR to measure CO2 with Internal Temperature Compensation
945 * Laser Beam Scattering to PM2.5 and PM10
946
947 === 6.3.2 Specification ===
948
949 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
950 * CO2 resolution: 1ppm
951 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
952 * PM2.5/PM10 resolution: 1μg/m3
953 * Input Power: DC 7 ~~ 24v
954 * Preheat time: 3min
955 * Interface: RS485
956 * Working Temperature:
957 ** CO2: 0℃~50℃;
958 ** PM2.5/PM10: -30 ~~ 50℃
959 * Working Humidity:
960 ** PM2.5/PM10: 15~80%RH (no dewing)
961 ** CO2: 0~95%RH
962 * Power Consumption: 50mA@ 12v.
963
964 === 6.3.3 Dimension ===
965
966 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
967
968
969 === 6.3.4 Pin Mapping ===
970
971 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
972
973
974 === 6.3.5 Installation Notice ===
975
976 Do not power on while connect the cables. Double check the wiring before power on.
977
978 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
979
980 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
981
982
983
984
985
986
987 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
988
989 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
990
991
992 WSS-04 has auto heating feature, this ensures measurement more reliable.
993
994
995 WSS-04 is designed to support the Dragino Weather station solution.
996
997 Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main
998
999 processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1000
1001
1002
1003 === 6.4.1 Feature ===
1004
1005 * RS485 Rain/Snow detect sensor
1006 * Surface heating to dry
1007 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1008
1009 === 6.4.2 Specification ===
1010
1011 * Detect if there is rain or snow
1012 * Input Power: DC 12 ~~ 24v
1013 * Interface: RS485
1014 * Working Temperature: -30℃~70℃
1015 * Working Humidity: 10~90%RH
1016 * Power Consumption:
1017 ** No heating: 12mA @ 12v,
1018 ** heating: 94ma @ 12v.
1019
1020 === 6.4.3 Dimension ===
1021
1022 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]]
1023
1024
1025 === 6.4.4 Pin Mapping ===
1026
1027 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1028
1029
1030 === 6.4.5 Installation Notice ===
1031
1032 Do not power on while connect the cables. Double check the wiring before power on.
1033
1034
1035 Install with 15°degree.
1036
1037 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1038
1039 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]]
1040
1041
1042
1043
1044 === 6.4.6 Heating ===
1045
1046
1047 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1048
1049
1050
1051
1052
1053 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1054
1055 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1056
1057
1058 WSS-05 is designed to support the Dragino Weather station solution.
1059
1060 Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main
1061
1062 processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1063
1064
1065 === 6.5.1 Feature ===
1066
1067 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1068
1069 === 6.5.2 Specification ===
1070
1071 * Input Power: DC 12 ~~ 24v
1072 * Interface: RS485
1073 * Temperature Sensor Spec:
1074 ** Range: -30 ~~ 70℃
1075 ** resolution 0.1℃
1076 ** Accuracy: ±0.5℃
1077 * Humidity Sensor Spec:
1078 ** Range: 0 ~~ 100% RH
1079 ** resolution 0.1 %RH
1080 ** Accuracy: 3% RH
1081 * Pressure Sensor Spec:
1082 ** Range: 10~1100hPa
1083 ** Resolution: 0.1hPa
1084 ** Accuracy: ±0.1hPa
1085 * Illuminate sensor:
1086 ** Range: 0~2/20/200kLux
1087 ** Resolution: 10 Lux
1088 ** Accuracy: ±3%FS
1089 * Working Temperature: -30℃~70℃
1090 * Working Humidity: 10~90%RH
1091 * Power Consumption: 4mA @ 12v
1092
1093 === 6.5.3 Dimension ===
1094
1095 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.jpg]]
1096
1097
1098 === 6.5.4 Pin Mapping ===
1099
1100 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1101
1102
1103 === 6.5.5 Installation Notice ===
1104
1105 Do not power on while connect the cables. Double check the wiring before power on.
1106
1107
1108
1109 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]]
1110
1111
1112 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1113
1114
1115 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1116
1117 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1118
1119
1120 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1121
1122
1123 WSS-06 is designed to support the Dragino Weather station solution.
1124
1125
1126 Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main
1127
1128 processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1129
1130
1131
1132 === 6.6.1 Feature ===
1133
1134 * RS485 Total Solar Radiation sensor
1135 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1136 * Measure Reflected Radiation if sense area towards ground.
1137
1138 === 6.6.2 Specification ===
1139
1140 * Input Power: DC 5 ~~ 24v
1141 * Interface: RS485
1142 * Detect spectrum: 0.3~3μm(300~3000nm)
1143 * Measure strength range: 0~2000W/m2
1144 * Resolution: 0.1W/m2
1145 * Accuracy: ±3%
1146 * Yearly Stability: ≤±2%
1147 * Cosine response: ≤7% (@ Sun angle 10°)
1148 * Temperature Effect: ±2%(-10℃~40℃)
1149 * Working Temperature: -40℃~70℃
1150 * Working Humidity: 10~90%RH
1151 * Power Consumption: 4mA @ 12v
1152
1153 === 6.6.3 Dimension ===
1154
1155 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1156
1157
1158 === 6.6.4 Pin Mapping ===
1159
1160 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1161
1162
1163 === 6.6.5 Installation Notice ===
1164
1165 Do not power on while connect the cables. Double check the wiring before power on.
1166
1167 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1168
1169 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1170
1171
1172 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1173
1174 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1175
1176
1177 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1178
1179
1180
1181 WSS-07 is designed to support the Dragino Weather station solution.
1182
1183
1184 Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main
1185
1186 processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1187
1188
1189 === 6.7.1 Feature ===
1190
1191 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light’s Photosynthetically Available Radiation.
1192
1193
1194 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1195
1196
1197 === 6.7.2 Specification ===
1198
1199 * Input Power: DC 5 ~~ 24v
1200 * Interface: RS485
1201 * Response Spectrum: 400~700nm
1202 * Measure range: 0~2500μmol/m2•s
1203 * Resolution: 1μmol/m2•s
1204 * Accuracy: ±2%
1205 * Yearly Stability: ≤±2%
1206 * Working Temperature: -30℃~75℃
1207 * Working Humidity: 10~90%RH
1208 * Power Consumption: 3mA @ 12v
1209
1210 === 6.7.3 Dimension ===
1211
1212 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1213
1214
1215 === 6.7.4 Pin Mapping ===
1216
1217 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
1218
1219
1220 === 6.7.5 Installation Notice ===
1221
1222 Do not power on while connect the cables. Double check the wiring before power on.
1223
1224
1225 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image037.png]]
1226
1227 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image038.png]]
1228
1229
1230 = 7. FAQ =
1231
1232 == 7.1 What else do I need to purchase to build Weather Station? ==
1233
1234 Below is the installation photo and structure:
1235
1236 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.png]]
1237
1238
1239 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image039.png]]
1240
1241
1242
1243
1244 == 7.2 How to upgrade firmware for WSC1-L? ==
1245
1246 Firmware Location & Change log:
1247
1248 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1249
1250
1251 Firmware Upgrade instruction:
1252
1253 [[https:~~/~~/wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List>>url:https://wiki.dragino.com/index.php?title=Firmware_Upgrade_Instruction_for_STM32_base_products#Hardware_Upgrade_Method_Support_List]]
1254
1255
1256 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1257
1258 User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.
1259
1260
1261
1262 == 7.4 Can I add my weather sensors? ==
1263
1264 Yes, connect the sensor to RS485 bus and see instruction: [[add sensors.>>path:#Add_sensor]]
1265
1266
1267 = 8. Trouble Shooting =
1268
1269
1270
1271
1272
1273
1274 = 9. Order Info =
1275
1276
1277 == 9.1 Main Process Unit ==
1278
1279 Part Number: **WSC1-L-XX**
1280
1281 **XX**: The default frequency band
1282
1283 * **AS923**: LoRaWAN AS923 band
1284 * **AU915**: LoRaWAN AU915 band
1285 * **EU433**: LoRaWAN EU433 band
1286 * **EU868**: LoRaWAN EU868 band
1287 * **KR920**: LoRaWAN KR920 band
1288 * **US915**: LoRaWAN US915 band
1289 * **IN865**: LoRaWAN IN865 band
1290 * **CN470**: LoRaWAN CN470 band
1291
1292 == 9.2 Sensors ==
1293
1294 |**Sensor Model**|**Part Number**
1295 |**Rain Gauge**|WSS-01
1296 |**Rain Gauge installation Bracket for Pole**|WS-K2
1297 |**Wind Speed Direction 2 in 1 Sensor**|WSS-02
1298 |**CO2/PM2.5/PM10 3 in 1 Sensor**|WSS-03
1299 |**Rain/Snow Detect Sensor**|WSS-04
1300 |**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|WSS-05
1301 |**Total Solar Radiation Sensor**|WSS-06
1302 |**PAR (Photosynthetically Available Radiation)**|WSS-07
1303
1304 = 10. Support =
1305
1306 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1307 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1308
1309 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1310
1311
1312
1313
1314
1315 = 11. Appendix I: Field Installation Photo =
1316
1317
1318 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image040.png]]
1319
1320
1321 **Storage Battery**: 12v,12AH li battery
1322
1323
1324 Wind Speed/Direction.
1325
1326 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image041.png]]
1327
1328
1329 Total Solar Radiation sensor
1330
1331 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image042.png]]
1332
1333
1334
1335 PAR Sensor
1336
1337 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image043.png]]
1338
1339
1340 CO2/PM2.5/PM10 3 in 1 sensor
1341
1342 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image044.png]]
1343
1344
1345 Rain / Snow Detect:
1346
1347 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image045.png]]
1348
1349
1350 Rain Gauge.
1351
1352 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image046.png]]