Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156
157 == 2.4 Uplink Payload ==
158
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165 === 2.4.1 Uplink FPORT~=5, Device Status ===
166
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 (((
172 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
173 )))
174
175 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
176 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
177 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
178
179 [[image:1656043061044-343.png]]
180
181
182 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
183
184
185 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
186
187 For WSC1-L, this value is 0x0D.
188
189
190 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
191
192 0x0100, Means: v1.0.0 version.
193
194
195 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
196
197 0x01: EU868
198
199 0x02: US915
200
201 0x03: IN865
202
203 0x04: AU915
204
205 0x05: KZ865
206
207 0x06: RU864
208
209 0x07: AS923
210
211 0x08: AS923-1
212
213 0x09: AS923-2
214
215 0x0a: AS923-3
216
217
218 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
219
220 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 (((
226 shows the battery voltage for WSC1-L MCU.
227 )))
228
229 (((
230 Ex1: 0x0BD6/1000 = 3.03 V
231 )))
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
242 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
243 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
244 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
245 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
246 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
247 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
248
249 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
250
251 External sensors detected by WSC1-L include :
252
253 custom sensor A1,
254
255 PAR sensor (WSS-07),
256
257 Total Solar Radiation sensor (WSS-06),
258
259 CO2/PM2.5/PM10 (WSS-03),
260
261 Wind Speed/Direction (WSS-02)
262
263
264 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
265
266 (% style="color:#037691" %)**Downlink:0x26 01**
267
268 [[image:1656049673488-415.png]]
269
270
271 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
272
273
274 (((
275 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
276 )))
277
278 (((
279 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
280 )))
281
282
283 (((
284 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
285 )))
286
287
288 (% style="color:#4472c4" %)** Uplink Payload**:
289
290 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
291 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
292
293 (% style="color:#4472c4" %)** Sensor Segment Define**:
294
295 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
296 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
297
298 (% style="color:#4472c4" %)**Sensor Type Table:**
299
300 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
301 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:65px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:97px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:78px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
302 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
303 Speed: 0 ~~ 60m/s
304 Level: 0 ~~ 17
305 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
306 (((
307 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
308 )))
309
310 (((
311 0x02=2 (0x14: No Sensor, 0x15: Value Error)
312 )))
313 )))
314 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
315 Angel: 0 ~~ 360°
316 Direction: 16 positions
317 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
318 (((
319 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
320 )))
321
322 (((
323 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
324 )))
325 )))
326 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
327 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
328 )))
329 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
330 (((
331 0x00 (00) No Rain or snow detected
332 )))
333
334 (((
335 (0x02: No Sensor,0x03: Value Error)
336 )))
337 )))
338 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
339 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
340 )))
341 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
342 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
343 )))
344 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
345 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
346 )))
347 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
348 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
349 )))
350 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
351 0mm~100mm(Rainfall in the last 24 hours)
352 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
353 (((
354 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
355 )))
356
357 (((
358 (0x03FE: No Sensor,0x03FF: Value Error)
359 )))
360 )))
361 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
363 )))
364 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
365 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
366 )))
367 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
368 0~2500μmol/m^^2^^•s
369 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
370 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
371 )))
372 |(% style="width:103px" %)(((
373 Total Solar Radiation
374 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
375 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
376 )))
377
378 (((
379 Below is an example payload:  [[image:image-20220624140615-3.png]]
380 )))
381
382
383 (((
384 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
385 )))
386
387 * (((
388 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
389 )))
390
391 (((
392 Uplink 1:  [[image:image-20220624140735-4.png]]
393 )))
394
395
396 (((
397 Uplink 2:  [[image:image-20220624140842-5.png]]
398
399 )))
400
401 * (((
402 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
403 )))
404
405 (((
406 Uplink 1:  [[image:image-20220624141025-6.png]]
407 )))
408
409
410 Uplink 2:  [[image:image-20220624141100-7.png]]
411
412
413 === 2.4.3 Decoder in TTN V3 ===
414
415
416 (((
417 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
418 )))
419
420 (((
421 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
422 )))
423
424
425 (((
426 and put as below:
427 )))
428
429 [[image:1656051152438-578.png]]
430
431 == 2.5 Show data on Application Server ==
432
433
434 (((
435 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
436 )))
437
438 (((
439 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
440 )))
441
442 (((
443 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
444 )))
445
446 [[image:1656051197172-131.png]]
447
448
449
450 **Add TagoIO:**
451
452 [[image:1656051223585-631.png]]
453
454
455
456 **Authorization:**
457
458 [[image:1656051248318-368.png]]
459
460
461
462 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
463
464
465 [[image:1656051277767-168.png]]
466
467
468 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
469
470
471 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
472
473 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
474 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
475
476 There are two kinds of commands to configure WSC1-L, they are:
477
478 * (% style="color:blue" %)**General Commands**.
479
480 These commands are to configure:
481
482 * General system settings like: uplink interval.
483 * LoRaWAN protocol & radio related command.
484
485 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
486
487 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
488
489
490 * (% style="color:blue" %)**Commands special design for WSC1-L**
491
492 These commands only valid for WSC1-L, as below:
493
494
495 == 3.1 Set Transmit Interval Time ==
496
497
498 Feature: Change LoRaWAN End Node Transmit Interval.
499
500 (% style="color:#037691" %)**AT Command: AT+TDC**
501
502 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
503 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
504 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
505 30000
506 OK
507 the interval is 30000ms = 30s
508 )))
509 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
510 OK
511 Set transmit interval to 60000ms = 60 seconds
512 )))
513
514 (% style="color:#037691" %)**Downlink Command: 0x01**
515
516 Format: Command Code (0x01) followed by 3 bytes time value.
517
518 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
519
520 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
521 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
522
523 == 3.2 Set Emergency Mode ==
524
525
526 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
527
528 (% style="color:#037691" %)**AT Command:**
529
530 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
531 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
532 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
533 OK
534
535 )))
536 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
537 OK
538 )))
539
540 (% style="color:#037691" %)**Downlink Command:**
541
542 * 0xE101     Same as: AT+ALARMMOD=1
543 * 0xE100     Same as: AT+ALARMMOD=0
544
545 == 3.3 Add or Delete RS485 Sensor ==
546
547
548 (((
549 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
550 )))
551
552 (((
553 (% style="color:#037691" %)**AT Command: **
554 )))
555
556 (((
557 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
558 )))
559
560 * (((
561 Type_Code range:  A1 ~~ A4
562 )))
563 * (((
564 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
565 )))
566 * (((
567 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
568 )))
569 * (((
570 Read_Length:  RS485 response frame length supposed to receive. Max can receive
571 )))
572 * (((
573 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
574 )))
575 * (((
576 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
577 )))
578 * (((
579 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
580 )))
581
582 (((
583 **Example:**
584 )))
585
586 (((
587 User need to change external sensor use the type code as address code.
588 )))
589
590 (((
591 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
592 )))
593
594 [[image:image-20220624143553-10.png]]
595
596
597 The response frame of the sensor is as follows:
598
599 [[image:image-20220624143618-11.png]]
600
601
602 **Then the following parameters should be:**
603
604 * Address_Code range: A1
605 * Query_Length: 8
606 * Query_Command: A103000000019CAA
607 * Read_Length: 8
608 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
609 * has_CRC: 1
610 * timeout: 1500 (Fill in the test according to the actual situation)
611
612 **So the input command is:**
613
614 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
615
616
617 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
618
619 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
620 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
621 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
622
623 **Related commands:**
624
625 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
626
627 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
628
629
630 (% style="color:#037691" %)**Downlink Command:  **
631
632 **delete custom sensor A1:**
633
634 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
635
636 **Remove all custom sensors**
637
638 * 0xE5FF  
639
640 == 3.4 RS485 Test Command ==
641
642
643 (% style="color:#037691" %)**AT Command:**
644
645 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:494px" %)
646 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 248px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
647 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
648 Send command to 485 sensor. Range : no more than 10 bytes
649 )))|(% style="width:85px" %)OK
650
651 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
652
653 AT+RSWRITE=0103000001840A
654
655
656 (% style="color:#037691" %)**Downlink Command:**
657
658 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
659
660 == 3.5 RS485 response timeout ==
661
662
663 Feature: Set or get extended time to receive 485 sensor data.
664
665 (% style="color:#037691" %)**AT Command:**
666
667 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
668 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
669 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
670 Set response timeout to: Range : 0~~10000
671 )))|(% style="width:85px" %)OK
672
673 (% style="color:#037691" %)**Downlink Command:**
674
675 Format: Command Code (0xE0) followed by 3 bytes time value.
676
677 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
678
679 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
680 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
681
682 == 3.6 Set Sensor Type ==
683
684
685 (((
686 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
687 )))
688
689 (((
690 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
691
692 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
693 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
694 | |A4|A3|A2|A1| | |
695 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
696 | | |Solar Radiation|PAR|PM10|PM2.5|(((
697 Rain
698 Gauge
699 )))|(((
700 Air
701 Pressure
702 )))
703 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
704 |Humidity|Temperature|CO2|(((
705 Rain/Snow
706 Detect
707 )))|illuminance|(((
708 Wind
709 Direction
710 )))|Wind Speed|BAT
711 )))
712
713
714 (% style="color:#037691" %)**AT Command:**
715
716 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
717 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
718 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
719
720 Eg: The setting command **AT+STYPE=80221** means:
721
722 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
723 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
724 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
725 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
726 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
727 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
728 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
729
730 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
731
732
733 (% style="color:#037691" %)**Downlink Command:**
734
735 * 0xE400080221  Same as: AT+STYPE=80221
736
737 (% style="color:red" %)**Note:**
738
739 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
740
741
742 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
743
744
745 (% style="color:#037691" %)**AT Command:**
746
747 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
748 |=(% style="width: 172px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 175px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
749 |(% style="width:161px" %)(((
750 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
751 )))|(% style="width:184px" %)(((
752 Set the registers read by the rain gauge
753 )))|(% style="width:85px" %)OK
754
755 (% style="color:#037691" %)**Downlink Command:**
756
757 * 0x1703  Same as: AT+RAINFALLSWITCH=3
758
759 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
760
761 4:Hourly rainfall: 0.2mm
762
763 5:Rainfall in last hour: 0.2mm
764
765 6:24-hour maximum rainfall 10.0mm
766
767 8:24-hour minimum rainfall:0.0mm
768
769 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
770
771
772 = 4. Power consumption and battery =
773
774 == 4.1 Total Power Consumption ==
775
776
777 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
778
779
780 == 4.2 Reduce power consumption ==
781
782
783 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
784
785
786 == 4.3 Battery ==
787
788
789 (((
790 All sensors are only power by external power source. If external power source is off. All sensor won't work.
791 )))
792
793 (((
794 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
795 )))
796
797
798 = 5. Main Process Unit WSC1-L =
799
800 == 5.1 Features ==
801
802
803 * Wall Attachable.
804 * LoRaWAN v1.0.3 Class A protocol.
805 * RS485 / Modbus protocol
806 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
807 * AT Commands to change parameters
808 * Remote configure parameters via LoRaWAN Downlink
809 * Firmware upgradable via program port
810 * Powered by external 12v battery
811 * Back up rechargeable 1000mAh battery
812 * IP Rating: IP65
813 * Support default sensors or 3rd party RS485 sensors
814
815 == 5.2 Power Consumption ==
816
817
818 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
819
820
821 == 5.3 Storage & Operation Temperature ==
822
823
824 -20°C to +60°C
825
826
827 == 5.4 Pin Mapping ==
828
829
830 [[image:1656054149793-239.png]]
831
832
833 == 5.5 Mechanical ==
834
835
836 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
837
838
839 == 5.6 Connect to RS485 Sensors ==
840
841
842 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
843
844
845 [[image:1656054389031-379.png]]
846
847
848 Hardware Design for the Converter Board please see:
849
850 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
851
852
853 = 6. Weather Sensors =
854
855 == 6.1 Rain Gauge ~-~- WSS-01 ==
856
857
858 (((
859 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
860 )))
861
862 (((
863 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
864 )))
865
866 (((
867 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
868 )))
869
870 (((
871 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
872 )))
873
874 (((
875 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
876 )))
877
878
879 === 6.1.1 Feature ===
880
881
882 * RS485 Rain Gauge
883 * Small dimension, easy to install
884 * Vents under funnel, avoid leaf or other things to avoid rain flow.
885 * ABS enclosure.
886 * Horizontal adjustable.
887
888 === 6.1.2 Specification ===
889
890
891 * Resolution: 0.2mm
892 * Accuracy: ±3%
893 * Range: 0 ~~ 100mm
894 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
895 * Input Power: DC 5 ~~ 24v
896 * Interface: RS485
897 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
898 * Working Humidity: <100% (no dewing)
899 * Power Consumption: 4mA @ 12v.
900
901 === 6.1.3 Dimension ===
902
903
904 [[image:1656054957406-980.png]]
905
906
907 === 6.1.4 Pin Mapping ===
908
909
910 [[image:1656054972828-692.png]]
911
912
913 === 6.1.5 Installation Notice ===
914
915
916 (((
917 Do not power on while connect the cables. Double check the wiring before power on.
918 )))
919
920 (((
921 Installation Photo as reference:
922 )))
923
924
925 (((
926 (% style="color:#4472c4" %)** Install on Ground:**
927 )))
928
929 (((
930 WSS-01 Rain Gauge include screws so can install in ground directly .
931 )))
932
933
934 (((
935 (% style="color:#4472c4" %)** Install on pole:**
936 )))
937
938 (((
939 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
940 )))
941
942 [[image:image-20220624152218-1.png||height="526" width="276"]]
943
944 WS-K2: Bracket Kit for Pole installation
945
946
947 WSSC-K2 dimension document, please see:
948
949 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
950
951
952 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
953
954
955 [[image:1656055444035-179.png]]
956
957
958 (((
959 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
960 )))
961
962 (((
963 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
964 )))
965
966 (((
967 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
968 )))
969
970
971 === 6.2.1 Feature ===
972
973
974 * RS485 wind speed / direction sensor
975 * PC enclosure, resist corrosion
976
977 === 6.2.2 Specification ===
978
979
980 * Wind speed range: 0 ~~ 60m/s
981 * Wind direction range: 0 ~~ 360°
982 * Start wind speed: ≤0.3 m/s
983 * Accuracy: ±(0.3+0.03V) m/s , ±1°
984 * Input Power: DC 5 ~~ 24v
985 * Interface: RS485
986 * Working Temperature: -30℃ ~~ 70℃
987 * Working Humidity: <100% (no dewing)
988 * Power Consumption: 13mA ~~ 12v.
989 * Cable Length: 2 meters
990
991 === 6.2.3 Dimension ===
992
993
994 [[image:image-20220624152813-2.png]]
995
996
997 === 6.2.4 Pin Mapping ===
998
999
1000 [[image:1656056281231-994.png]]
1001
1002
1003 === 6.2.5  Angle Mapping ===
1004
1005
1006 [[image:1656056303845-585.png]]
1007
1008
1009 === 6.2.6  Installation Notice ===
1010
1011
1012 (((
1013 Do not power on while connect the cables. Double check the wiring before power on.
1014 )))
1015
1016 (((
1017 The sensor must be installed with below direction, towards North.
1018
1019
1020 )))
1021
1022 [[image:image-20220624153901-3.png]]
1023
1024
1025 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1026
1027
1028 (((
1029 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1030 )))
1031
1032 (((
1033 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1034 )))
1035
1036 (((
1037 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1038 )))
1039
1040
1041 === 6.3.1 Feature ===
1042
1043
1044 * RS485 CO2, PM2.5, PM10 sensor
1045 * NDIR to measure CO2 with Internal Temperature Compensation
1046 * Laser Beam Scattering to PM2.5 and PM10
1047
1048 === 6.3.2 Specification ===
1049
1050
1051 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1052 * CO2 resolution: 1ppm
1053 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1054 * PM2.5/PM10 resolution: 1μg/m3
1055 * Input Power: DC 7 ~~ 24v
1056 * Preheat time: 3min
1057 * Interface: RS485
1058 * Working Temperature:
1059 ** CO2: 0℃ ~~ 50℃;
1060 ** PM2.5/PM10: -30 ~~ 50℃
1061 * Working Humidity:
1062 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1063 ** CO2: 0 ~~ 95%RH
1064 * Power Consumption: 50mA@ 12v.
1065
1066 === 6.3.3 Dimension ===
1067
1068
1069 [[image:1656056708366-230.png]]
1070
1071
1072 === 6.3.4 Pin Mapping ===
1073
1074
1075 [[image:1656056722648-743.png]]
1076
1077
1078 === 6.3.5 Installation Notice ===
1079
1080
1081 Do not power on while connect the cables. Double check the wiring before power on.
1082
1083
1084 [[image:1656056751153-304.png]]
1085
1086
1087 [[image:1656056766224-773.png]]
1088
1089
1090 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1091
1092
1093 (((
1094 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1095 )))
1096
1097 (((
1098 WSS-04 has auto heating feature, this ensures measurement more reliable.
1099 )))
1100
1101 (((
1102 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1103 )))
1104
1105
1106 === 6.4.1 Feature ===
1107
1108
1109 * RS485 Rain/Snow detect sensor
1110 * Surface heating to dry
1111 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1112
1113 === 6.4.2 Specification ===
1114
1115
1116 * Detect if there is rain or snow
1117 * Input Power: DC 12 ~~ 24v
1118 * Interface: RS485
1119 * Working Temperature: -30℃ ~~ 70℃
1120 * Working Humidity: 10 ~~ 90%RH
1121 * Power Consumption:
1122 ** No heating: 12mA @ 12v,
1123 ** heating: 94ma @ 12v.
1124
1125 === 6.4.3 Dimension ===
1126
1127
1128 [[image:1656056844782-155.png]]
1129
1130
1131 === 6.4.4 Pin Mapping ===
1132
1133
1134 [[image:1656056855590-754.png]]
1135
1136
1137 === 6.4.5 Installation Notice ===
1138
1139
1140 Do not power on while connect the cables. Double check the wiring before power on.
1141
1142 (((
1143 Install with 15°degree.
1144 )))
1145
1146 [[image:1656056873783-780.png]]
1147
1148
1149 [[image:1656056883736-804.png]]
1150
1151
1152 === 6.4.6 Heating ===
1153
1154
1155 (((
1156 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1157 )))
1158
1159
1160 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1161
1162
1163 (((
1164 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1165 )))
1166
1167 (((
1168 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1169 )))
1170
1171
1172 === 6.5.1 Feature ===
1173
1174
1175 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1176
1177 === 6.5.2 Specification ===
1178
1179
1180 * Input Power: DC 12 ~~ 24v
1181 * Interface: RS485
1182 * Temperature Sensor Spec:
1183 ** Range: -30 ~~ 70℃
1184 ** resolution 0.1℃
1185 ** Accuracy: ±0.5℃
1186 * Humidity Sensor Spec:
1187 ** Range: 0 ~~ 100% RH
1188 ** resolution 0.1 %RH
1189 ** Accuracy: 3% RH
1190 * Pressure Sensor Spec:
1191 ** Range: 10 ~~ 1100hPa
1192 ** Resolution: 0.1hPa
1193 ** Accuracy: ±0.1hPa
1194 * Illuminate sensor:
1195 ** Range: 0~~2/20/200kLux
1196 ** Resolution: 10 Lux
1197 ** Accuracy: ±3%FS
1198 * Working Temperature: -30℃ ~~ 70℃
1199 * Working Humidity: 10 ~~ 90%RH
1200 * Power Consumption: 4mA @ 12v
1201
1202 === 6.5.3 Dimension ===
1203
1204
1205 [[image:1656057170639-522.png]]
1206
1207
1208 === 6.5.4 Pin Mapping ===
1209
1210
1211 [[image:1656057181899-910.png]]
1212
1213
1214 === 6.5.5 Installation Notice ===
1215
1216
1217 Do not power on while connect the cables. Double check the wiring before power on.
1218
1219 [[image:1656057199955-514.png]]
1220
1221
1222 [[image:1656057212438-475.png]]
1223
1224
1225 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1226
1227
1228 (((
1229 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1230 )))
1231
1232 (((
1233 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1234 )))
1235
1236 (((
1237 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1238 )))
1239
1240
1241 === 6.6.1 Feature ===
1242
1243
1244 * RS485 Total Solar Radiation sensor
1245 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1246 * Measure Reflected Radiation if sense area towards ground.
1247
1248 === 6.6.2 Specification ===
1249
1250
1251 * Input Power: DC 5 ~~ 24v
1252 * Interface: RS485
1253 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1254 * Measure strength range: 0 ~~ 2000W/m2
1255 * Resolution: 0.1W/m2
1256 * Accuracy: ±3%
1257 * Yearly Stability: ≤±2%
1258 * Cosine response: ≤7% (@ Sun angle 10°)
1259 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1260 * Working Temperature: -40℃ ~~ 70℃
1261 * Working Humidity: 10 ~~ 90%RH
1262 * Power Consumption: 4mA @ 12v
1263
1264 === 6.6.3 Dimension ===
1265
1266
1267 [[image:1656057348695-898.png]]
1268
1269
1270 === 6.6.4 Pin Mapping ===
1271
1272
1273 [[image:1656057359343-744.png]]
1274
1275
1276 === 6.6.5 Installation Notice ===
1277
1278
1279 Do not power on while connect the cables. Double check the wiring before power on.
1280
1281
1282 [[image:1656057369259-804.png]]
1283
1284
1285 [[image:1656057377943-564.png]]
1286
1287
1288 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1289
1290
1291 (((
1292 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1293 )))
1294
1295 (((
1296 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1297 )))
1298
1299 (((
1300 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1301 )))
1302
1303
1304 === 6.7.1 Feature ===
1305
1306
1307 (((
1308 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1309 )))
1310
1311 (((
1312 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1313 )))
1314
1315
1316 === 6.7.2 Specification ===
1317
1318
1319 * Input Power: DC 5 ~~ 24v
1320 * Interface: RS485
1321 * Response Spectrum: 400~~700nm
1322 * Measure range: 0 ~~ 2500μmol/m2•s
1323 * Resolution: 1μmol/m2•s
1324 * Accuracy: ±2%
1325 * Yearly Stability: ≤ ±2%
1326 * Working Temperature: -30℃ ~~ 75℃
1327 * Working Humidity: 10 ~~ 90%RH
1328 * Power Consumption: 3mA @ 12v
1329
1330 === 6.7.3 Dimension ===
1331
1332
1333 [[image:1656057538793-888.png]]
1334
1335
1336 === 6.7.4 Pin Mapping ===
1337
1338
1339 [[image:1656057548116-203.png]]
1340
1341
1342 === 6.7.5 Installation Notice ===
1343
1344
1345 Do not power on while connect the cables. Double check the wiring before power on.
1346
1347
1348 [[image:1656057557191-895.png]]
1349
1350
1351 [[image:1656057565783-251.png]]
1352
1353
1354 = 7. FAQ =
1355
1356 == 7.1 What else do I need to purchase to build Weather Station? ==
1357
1358
1359 Below is the installation photo and structure:
1360
1361
1362 [[image:1656057598349-319.png]]
1363
1364
1365 [[image:1656057608049-693.png]]
1366
1367
1368 == 7.2 How to upgrade firmware for WSC1-L? ==
1369
1370
1371 (((
1372 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1373 )))
1374
1375 (((
1376 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1377 )))
1378
1379
1380 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1381
1382
1383 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1384
1385
1386 == 7.4 Can I add my weather sensors? ==
1387
1388
1389 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1390
1391
1392 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1393
1394
1395 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1396
1397
1398 == 7.6  How to change the data read by the rain gauge? ==
1399
1400
1401 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1402
1403 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1404
1405 **Rainfall query value:**
1406
1407 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1408
1409 4:Current Hourly rainfall: etc 0.2mm
1410
1411 5:Rainfall in last hour:etc 0.2mm
1412
1413 6:24-hour maximum rainfall etc  10.0mm
1414
1415 8:24-hour minimum rainfall:etc  0.0mm
1416
1417 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1418
1419 = 8. Trouble Shooting =
1420
1421 == 8.1 AT Command input doesn't work ==
1422
1423
1424 (((
1425 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1426 )))
1427
1428
1429 = 9. Order Info =
1430
1431 == 9.1 Main Process Unit ==
1432
1433
1434 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1435
1436 (% style="color:blue" %)**XX**(%%): The default frequency band
1437
1438 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1439 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1440 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1441 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1442 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1443 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1444 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1445 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1446
1447 == 9.2 Sensors ==
1448
1449
1450 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1451 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1452 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1453 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1454 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1455 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1456 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1457 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1458 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1459 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1460
1461 = 10. Support =
1462
1463
1464 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1465
1466 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1467
1468 = 11. Appendix I: Field Installation Photo =
1469
1470
1471 [[image:1656058346362-132.png||height="685" width="732"]]
1472
1473 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1474
1475
1476
1477 (% style="color:blue" %)**Wind Speed/Direction**
1478
1479 [[image:1656058373174-421.png||height="356" width="731"]]
1480
1481
1482
1483 (% style="color:blue" %)**Total Solar Radiation sensor**
1484
1485 [[image:1656058397364-282.png||height="453" width="732"]]
1486
1487
1488
1489 (% style="color:blue" %)**PAR Sensor**
1490
1491 [[image:1656058416171-615.png]]
1492
1493
1494
1495 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1496
1497 [[image:1656058441194-827.png||height="672" width="523"]]
1498
1499
1500
1501 (% style="color:blue" %)**Rain / Snow Detect**
1502
1503 [[image:1656058451456-166.png]]
1504
1505
1506
1507 (% style="color:blue" %)**Rain Gauge**
1508
1509 [[image:1656058463455-569.png||height="499" width="550"]]
1510
1511
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0