Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 0x01: EU868
197
198 0x02: US915
199
200 0x03: IN865
201
202 0x04: AU915
203
204 0x05: KZ865
205
206 0x06: RU864
207
208 0x07: AS923
209
210 0x08: AS923-1
211
212 0x09: AS923-2
213
214 0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
300 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:75px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
301 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
302 (((
303 Speed: 0~60m/s
304 )))
305
306 (((
307 Level: 0~17
308 )))
309 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
310 (((
311 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
312 )))
313
314 (((
315 0x02=2 (0x14: No Sensor, 0x15: Value Error)
316 )))
317 )))
318 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
319 (((
320 Angel: 0~360°
321 )))
322
323 (((
324 Direction: 16 positions
325 )))
326 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
327 (((
328 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
329 )))
330
331 (((
332 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
333 )))
334 )))
335 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
336 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
337 )))
338 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
339 (((
340 0x00 (00) No Rain or snow detected
341 )))
342
343 (((
344 (0x02: No Sensor,0x03: Value Error)
345 )))
346 )))
347 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
348 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
349 )))
350 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
352 )))
353 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
354 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
355 )))
356 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
357 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
358 )))
359 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
360 0mm~100mm(Rainfall in the last 24 hours)
361 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 (((
363 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
364 )))
365
366 (((
367 (0x03FE: No Sensor,0x03FF: Value Error)
368 )))
369 )))
370 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
371 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
372 )))
373 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
374 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
375 )))
376 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
377 0~2500μmol/m^^2^^•s
378 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
379 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
380 )))
381 |(% style="width:103px" %)(((
382 Total Solar
383
384 Radiation
385 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
386 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
387 )))
388
389 (((
390 Below is an example payload:  [[image:image-20220624140615-3.png]]
391 )))
392
393 (((
394
395 )))
396
397 (((
398 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
399 )))
400
401 * (((
402 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
403 )))
404
405 (((
406 Uplink 1:  [[image:image-20220624140735-4.png]]
407 )))
408
409
410 (((
411 Uplink 2:  [[image:image-20220624140842-5.png]]
412
413 )))
414
415 * (((
416 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
417 )))
418
419 (((
420 Uplink 1:  [[image:image-20220624141025-6.png]]
421 )))
422
423
424 Uplink 2:  [[image:image-20220624141100-7.png]]
425
426
427 === 2.4.3 Decoder in TTN V3 ===
428
429
430 (((
431 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
432 )))
433
434 (((
435 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 )))
437
438
439 (((
440 and put as below:
441 )))
442
443 [[image:1656051152438-578.png]]
444
445
446 == 2.5 Show data on Application Server ==
447
448
449 (((
450 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
451 )))
452
453 (((
454 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
455 )))
456
457 (((
458 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
459 )))
460
461 [[image:1656051197172-131.png]]
462
463
464
465 **Add TagoIO:**
466
467 [[image:1656051223585-631.png]]
468
469
470
471 **Authorization:**
472
473 [[image:1656051248318-368.png]]
474
475
476
477 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
478
479
480 [[image:1656051277767-168.png]]
481
482
483 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
484
485
486 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
487
488 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
489 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
490
491 There are two kinds of commands to configure WSC1-L, they are:
492
493 * (% style="color:#4472c4" %)**General Commands**.
494
495 These commands are to configure:
496
497 * General system settings like: uplink interval.
498 * LoRaWAN protocol & radio related command.
499
500 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
501
502 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
503
504
505 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
506
507 These commands only valid for WSC1-L, as below:
508
509
510 == 3.1 Set Transmit Interval Time ==
511
512
513 Feature: Change LoRaWAN End Node Transmit Interval.
514
515 (% style="color:#037691" %)**AT Command: AT+TDC**
516
517 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
518 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
519 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
520 30000
521 OK
522 the interval is 30000ms = 30s
523 )))
524 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
525 OK
526 Set transmit interval to 60000ms = 60 seconds
527 )))
528
529 (% style="color:#037691" %)**Downlink Command: 0x01**
530
531 Format: Command Code (0x01) followed by 3 bytes time value.
532
533 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
534
535 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
536 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
537
538
539
540
541 == 3.2 Set Emergency Mode ==
542
543
544 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
545
546 (% style="color:#037691" %)**AT Command:**
547
548 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
549 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
550 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
551 OK
552
553 )))
554 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
555 OK
556 )))
557
558 (% style="color:#037691" %)**Downlink Command:**
559
560 * 0xE101     Same as: AT+ALARMMOD=1
561 * 0xE100     Same as: AT+ALARMMOD=0
562
563
564
565
566 == 3.3 Add or Delete RS485 Sensor ==
567
568
569 (((
570 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
571 )))
572
573 (((
574 (% style="color:#037691" %)**AT Command: **
575 )))
576
577 (((
578 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
579 )))
580
581 * (((
582 Type_Code range:  A1 ~~ A4
583 )))
584 * (((
585 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
586 )))
587 * (((
588 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
589 )))
590 * (((
591 Read_Length:  RS485 response frame length supposed to receive. Max can receive
592 )))
593 * (((
594 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
595 )))
596 * (((
597 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
598 )))
599 * (((
600 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
601 )))
602
603 (((
604 **Example:**
605 )))
606
607 (((
608 User need to change external sensor use the type code as address code.
609 )))
610
611 (((
612 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
613 )))
614
615 [[image:image-20220624143553-10.png]]
616
617
618 The response frame of the sensor is as follows:
619
620 [[image:image-20220624143618-11.png]]
621
622
623 **Then the following parameters should be:**
624
625 * Address_Code range: A1
626 * Query_Length: 8
627 * Query_Command: A103000000019CAA
628 * Read_Length: 8
629 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
630 * has_CRC: 1
631 * timeout: 1500 (Fill in the test according to the actual situation)
632
633 **So the input command is:**
634
635 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
636
637
638 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
639
640 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
641 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
642 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
643
644 **Related commands:**
645
646 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
647
648 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
649
650
651 (% style="color:#037691" %)**Downlink Command:  **
652
653 **delete custom sensor A1:**
654
655 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
656
657 **Remove all custom sensors**
658
659 * 0xE5FF  
660
661
662
663
664
665 == 3.4 RS485 Test Command ==
666
667
668 (% style="color:#037691" %)**AT Command:**
669
670 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:474px" %)
671 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 228px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
672 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
673 (((
674 Send command to 485 sensor. Range : no more than 10 bytes
675 )))|(% style="width:85px" %)OK
676
677 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
678
679 AT+RSWRITE=0103000001840A
680
681
682 (% style="color:#037691" %)**Downlink Command:**
683
684 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
685
686
687
688
689
690 == 3.5 RS485 response timeout ==
691
692
693 Feature: Set or get extended time to receive 485 sensor data.
694
695 (% style="color:#037691" %)**AT Command:**
696
697 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
698 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
699 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
700 Set response timeout to: Range : 0~~10000
701 )))|(% style="width:85px" %)OK
702
703 (% style="color:#037691" %)**Downlink Command:**
704
705 Format: Command Code (0xE0) followed by 3 bytes time value.
706
707 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
708
709 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
710 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
711
712 == 3.6 Set Sensor Type ==
713
714
715 (((
716 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
717 )))
718
719 (((
720 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
721
722 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
723 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
724 | |A4|A3|A2|A1| | |
725 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
726 | | |Solar Radiation|PAR|PM10|PM2.5|(((
727 Rain
728 Gauge
729 )))|(((
730 Air
731 Pressure
732 )))
733 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
734 |Humidity|Temperature|CO2|(((
735 Rain/Snow
736 Detect
737 )))|illuminance|(((
738 Wind
739 Direction
740 )))|Wind Speed|BAT
741 )))
742
743
744 (% style="color:#037691" %)**AT Command:**
745
746 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
747 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
748 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
749
750 Eg: The setting command **AT+STYPE=80221** means:
751
752 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
753 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
754 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
755 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
756 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
757 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
758 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
759
760 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
761
762
763 (% style="color:#037691" %)**Downlink Command:**
764
765 * 0xE400080221  Same as: AT+STYPE=80221
766
767 (% style="color:red" %)**Note:**
768
769 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
770
771
772 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
773
774
775 (% style="color:#037691" %)**AT Command:**
776
777 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
778 |=(% style="width: 161px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 184px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
779 |(% style="width:161px" %)(((
780 AT+RAINFALLSWITCH=1
781
782 (Range: 1~~10)
783 )))|(% style="width:184px" %)(((
784 (((
785 (((
786 Set the registers read by the rain gauge
787 )))
788 )))
789 )))|(% style="width:85px" %)OK
790
791 (% style="color:#037691" %)**Downlink Command:**
792
793 * 0x1701  Same as: AT+RAINFALLSWITCH=1
794
795
796
797 = 4. Power consumption and battery =
798
799 == 4.1 Total Power Consumption ==
800
801
802 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
803
804
805 == 4.2 Reduce power consumption ==
806
807
808 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
809
810
811 == 4.3 Battery ==
812
813
814 (((
815 All sensors are only power by external power source. If external power source is off. All sensor won't work.
816 )))
817
818 (((
819 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
820 )))
821
822
823 = 5. Main Process Unit WSC1-L =
824
825 == 5.1 Features ==
826
827
828 * Wall Attachable.
829 * LoRaWAN v1.0.3 Class A protocol.
830 * RS485 / Modbus protocol
831 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
832 * AT Commands to change parameters
833 * Remote configure parameters via LoRaWAN Downlink
834 * Firmware upgradable via program port
835 * Powered by external 12v battery
836 * Back up rechargeable 1000mAh battery
837 * IP Rating: IP65
838 * Support default sensors or 3rd party RS485 sensors
839
840 == 5.2 Power Consumption ==
841
842
843 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
844
845
846 == 5.3 Storage & Operation Temperature ==
847
848
849 -20°C to +60°C
850
851
852 == 5.4 Pin Mapping ==
853
854
855 [[image:1656054149793-239.png]]
856
857
858 == 5.5 Mechanical ==
859
860
861 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
862
863
864 == 5.6 Connect to RS485 Sensors ==
865
866
867 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
868
869
870 [[image:1656054389031-379.png]]
871
872
873 Hardware Design for the Converter Board please see:
874
875 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
876
877
878 = 6. Weather Sensors =
879
880 == 6.1 Rain Gauge ~-~- WSS-01 ==
881
882
883 (((
884 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
885 )))
886
887 (((
888 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
889 )))
890
891 (((
892 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
893 )))
894
895 (((
896 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
897 )))
898
899 (((
900 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
901 )))
902
903
904 === 6.1.1 Feature ===
905
906
907 * RS485 Rain Gauge
908 * Small dimension, easy to install
909 * Vents under funnel, avoid leaf or other things to avoid rain flow.
910 * ABS enclosure.
911 * Horizontal adjustable.
912
913 === 6.1.2 Specification ===
914
915
916 * Resolution: 0.2mm
917 * Accuracy: ±3%
918 * Range: 0 ~~ 100mm
919 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
920 * Input Power: DC 5~~24v
921 * Interface: RS485
922 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
923 * Working Humidity: <100% (no dewing)
924 * Power Consumption: 4mA @ 12v.
925
926 === 6.1.3 Dimension ===
927
928
929 [[image:1656054957406-980.png]]
930
931
932 === 6.1.4 Pin Mapping ===
933
934
935 [[image:1656054972828-692.png]]
936
937
938 === 6.1.5 Installation Notice ===
939
940
941 (((
942 Do not power on while connect the cables. Double check the wiring before power on.
943 )))
944
945 (((
946 Installation Photo as reference:
947 )))
948
949
950 (((
951 (% style="color:#4472c4" %)** Install on Ground:**
952 )))
953
954 (((
955 WSS-01 Rain Gauge include screws so can install in ground directly .
956 )))
957
958
959 (((
960 (% style="color:#4472c4" %)** Install on pole:**
961 )))
962
963 (((
964 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
965 )))
966
967 [[image:image-20220624152218-1.png||height="526" width="276"]]
968
969 WS-K2: Bracket Kit for Pole installation
970
971
972 WSSC-K2 dimension document, please see:
973
974 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
975
976
977 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
978
979
980 [[image:1656055444035-179.png]]
981
982
983 (((
984 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
985 )))
986
987 (((
988 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
989 )))
990
991 (((
992 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
993 )))
994
995
996 === 6.2.1 Feature ===
997
998
999 * RS485 wind speed / direction sensor
1000 * PC enclosure, resist corrosion
1001
1002 === 6.2.2 Specification ===
1003
1004
1005 * Wind speed range: 0 ~~ 60m/s
1006 * Wind direction range: 0 ~~ 360°
1007 * Start wind speed: ≤0.3m/s
1008 * Accuracy: ±(0.3+0.03V)m/s , ±1°
1009 * Input Power: DC 5~~24v
1010 * Interface: RS485
1011 * Working Temperature: -30℃~70℃
1012 * Working Humidity: <100% (no dewing)
1013 * Power Consumption: 13mA ~~ 12v.
1014 * Cable Length: 2 meters
1015
1016 === 6.2.3 Dimension ===
1017
1018
1019 [[image:image-20220624152813-2.png]]
1020
1021
1022 === 6.2.4 Pin Mapping ===
1023
1024
1025 [[image:1656056281231-994.png]]
1026
1027
1028 === 6.2.5  Angle Mapping ===
1029
1030
1031 [[image:1656056303845-585.png]]
1032
1033
1034 === 6.2.6  Installation Notice ===
1035
1036
1037 (((
1038 Do not power on while connect the cables. Double check the wiring before power on.
1039 )))
1040
1041 (((
1042 The sensor must be installed with below direction, towards North.
1043
1044
1045 )))
1046
1047 [[image:image-20220624153901-3.png]]
1048
1049
1050 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1051
1052
1053 (((
1054 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1055 )))
1056
1057 (((
1058 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1059 )))
1060
1061 (((
1062 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1063 )))
1064
1065
1066 === 6.3.1 Feature ===
1067
1068
1069 * RS485 CO2, PM2.5, PM10 sensor
1070 * NDIR to measure CO2 with Internal Temperature Compensation
1071 * Laser Beam Scattering to PM2.5 and PM10
1072
1073 === 6.3.2 Specification ===
1074
1075
1076 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1077 * CO2 resolution: 1ppm
1078 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1079 * PM2.5/PM10 resolution: 1μg/m3
1080 * Input Power: DC 7 ~~ 24v
1081 * Preheat time: 3min
1082 * Interface: RS485
1083 * Working Temperature:
1084 ** CO2: 0℃~50℃;
1085 ** PM2.5/PM10: -30 ~~ 50℃
1086 * Working Humidity:
1087 ** PM2.5/PM10: 15~80%RH (no dewing)
1088 ** CO2: 0~95%RH
1089 * Power Consumption: 50mA@ 12v.
1090
1091 === 6.3.3 Dimension ===
1092
1093
1094 [[image:1656056708366-230.png]]
1095
1096
1097 === 6.3.4 Pin Mapping ===
1098
1099
1100 [[image:1656056722648-743.png]]
1101
1102
1103 === 6.3.5 Installation Notice ===
1104
1105
1106 Do not power on while connect the cables. Double check the wiring before power on.
1107
1108
1109 [[image:1656056751153-304.png]]
1110
1111
1112 [[image:1656056766224-773.png]]
1113
1114
1115 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1116
1117
1118 (((
1119 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1120 )))
1121
1122 (((
1123 WSS-04 has auto heating feature, this ensures measurement more reliable.
1124 )))
1125
1126 (((
1127 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1128 )))
1129
1130
1131 === 6.4.1 Feature ===
1132
1133
1134 * RS485 Rain/Snow detect sensor
1135 * Surface heating to dry
1136 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1137
1138 === 6.4.2 Specification ===
1139
1140
1141 * Detect if there is rain or snow
1142 * Input Power: DC 12 ~~ 24v
1143 * Interface: RS485
1144 * Working Temperature: -30℃~70℃
1145 * Working Humidity: 10~90%RH
1146 * Power Consumption:
1147 ** No heating: 12mA @ 12v,
1148 ** heating: 94ma @ 12v.
1149
1150 === 6.4.3 Dimension ===
1151
1152
1153 [[image:1656056844782-155.png]]
1154
1155
1156 === 6.4.4 Pin Mapping ===
1157
1158
1159 [[image:1656056855590-754.png]]
1160
1161
1162 === 6.4.5 Installation Notice ===
1163
1164
1165 Do not power on while connect the cables. Double check the wiring before power on.
1166
1167 (((
1168 Install with 15°degree.
1169 )))
1170
1171 [[image:1656056873783-780.png]]
1172
1173
1174 [[image:1656056883736-804.png]]
1175
1176
1177 === 6.4.6 Heating ===
1178
1179
1180 (((
1181 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1182 )))
1183
1184
1185 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1186
1187
1188 (((
1189 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1190 )))
1191
1192 (((
1193 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1194 )))
1195
1196
1197 === 6.5.1 Feature ===
1198
1199
1200 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1201
1202 === 6.5.2 Specification ===
1203
1204
1205 * Input Power: DC 12 ~~ 24v
1206 * Interface: RS485
1207 * Temperature Sensor Spec:
1208 ** Range: -30 ~~ 70℃
1209 ** resolution 0.1℃
1210 ** Accuracy: ±0.5℃
1211 * Humidity Sensor Spec:
1212 ** Range: 0 ~~ 100% RH
1213 ** resolution 0.1 %RH
1214 ** Accuracy: 3% RH
1215 * Pressure Sensor Spec:
1216 ** Range: 10~1100hPa
1217 ** Resolution: 0.1hPa
1218 ** Accuracy: ±0.1hPa
1219 * Illuminate sensor:
1220 ** Range: 0~2/20/200kLux
1221 ** Resolution: 10 Lux
1222 ** Accuracy: ±3%FS
1223 * Working Temperature: -30℃~70℃
1224 * Working Humidity: 10~90%RH
1225 * Power Consumption: 4mA @ 12v
1226
1227 === 6.5.3 Dimension ===
1228
1229
1230 [[image:1656057170639-522.png]]
1231
1232
1233 === 6.5.4 Pin Mapping ===
1234
1235
1236 [[image:1656057181899-910.png]]
1237
1238
1239 === 6.5.5 Installation Notice ===
1240
1241
1242 Do not power on while connect the cables. Double check the wiring before power on.
1243
1244 [[image:1656057199955-514.png]]
1245
1246
1247 [[image:1656057212438-475.png]]
1248
1249
1250 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1251
1252
1253 (((
1254 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1255 )))
1256
1257 (((
1258 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1259 )))
1260
1261 (((
1262 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1263 )))
1264
1265
1266 === 6.6.1 Feature ===
1267
1268
1269 * RS485 Total Solar Radiation sensor
1270 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1271 * Measure Reflected Radiation if sense area towards ground.
1272
1273 === 6.6.2 Specification ===
1274
1275
1276 * Input Power: DC 5 ~~ 24v
1277 * Interface: RS485
1278 * Detect spectrum: 0.3~3μm(300~3000nm)
1279 * Measure strength range: 0~2000W/m2
1280 * Resolution: 0.1W/m2
1281 * Accuracy: ±3%
1282 * Yearly Stability: ≤±2%
1283 * Cosine response: ≤7% (@ Sun angle 10°)
1284 * Temperature Effect: ±2%(-10℃~40℃)
1285 * Working Temperature: -40℃~70℃
1286 * Working Humidity: 10~90%RH
1287 * Power Consumption: 4mA @ 12v
1288
1289 === 6.6.3 Dimension ===
1290
1291
1292 [[image:1656057348695-898.png]]
1293
1294
1295 === 6.6.4 Pin Mapping ===
1296
1297
1298 [[image:1656057359343-744.png]]
1299
1300
1301 === 6.6.5 Installation Notice ===
1302
1303
1304 Do not power on while connect the cables. Double check the wiring before power on.
1305
1306
1307 [[image:1656057369259-804.png]]
1308
1309
1310 [[image:1656057377943-564.png]]
1311
1312
1313 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1314
1315
1316 (((
1317 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1318 )))
1319
1320 (((
1321 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1322 )))
1323
1324 (((
1325 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1326 )))
1327
1328
1329 === 6.7.1 Feature ===
1330
1331
1332 (((
1333 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1334 )))
1335
1336 (((
1337 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1338 )))
1339
1340
1341 === 6.7.2 Specification ===
1342
1343
1344 * Input Power: DC 5 ~~ 24v
1345 * Interface: RS485
1346 * Response Spectrum: 400~700nm
1347 * Measure range: 0~2500μmol/m2•s
1348 * Resolution: 1μmol/m2•s
1349 * Accuracy: ±2%
1350 * Yearly Stability: ≤±2%
1351 * Working Temperature: -30℃~75℃
1352 * Working Humidity: 10~90%RH
1353 * Power Consumption: 3mA @ 12v
1354
1355 === 6.7.3 Dimension ===
1356
1357
1358 [[image:1656057538793-888.png]]
1359
1360
1361 === 6.7.4 Pin Mapping ===
1362
1363
1364 [[image:1656057548116-203.png]]
1365
1366
1367 === 6.7.5 Installation Notice ===
1368
1369
1370 Do not power on while connect the cables. Double check the wiring before power on.
1371
1372
1373 [[image:1656057557191-895.png]]
1374
1375
1376 [[image:1656057565783-251.png]]
1377
1378
1379 = 7. FAQ =
1380
1381 == 7.1 What else do I need to purchase to build Weather Station? ==
1382
1383
1384 Below is the installation photo and structure:
1385
1386
1387 [[image:1656057598349-319.png]]
1388
1389
1390 [[image:1656057608049-693.png]]
1391
1392
1393 == 7.2 How to upgrade firmware for WSC1-L? ==
1394
1395
1396 (((
1397 Firmware Location & Change log:
1398
1399 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1400 )))
1401
1402
1403 (((
1404 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1405 )))
1406
1407
1408 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1409
1410
1411 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1412
1413
1414 == 7.4 Can I add my weather sensors? ==
1415
1416
1417 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1418
1419
1420 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1421
1422
1423 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1424
1425
1426 = 8. Trouble Shooting =
1427
1428 == 8.1 AT Command input doesn't work ==
1429
1430
1431 (((
1432 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1433 )))
1434
1435
1436 = 9. Order Info =
1437
1438 == 9.1 Main Process Unit ==
1439
1440
1441 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1442
1443 (% style="color:blue" %)**XX**(%%): The default frequency band
1444
1445 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1446 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1447 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1448 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1449 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1450 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1451 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1452 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1453
1454 == 9.2 Sensors ==
1455
1456
1457 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1458 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1459 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1460 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1461 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1462 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1463 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1464 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1465 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1466 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1467
1468 = 10. Support =
1469
1470
1471 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1472
1473 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1474
1475 = 11. Appendix I: Field Installation Photo =
1476
1477
1478 [[image:1656058346362-132.png||height="685" width="732"]]
1479
1480 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1481
1482
1483
1484 (% style="color:blue" %)**Wind Speed/Direction**
1485
1486 [[image:1656058373174-421.png||height="356" width="731"]]
1487
1488
1489
1490 (% style="color:blue" %)**Total Solar Radiation sensor**
1491
1492 [[image:1656058397364-282.png||height="453" width="732"]]
1493
1494
1495
1496 (% style="color:blue" %)**PAR Sensor**
1497
1498 [[image:1656058416171-615.png]]
1499
1500
1501
1502 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1503
1504 [[image:1656058441194-827.png||height="672" width="523"]]
1505
1506
1507
1508 (% style="color:blue" %)**Rain / Snow Detect**
1509
1510 [[image:1656058451456-166.png]]
1511
1512
1513
1514 (% style="color:blue" %)**Rain Gauge**
1515
1516 [[image:1656058463455-569.png||height="499" width="550"]]
1517
1518
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0