Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 0x01: EU868
197
198 0x02: US915
199
200 0x03: IN865
201
202 0x04: AU915
203
204 0x05: KZ865
205
206 0x06: RU864
207
208 0x07: AS923
209
210 0x08: AS923-1
211
212 0x09: AS923-2
213
214 0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
300 |(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Sensor Type**|(% style="background-color:#d9e2f3; color:#0070c0; width:75px" %)**Type Code**|(% style="background-color:#d9e2f3; color:#0070c0; width:95px" %)**Range**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**Length( Bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:190px" %)**Example**
301 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
302 (((
303 Speed: 0~60m/s
304 )))
305
306 (((
307 Level: 0~17
308 )))
309 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
310 (((
311 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
312 )))
313
314 (((
315 0x02=2 (0x14: No Sensor, 0x15: Value Error)
316 )))
317 )))
318 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
319 (((
320 Angel: 0~360°
321 )))
322
323 (((
324 Direction: 16 positions
325 )))
326 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
327 (((
328 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
329 )))
330
331 (((
332 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
333 )))
334 )))
335 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
336 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
337 )))
338 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
339 (((
340 0x00 (00) No Rain or snow detected
341 )))
342
343 (((
344 (0x02: No Sensor,0x03: Value Error)
345 )))
346 )))
347 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
348 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
349 )))
350 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
351 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
352 )))
353 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
354 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
355 )))
356 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
357 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
358 )))
359 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
360 0mm~100mm(Rainfall in the last 24 hours)
361 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 (((
363 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
364 )))
365
366 (((
367 (0x03FE: No Sensor,0x03FF: Value Error)
368 )))
369 )))
370 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
371 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
372 )))
373 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
374 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
375 )))
376 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
377 0~2500μmol/m^^2^^•s
378 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
379 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
380 )))
381 |(% style="width:103px" %)(((
382 Total Solar
383
384 Radiation
385 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
386 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
387 )))
388
389 (((
390 Below is an example payload:  [[image:image-20220624140615-3.png]]
391 )))
392
393 (((
394
395 )))
396
397 (((
398 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
399 )))
400
401 * (((
402 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
403 )))
404
405 (((
406 Uplink 1:  [[image:image-20220624140735-4.png]]
407 )))
408
409
410 (((
411 Uplink 2:  [[image:image-20220624140842-5.png]]
412
413 )))
414
415 * (((
416 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
417 )))
418
419 (((
420 Uplink 1:  [[image:image-20220624141025-6.png]]
421 )))
422
423
424 Uplink 2:  [[image:image-20220624141100-7.png]]
425
426
427 === 2.4.3 Decoder in TTN V3 ===
428
429
430 (((
431 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
432 )))
433
434 (((
435 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
436 )))
437
438
439 (((
440 and put as below:
441 )))
442
443 [[image:1656051152438-578.png]]
444
445
446 == 2.5 Show data on Application Server ==
447
448
449 (((
450 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
451 )))
452
453 (((
454 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
455 )))
456
457 (((
458 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
459 )))
460
461 [[image:1656051197172-131.png]]
462
463
464
465 **Add TagoIO:**
466
467 [[image:1656051223585-631.png]]
468
469
470
471 **Authorization:**
472
473 [[image:1656051248318-368.png]]
474
475
476
477 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
478
479
480 [[image:1656051277767-168.png]]
481
482
483 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
484
485
486 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
487
488 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
489 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
490
491 There are two kinds of commands to configure WSC1-L, they are:
492
493 * (% style="color:#4472c4" %)**General Commands**.
494
495 These commands are to configure:
496
497 * General system settings like: uplink interval.
498 * LoRaWAN protocol & radio related command.
499
500 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
501
502 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
503
504
505 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
506
507 These commands only valid for WSC1-L, as below:
508
509
510 == 3.1 Set Transmit Interval Time ==
511
512
513 Feature: Change LoRaWAN End Node Transmit Interval.
514
515 (% style="color:#037691" %)**AT Command: AT+TDC**
516
517 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:501px" %)
518 |(% style="background-color:#d9e2f3; color:#0070c0; width:155px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:166px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:180px" %)**Response**
519 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
520 30000
521 OK
522 the interval is 30000ms = 30s
523 )))
524 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
525 OK
526 Set transmit interval to 60000ms = 60 seconds
527 )))
528
529 (% style="color:#037691" %)**Downlink Command: 0x01**
530
531 Format: Command Code (0x01) followed by 3 bytes time value.
532
533 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
534
535 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
536 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
537
538
539
540
541 == 3.2 Set Emergency Mode ==
542
543
544 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
545
546 (% style="color:#037691" %)**AT Command:**
547
548 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:466px" %)
549 |(% style="background-color:#d9e2f3; color:#0070c0; width:156px" %)**Command Example**|(% style="background-color:#d9e2f3; color:#0070c0; width:225px" %)**Function**|(% style="background-color:#d9e2f3; color:#0070c0; width:85px" %)**Response**
550 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
551 OK
552
553 )))
554 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
555 OK
556 )))
557
558 (% style="color:#037691" %)**Downlink Command:**
559
560 * 0xE101     Same as: AT+ALARMMOD=1
561 * 0xE100     Same as: AT+ALARMMOD=0
562
563 == 3.3 Add or Delete RS485 Sensor ==
564
565
566 (((
567 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
568 )))
569
570 (((
571 (% style="color:#037691" %)**AT Command: **
572 )))
573
574 (((
575 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
576 )))
577
578 * (((
579 Type_Code range:  A1 ~~ A4
580 )))
581 * (((
582 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
583 )))
584 * (((
585 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
586 )))
587 * (((
588 Read_Length:  RS485 response frame length supposed to receive. Max can receive
589 )))
590 * (((
591 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
592 )))
593 * (((
594 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
595 )))
596 * (((
597 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
598 )))
599
600 (((
601 **Example:**
602 )))
603
604 (((
605 User need to change external sensor use the type code as address code.
606 )))
607
608 (((
609 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
610 )))
611
612 [[image:image-20220624143553-10.png]]
613
614
615 The response frame of the sensor is as follows:
616
617 [[image:image-20220624143618-11.png]]
618
619
620 **Then the following parameters should be:**
621
622 * Address_Code range: A1
623 * Query_Length: 8
624 * Query_Command: A103000000019CAA
625 * Read_Length: 8
626 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
627 * has_CRC: 1
628 * timeout: 1500 (Fill in the test according to the actual situation)
629
630 **So the input command is:**
631
632 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
633
634
635 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
636
637 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:351px" %)
638 |=(% style="width: 95px;background-color:#D9E2F3;color:#0070C0" %)Type Code|=(% style="width: 122px;background-color:#D9E2F3;color:#0070C0" %)Length (Bytes)|=(% style="width: 134px;background-color:#D9E2F3;color:#0070C0" %)Measured Value
639 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
640
641 **Related commands:**
642
643 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
644
645 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
646
647
648 (% style="color:#037691" %)**Downlink Command:  **
649
650 **delete custom sensor A1:**
651
652 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
653
654 **Remove all custom sensors**
655
656 * 0xE5FF  
657
658 == 3.4 RS485 Test Command ==
659
660
661 (% style="color:#037691" %)**AT Command:**
662
663 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:474px" %)
664 |=(% style="width: 160px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 228px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
665 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
666 (((
667 Send command to 485 sensor
668 )))
669
670 (((
671 Range : no more than 10 bytes
672 )))
673 )))|(% style="width:85px" %)OK
674
675 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
676
677 AT+RSWRITE=0103000001840A
678
679
680 (% style="color:#037691" %)**Downlink Command:**
681
682 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
683
684 == 3.5 RS485 response timeout ==
685
686
687 Feature: Set or get extended time to receive 485 sensor data.
688
689 (% style="color:#037691" %)**AT Command:**
690
691 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
692 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
693 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
694 (((
695 (((
696 Set response timeout to:
697 )))
698 )))
699
700 (((
701 (((
702 Range : 0~~10000
703 )))
704 )))
705 )))|(% style="width:85px" %)OK
706
707 (% style="color:#037691" %)**Downlink Command:**
708
709 Format: Command Code (0xE0) followed by 3 bytes time value.
710
711 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
712
713 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
714 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
715
716 == 3.6 Set Sensor Type ==
717
718
719 (((
720 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
721 )))
722
723 (((
724 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
725
726 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
727 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
728 | |A4|A3|A2|A1| | |
729 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
730 | | |Solar Radiation|PAR|PM10|PM2.5|(((
731 Rain
732 Gauge
733 )))|(((
734 Air
735 Pressure
736 )))
737 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
738 |Humidity|Temperature|CO2|(((
739 Rain/Snow
740 Detect
741 )))|illuminance|(((
742 Wind
743 Direction
744 )))|Wind Speed|BAT
745 )))
746
747
748 (% style="color:#037691" %)**AT Command:**
749
750 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:377px" %)
751 |=(% style="width: 157px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 132px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 88px;background-color:#D9E2F3;color:#0070C0" %)**Response**
752 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
753
754 Eg: The setting command **AT+STYPE=80221** means:
755
756 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:495px" %)
757 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
758 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
759 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
760 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
761 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
762 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
763
764 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
765
766
767 (% style="color:#037691" %)**Downlink Command:**
768
769 * 0xE400080221  Same as: AT+STYPE=80221
770
771 (% style="color:red" %)**Note:**
772
773 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
774
775
776 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
777
778
779 (% style="color:#037691" %)**AT Command:**
780
781 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:433px" %)
782 |=(% style="width: 161px; background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 184px; background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 86px;background-color:#D9E2F3;color:#0070C0" %)**Response**
783 |(% style="width:161px" %)(((
784 AT+RAINFALLSWITCH=1
785
786 (Range: 1~~10)
787 )))|(% style="width:184px" %)(((
788 (((
789 (((
790 Set the registers read by the rain gauge
791 )))
792 )))
793 )))|(% style="width:85px" %)OK
794
795 (% style="color:#037691" %)**Downlink Command:**
796
797 * 0x1701  Same as: AT+RAINFALLSWITCH=1
798
799
800
801 = 4. Power consumption and battery =
802
803 == 4.1 Total Power Consumption ==
804
805
806 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
807
808
809 == 4.2 Reduce power consumption ==
810
811
812 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
813
814
815 == 4.3 Battery ==
816
817
818 (((
819 All sensors are only power by external power source. If external power source is off. All sensor won't work.
820 )))
821
822 (((
823 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
824 )))
825
826
827 = 5. Main Process Unit WSC1-L =
828
829 == 5.1 Features ==
830
831
832 * Wall Attachable.
833 * LoRaWAN v1.0.3 Class A protocol.
834 * RS485 / Modbus protocol
835 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
836 * AT Commands to change parameters
837 * Remote configure parameters via LoRaWAN Downlink
838 * Firmware upgradable via program port
839 * Powered by external 12v battery
840 * Back up rechargeable 1000mAh battery
841 * IP Rating: IP65
842 * Support default sensors or 3rd party RS485 sensors
843
844 == 5.2 Power Consumption ==
845
846
847 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
848
849
850 == 5.3 Storage & Operation Temperature ==
851
852
853 -20°C to +60°C
854
855
856 == 5.4 Pin Mapping ==
857
858
859 [[image:1656054149793-239.png]]
860
861
862 == 5.5 Mechanical ==
863
864
865 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
866
867
868 == 5.6 Connect to RS485 Sensors ==
869
870
871 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
872
873
874 [[image:1656054389031-379.png]]
875
876
877 Hardware Design for the Converter Board please see:
878
879 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
880
881
882 = 6. Weather Sensors =
883
884 == 6.1 Rain Gauge ~-~- WSS-01 ==
885
886
887 (((
888 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
889 )))
890
891 (((
892 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
893 )))
894
895 (((
896 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
897 )))
898
899 (((
900 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
901 )))
902
903 (((
904 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
905 )))
906
907
908 === 6.1.1 Feature ===
909
910
911 * RS485 Rain Gauge
912 * Small dimension, easy to install
913 * Vents under funnel, avoid leaf or other things to avoid rain flow.
914 * ABS enclosure.
915 * Horizontal adjustable.
916
917 === 6.1.2 Specification ===
918
919
920 * Resolution: 0.2mm
921 * Accuracy: ±3%
922 * Range: 0 ~~ 100mm
923 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
924 * Input Power: DC 5~~24v
925 * Interface: RS485
926 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
927 * Working Humidity: <100% (no dewing)
928 * Power Consumption: 4mA @ 12v.
929
930 === 6.1.3 Dimension ===
931
932
933 [[image:1656054957406-980.png]]
934
935
936 === 6.1.4 Pin Mapping ===
937
938
939 [[image:1656054972828-692.png]]
940
941
942 === 6.1.5 Installation Notice ===
943
944
945 (((
946 Do not power on while connect the cables. Double check the wiring before power on.
947 )))
948
949 (((
950 Installation Photo as reference:
951 )))
952
953
954 (((
955 (% style="color:#4472c4" %)** Install on Ground:**
956 )))
957
958 (((
959 WSS-01 Rain Gauge include screws so can install in ground directly .
960 )))
961
962
963 (((
964 (% style="color:#4472c4" %)** Install on pole:**
965 )))
966
967 (((
968 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
969 )))
970
971 [[image:image-20220624152218-1.png||height="526" width="276"]]
972
973 WS-K2: Bracket Kit for Pole installation
974
975
976 WSSC-K2 dimension document, please see:
977
978 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
979
980
981 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
982
983
984 [[image:1656055444035-179.png]]
985
986
987 (((
988 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
989 )))
990
991 (((
992 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
993 )))
994
995 (((
996 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
997 )))
998
999
1000 === 6.2.1 Feature ===
1001
1002
1003 * RS485 wind speed / direction sensor
1004 * PC enclosure, resist corrosion
1005
1006 === 6.2.2 Specification ===
1007
1008
1009 * Wind speed range: 0 ~~ 60m/s
1010 * Wind direction range: 0 ~~ 360°
1011 * Start wind speed: ≤0.3m/s
1012 * Accuracy: ±(0.3+0.03V)m/s , ±1°
1013 * Input Power: DC 5~~24v
1014 * Interface: RS485
1015 * Working Temperature: -30℃~70℃
1016 * Working Humidity: <100% (no dewing)
1017 * Power Consumption: 13mA ~~ 12v.
1018 * Cable Length: 2 meters
1019
1020 === 6.2.3 Dimension ===
1021
1022
1023 [[image:image-20220624152813-2.png]]
1024
1025
1026 === 6.2.4 Pin Mapping ===
1027
1028
1029 [[image:1656056281231-994.png]]
1030
1031
1032 === 6.2.5  Angle Mapping ===
1033
1034
1035 [[image:1656056303845-585.png]]
1036
1037
1038 === 6.2.6  Installation Notice ===
1039
1040
1041 (((
1042 Do not power on while connect the cables. Double check the wiring before power on.
1043 )))
1044
1045 (((
1046 The sensor must be installed with below direction, towards North.
1047
1048
1049 )))
1050
1051 [[image:image-20220624153901-3.png]]
1052
1053
1054 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1055
1056
1057 (((
1058 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1059 )))
1060
1061 (((
1062 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1063 )))
1064
1065 (((
1066 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1067 )))
1068
1069
1070 === 6.3.1 Feature ===
1071
1072
1073 * RS485 CO2, PM2.5, PM10 sensor
1074 * NDIR to measure CO2 with Internal Temperature Compensation
1075 * Laser Beam Scattering to PM2.5 and PM10
1076
1077 === 6.3.2 Specification ===
1078
1079
1080 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
1081 * CO2 resolution: 1ppm
1082 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
1083 * PM2.5/PM10 resolution: 1μg/m3
1084 * Input Power: DC 7 ~~ 24v
1085 * Preheat time: 3min
1086 * Interface: RS485
1087 * Working Temperature:
1088 ** CO2: 0℃~50℃;
1089 ** PM2.5/PM10: -30 ~~ 50℃
1090 * Working Humidity:
1091 ** PM2.5/PM10: 15~80%RH (no dewing)
1092 ** CO2: 0~95%RH
1093 * Power Consumption: 50mA@ 12v.
1094
1095 === 6.3.3 Dimension ===
1096
1097
1098 [[image:1656056708366-230.png]]
1099
1100
1101 === 6.3.4 Pin Mapping ===
1102
1103
1104 [[image:1656056722648-743.png]]
1105
1106
1107 === 6.3.5 Installation Notice ===
1108
1109
1110 Do not power on while connect the cables. Double check the wiring before power on.
1111
1112
1113 [[image:1656056751153-304.png]]
1114
1115
1116 [[image:1656056766224-773.png]]
1117
1118
1119 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1120
1121
1122 (((
1123 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1124 )))
1125
1126 (((
1127 WSS-04 has auto heating feature, this ensures measurement more reliable.
1128 )))
1129
1130 (((
1131 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1132 )))
1133
1134
1135 === 6.4.1 Feature ===
1136
1137
1138 * RS485 Rain/Snow detect sensor
1139 * Surface heating to dry
1140 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1141
1142 === 6.4.2 Specification ===
1143
1144
1145 * Detect if there is rain or snow
1146 * Input Power: DC 12 ~~ 24v
1147 * Interface: RS485
1148 * Working Temperature: -30℃~70℃
1149 * Working Humidity: 10~90%RH
1150 * Power Consumption:
1151 ** No heating: 12mA @ 12v,
1152 ** heating: 94ma @ 12v.
1153
1154 === 6.4.3 Dimension ===
1155
1156
1157 [[image:1656056844782-155.png]]
1158
1159
1160 === 6.4.4 Pin Mapping ===
1161
1162
1163 [[image:1656056855590-754.png]]
1164
1165
1166 === 6.4.5 Installation Notice ===
1167
1168
1169 Do not power on while connect the cables. Double check the wiring before power on.
1170
1171 (((
1172 Install with 15°degree.
1173 )))
1174
1175 [[image:1656056873783-780.png]]
1176
1177
1178 [[image:1656056883736-804.png]]
1179
1180
1181 === 6.4.6 Heating ===
1182
1183
1184 (((
1185 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1186 )))
1187
1188
1189 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1190
1191
1192 (((
1193 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1194 )))
1195
1196 (((
1197 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1198 )))
1199
1200
1201 === 6.5.1 Feature ===
1202
1203
1204 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1205
1206 === 6.5.2 Specification ===
1207
1208
1209 * Input Power: DC 12 ~~ 24v
1210 * Interface: RS485
1211 * Temperature Sensor Spec:
1212 ** Range: -30 ~~ 70℃
1213 ** resolution 0.1℃
1214 ** Accuracy: ±0.5℃
1215 * Humidity Sensor Spec:
1216 ** Range: 0 ~~ 100% RH
1217 ** resolution 0.1 %RH
1218 ** Accuracy: 3% RH
1219 * Pressure Sensor Spec:
1220 ** Range: 10~1100hPa
1221 ** Resolution: 0.1hPa
1222 ** Accuracy: ±0.1hPa
1223 * Illuminate sensor:
1224 ** Range: 0~2/20/200kLux
1225 ** Resolution: 10 Lux
1226 ** Accuracy: ±3%FS
1227 * Working Temperature: -30℃~70℃
1228 * Working Humidity: 10~90%RH
1229 * Power Consumption: 4mA @ 12v
1230
1231 === 6.5.3 Dimension ===
1232
1233
1234 [[image:1656057170639-522.png]]
1235
1236
1237 === 6.5.4 Pin Mapping ===
1238
1239
1240 [[image:1656057181899-910.png]]
1241
1242
1243 === 6.5.5 Installation Notice ===
1244
1245
1246 Do not power on while connect the cables. Double check the wiring before power on.
1247
1248 [[image:1656057199955-514.png]]
1249
1250
1251 [[image:1656057212438-475.png]]
1252
1253
1254 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1255
1256
1257 (((
1258 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1259 )))
1260
1261 (((
1262 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1263 )))
1264
1265 (((
1266 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1267 )))
1268
1269
1270 === 6.6.1 Feature ===
1271
1272
1273 * RS485 Total Solar Radiation sensor
1274 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1275 * Measure Reflected Radiation if sense area towards ground.
1276
1277 === 6.6.2 Specification ===
1278
1279
1280 * Input Power: DC 5 ~~ 24v
1281 * Interface: RS485
1282 * Detect spectrum: 0.3~3μm(300~3000nm)
1283 * Measure strength range: 0~2000W/m2
1284 * Resolution: 0.1W/m2
1285 * Accuracy: ±3%
1286 * Yearly Stability: ≤±2%
1287 * Cosine response: ≤7% (@ Sun angle 10°)
1288 * Temperature Effect: ±2%(-10℃~40℃)
1289 * Working Temperature: -40℃~70℃
1290 * Working Humidity: 10~90%RH
1291 * Power Consumption: 4mA @ 12v
1292
1293 === 6.6.3 Dimension ===
1294
1295
1296 [[image:1656057348695-898.png]]
1297
1298
1299 === 6.6.4 Pin Mapping ===
1300
1301
1302 [[image:1656057359343-744.png]]
1303
1304
1305 === 6.6.5 Installation Notice ===
1306
1307
1308 Do not power on while connect the cables. Double check the wiring before power on.
1309
1310
1311 [[image:1656057369259-804.png]]
1312
1313
1314 [[image:1656057377943-564.png]]
1315
1316
1317 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1318
1319
1320 (((
1321 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1322 )))
1323
1324 (((
1325 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1326 )))
1327
1328 (((
1329 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1330 )))
1331
1332
1333 === 6.7.1 Feature ===
1334
1335
1336 (((
1337 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1338 )))
1339
1340 (((
1341 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1342 )))
1343
1344
1345 === 6.7.2 Specification ===
1346
1347
1348 * Input Power: DC 5 ~~ 24v
1349 * Interface: RS485
1350 * Response Spectrum: 400~700nm
1351 * Measure range: 0~2500μmol/m2•s
1352 * Resolution: 1μmol/m2•s
1353 * Accuracy: ±2%
1354 * Yearly Stability: ≤±2%
1355 * Working Temperature: -30℃~75℃
1356 * Working Humidity: 10~90%RH
1357 * Power Consumption: 3mA @ 12v
1358
1359 === 6.7.3 Dimension ===
1360
1361
1362 [[image:1656057538793-888.png]]
1363
1364
1365 === 6.7.4 Pin Mapping ===
1366
1367
1368 [[image:1656057548116-203.png]]
1369
1370
1371 === 6.7.5 Installation Notice ===
1372
1373
1374 Do not power on while connect the cables. Double check the wiring before power on.
1375
1376
1377 [[image:1656057557191-895.png]]
1378
1379
1380 [[image:1656057565783-251.png]]
1381
1382
1383 = 7. FAQ =
1384
1385 == 7.1 What else do I need to purchase to build Weather Station? ==
1386
1387
1388 Below is the installation photo and structure:
1389
1390
1391 [[image:1656057598349-319.png]]
1392
1393
1394 [[image:1656057608049-693.png]]
1395
1396
1397 == 7.2 How to upgrade firmware for WSC1-L? ==
1398
1399
1400 (((
1401 Firmware Location & Change log:
1402
1403 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1404 )))
1405
1406
1407 (((
1408 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1409 )))
1410
1411
1412 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1413
1414
1415 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1416
1417
1418 == 7.4 Can I add my weather sensors? ==
1419
1420
1421 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1422
1423
1424 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1425
1426
1427 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1428
1429
1430 = 8. Trouble Shooting =
1431
1432 == 8.1 AT Command input doesn't work ==
1433
1434
1435 (((
1436 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1437 )))
1438
1439
1440 = 9. Order Info =
1441
1442 == 9.1 Main Process Unit ==
1443
1444
1445 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1446
1447 (% style="color:blue" %)**XX**(%%): The default frequency band
1448
1449 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1450 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1451 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1452 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1453 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1454 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1455 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1456 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1457
1458 == 9.2 Sensors ==
1459
1460
1461 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:500px" %)
1462 |=(% style="width: 300px;background-color:#D9E2F3;color:#0070C0" %)**Sensor Model**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**Part Number**
1463 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1464 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1465 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1466 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1467 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1468 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1469 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1470 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1471
1472 = 10. Support =
1473
1474
1475 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1476
1477 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1478
1479 = 11. Appendix I: Field Installation Photo =
1480
1481
1482 [[image:1656058346362-132.png||height="685" width="732"]]
1483
1484 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1485
1486
1487
1488 (% style="color:blue" %)**Wind Speed/Direction**
1489
1490 [[image:1656058373174-421.png||height="356" width="731"]]
1491
1492
1493
1494 (% style="color:blue" %)**Total Solar Radiation sensor**
1495
1496 [[image:1656058397364-282.png||height="453" width="732"]]
1497
1498
1499
1500 (% style="color:blue" %)**PAR Sensor**
1501
1502 [[image:1656058416171-615.png]]
1503
1504
1505
1506 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1507
1508 [[image:1656058441194-827.png||height="672" width="523"]]
1509
1510
1511
1512 (% style="color:blue" %)**Rain / Snow Detect**
1513
1514 [[image:1656058451456-166.png]]
1515
1516
1517
1518 (% style="color:blue" %)**Rain Gauge**
1519
1520 [[image:1656058463455-569.png||height="499" width="550"]]
1521
1522
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0