Wiki source code of CS01-CB/CS -- NB-IoT/LTE-M 4 Channels Current Sensor Converter User Manual
Last modified by Xiaoling on 2025/07/17 14:13
Show last authors
author | version | line-number | content |
---|---|---|---|
1 | (% style="display:none" %) (%%) (% style="display:none" %) (%%) | ||
2 | |||
3 | [[image:image-20240128210544-1.png||data-xwiki-image-style-alignment="center" height="397" width="850"]] | ||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 | |||
10 | |||
11 | **Table of Contents:** | ||
12 | |||
13 | {{toc/}} | ||
14 | |||
15 | |||
16 | |||
17 | |||
18 | |||
19 | |||
20 | = 1. Introduction = | ||
21 | |||
22 | == 1.1 What is NB-IoT 4 Channels Current Sensor Converter == | ||
23 | |||
24 | |||
25 | The Dragino CS01-CB/CS is a (% style="color:blue" %)**NB-IoT/LTE-M 4 Channels Current Sensor Converter**(%%). It can convert the reading from current sensors and then upload to IoT server via NB-IoT or CAT-M1 network. | ||
26 | |||
27 | CS01-CB/CS can be used to (% style="color:blue" %)**monitor the machine running status**(%%) and (% style="color:blue" %)**analyze power consumption trends**. | ||
28 | |||
29 | The CS01-CB/CS supports maximum 4 current sensors. The current sensors are detachable and can be replaced with different scales. | ||
30 | |||
31 | CS01-CB/CS (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**OTA update**(%%) which make user easy to use. | ||
32 | |||
33 | CS01-CB/CS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + Li-ion battery**(%%), it is designed for long-term use up to several years. | ||
34 | |||
35 | *make sure you have NB-IoT or CAT-M1 coverage locally. | ||
36 | |||
37 | |||
38 | == 1.2 Features == | ||
39 | |||
40 | |||
41 | * For -NB Bands: B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/B20/B25/B28/B66/B70/B85 | ||
42 | * For -CB Bands: B1/B2/B3/B4/B5/B8/B12/B13~/~/B18/B19/B20/B25/B28/B66/B71/B85 | ||
43 | * CAT-M1 / LTE-M Bands: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B25/B26/B27/B28/B66/B85 | ||
44 | * Ultra-low power consumption | ||
45 | * Supports maximum 4 current sensors | ||
46 | * Support various current sensor Ratio: 50A, 100A etc. | ||
47 | * Monitor the machine running status | ||
48 | * Analyze power consumption trends | ||
49 | * Current Alarm | ||
50 | * Multiply Sampling and one uplink | ||
51 | * Support Bluetooth v5.1 remote configure and update firmware | ||
52 | * Uplink on periodically | ||
53 | * Downlink to change configure | ||
54 | * 8500mAh Li/SOCl2 Battery (CS01-CB) | ||
55 | * Solar panel + 3000mAh Li-ion battery (CS01-CS) | ||
56 | * Nano SIM card slot for NB-IoT SIM | ||
57 | |||
58 | == 1.3 Current Sensor Spec == | ||
59 | |||
60 | |||
61 | The current sensor list below is not ship with CS01-CB/CS, user need to order seperately: | ||
62 | |||
63 | (% border="1" cellspacing="3" style="width:510px" %) | ||
64 | |=(% style="width: 100px; background-color:#4F81BD;color:white" %)**Model**|=(% style="width: 100px; background-color:#4F81BD;color:white" %)**Photo**|=(% style="width: 170px; background-color: rgb(79, 129, 189); color: white;" %)**Specification**|=(% style="width: 140px; background-color: rgb(79, 129, 189); color: white;" %)Dimension(Unit:mm±0.5) | ||
65 | |(% style="width:131px" %)**SCT013G-D-100**|(% style="width:114px" %)((( | ||
66 | [[image:image-20240831103534-4.jpeg||data-xwiki-image-style-alignment="center" height="100" width="100"]] | ||
67 | )))|(% style="width:151px" %)* Split core current transformer | ||
68 | ~* Spec: 100A/50mA | ||
69 | ~* φ16mm Aperture|(% style="width:174px" %)((( | ||
70 | [[image:image-20240831103305-3.png||data-xwiki-image-style-alignment="center" height="99" width="120"]] | ||
71 | ))) | ||
72 | |**SCT024-300**|(%%)(% style="display:none" %) (%%)((( | ||
73 | [[image:image-20240902155828-2.png||data-xwiki-image-style-alignment="center" height="100" width="100"]] | ||
74 | )))|(% style="width:151px" %)* Split core current transformer | ||
75 | ~* Spec: 300A/50mA | ||
76 | ~* φ24mm Aperture|(% style="width:174px" %)((( | ||
77 | [[image:image-20240831102534-1.png||data-xwiki-image-style-alignment="center" height="73" width="120"]] | ||
78 | ))) | ||
79 | |**SCT036-600**|((( | ||
80 | [[image:image-20240902155655-1.png||data-xwiki-image-style-alignment="center" height="97" width="100"]] | ||
81 | |||
82 | (% style="display:none" %) | ||
83 | )))|(% style="width:151px" %)* Split core current transformer | ||
84 | ~* Spec: 600A/50mA | ||
85 | ~* φ36mm Aperture|(% style="width:174px" %)((( | ||
86 | [[image:image-20240831102736-2.png||data-xwiki-image-style-alignment="center" height="71" width="120"]] | ||
87 | ))) | ||
88 | |||
89 | == 1.4 Specification == | ||
90 | |||
91 | |||
92 | (% style="color:blue" %)**Common DC Characteristics:** | ||
93 | |||
94 | * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v | ||
95 | * Operating Temperature: -40 ~~ 85°C | ||
96 | |||
97 | (% style="color:blue" %)**NB-IoT Spec:** | ||
98 | |||
99 | (% style="color:#037691" %)**NB-IoT Module: BG95-NGFF** | ||
100 | |||
101 | (% style="color:#037691" %)**Support Bands:** | ||
102 | |||
103 | * B1 @H-FDD: 2100MHz | ||
104 | * B2 @H-FDD: 1900MHz | ||
105 | * B3 @H-FDD: 1800MHz | ||
106 | * B4 @H-FDD: 2100MHz | ||
107 | * B5 @H-FDD: 860MHz | ||
108 | * B8 @H-FDD: 900MHz | ||
109 | * B12 @H-FDD: 720MHz | ||
110 | * B13 @H-FDD: 740MHz | ||
111 | * B17 @H-FDD: 730MHz | ||
112 | * B18 @H-FDD: 870MHz | ||
113 | * B19 @H-FDD: 870MHz | ||
114 | * B20 @H-FDD: 790MHz | ||
115 | * B25 @H-FDD: 1900MHz | ||
116 | * B28 @H-FDD: 750MHz | ||
117 | * B66 @H-FDD: 2000MHz | ||
118 | * B70 @H-FDD: 2000MHz | ||
119 | * B85 @H-FDD: 700MHz | ||
120 | |||
121 | (% style="color:blue" %)**Battery:** | ||
122 | |||
123 | * Li/SOCI2 un-chargeable battery | ||
124 | * Capacity: 8500mAh | ||
125 | * Self-Discharge: <1% / Year @ 25°C | ||
126 | * Max continuously current: 130mA | ||
127 | * Max boost current: 2A, 1 second | ||
128 | |||
129 | (% style="color:blue" %)**Power Consumption** | ||
130 | |||
131 | * STOP Mode: 10uA @ 3.3v | ||
132 | * Max transmit power: 350mA@3.3v | ||
133 | |||
134 | == 1.5 Applications == | ||
135 | |||
136 | * Smart Buildings & Home Automation | ||
137 | * Logistics and Supply Chain Management | ||
138 | * Smart Metering | ||
139 | * Smart Agriculture | ||
140 | * Smart Cities | ||
141 | * Smart Factory | ||
142 | |||
143 | == 1.6 Sleep mode and working mode == | ||
144 | |||
145 | |||
146 | (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any NB-IoT/CAT-M1 activate. This mode is used for storage and shipping to save battery life. | ||
147 | |||
148 | (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as NB-IoT Sensor to Join NB-IoT network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. | ||
149 | |||
150 | |||
151 | == 1.7 Button & LEDs == | ||
152 | |||
153 | |||
154 | [[image:image-20250415154509-1.jpeg]] | ||
155 | |||
156 | (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) | ||
157 | |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** | ||
158 | |(% style="width:167px" %)[[image:1749519422429-829.png]] 1~~ 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( | ||
159 | If sensor has already attached to NB-IoT/CAT-M1 network, sensor will send an uplink packet, (% style="color:blue" %)**blue led**(%%) will blink once. | ||
160 | Meanwhile, BLE module will be active and user can connect via BLE to configure device. | ||
161 | ))) | ||
162 | |(% style="width:167px" %)[[image:1749519428723-104.png]] >3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)((( | ||
163 | (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to attach NB-IoT/CAT-M1 network. | ||
164 | Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device attach NB-IoT/CAT-M1 network or not. | ||
165 | ))) | ||
166 | |(% style="width:167px" %)[[image:1749519355300-536.png]] x5|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. | ||
167 | |||
168 | == 1.8 BLE connection == | ||
169 | |||
170 | |||
171 | CS01-CB/CS support BLE remote configure and firmware update. | ||
172 | |||
173 | BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: | ||
174 | |||
175 | * Press button to send an uplink | ||
176 | * Press button to active device. | ||
177 | * Device Power on or reset. | ||
178 | |||
179 | If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode. | ||
180 | |||
181 | |||
182 | == 1.9 Pin Definitions , Switch & SIM Direction == | ||
183 | |||
184 | |||
185 | CS01-CB/CS use the mother board which as below. | ||
186 | |||
187 | [[image:image-20250218135111-1.png||height="434" width="707"]] | ||
188 | |||
189 | |||
190 | === 1.9.1 Jumper JP2 === | ||
191 | |||
192 | |||
193 | Power on Device when put this jumper. | ||
194 | |||
195 | Power off device when take out this jumper | ||
196 | |||
197 | |||
198 | === 1.9.2 BOOT MODE / SW1 === | ||
199 | |||
200 | |||
201 | **1)** (% style="color:blue" %)**ISP:**(%%) upgrade mode, device won't have any signal in this mode. but ready for upgrade firmware. LED won't work. Firmware won't run. | ||
202 | |||
203 | **2)** (% style="color:blue" %)**Flash:**(%%) work mode, device starts to work and send out console output for further debug. | ||
204 | |||
205 | |||
206 | === 1.9.3 Reset Button === | ||
207 | |||
208 | |||
209 | Press to reboot the device. | ||
210 | |||
211 | |||
212 | === 1.9.4 SIM Card Direction === | ||
213 | |||
214 | |||
215 | See this link. [[How to insert SIM Card>>https://wiki.dragino.com/xwiki/bin/view/Main/General%20Manual%20for%20-CB%20%2C%20-CS%20models/#H2.AttachNetwork]]. | ||
216 | |||
217 | |||
218 | == 1.10 Mechanical == | ||
219 | |||
220 | === 1.10.1 for NB version === | ||
221 | |||
222 | [[image:image-20250415154832-2.jpeg]] | ||
223 | |||
224 | |||
225 | **~ 100A:** | ||
226 | |||
227 | [[image:image-20250213112848-1.jpeg||height="413" width="500"]] | ||
228 | |||
229 | |||
230 | **300A:** | ||
231 | |||
232 | [[image:image-20250213112857-2.jpeg||height="305" width="500"]] | ||
233 | |||
234 | |||
235 | **600A:** | ||
236 | |||
237 | [[image:image-20250213112907-3.jpeg||height="295" width="500"]] | ||
238 | |||
239 | |||
240 | === 1.10.2 for NS version === | ||
241 | |||
242 | [[image:image-20250213113458-1.jpeg||height="434" width="1000"]] | ||
243 | |||
244 | |||
245 | = 2. Use CS01-CB/CS to communicate with IoT Server = | ||
246 | |||
247 | == 2.1 Send data to IoT server via NB-IoT network == | ||
248 | |||
249 | |||
250 | The CS01-CB/CS is equipped with a NB-IoT module, the pre-loaded firmware in CS01-CB/CS will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by CS01-CB/CS. | ||
251 | |||
252 | Below shows the network structure: | ||
253 | |||
254 | [[image:image-20250609142500-3.png]] | ||
255 | |||
256 | |||
257 | There are two version: (% style="color:blue" %)**-GE**(%%) and (% style="color:blue" %)**-1T**(%%) version of CS01-CB. | ||
258 | |||
259 | (% style="color:blue" %)**GE Version: **(%%)This version doesn't include SIM card or point to any IoT server. User needs to use AT Commands to configure below two steps to set CS01-CB send data to IoT server. | ||
260 | |||
261 | * Install NB-IoT SIM card and configure APN. See instruction of [[Attach Network>>url:http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H2.AttachNetwork]]. | ||
262 | |||
263 | * Set up sensor to point to IoT Server. See instruction of [[Configure to Connect Different Servers>>https://wiki.dragino.com/xwiki/bin/view/Main/General%20Manual%20for%20-CB%20%2C%20-CS%20models/#H3.Configuretoconnecttodifferentservers]]. | ||
264 | |||
265 | Below shows result of different server as a glance. | ||
266 | |||
267 | (% border="1" cellspacing="3" style="width:515px" %) | ||
268 | |(% style="background-color:#4f81bd; color:white; width:100px" %)**Servers**|(% style="background-color:#4f81bd; color:white; width:300px" %)**Dash Board**|(% style="background-color:#4f81bd; color:white; width:115px" %)**Comments** | ||
269 | |(% style="width:127px" %)[[Node-Red>>url:http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H3.5A0Node-RedA028viaA0MQTT29]]|(% style="width:385px" %)((( | ||
270 | [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-NBS31B-NB_BN-IoT_Outdoor_Temperature_Humidity_Sensor_User_Manual/WebHome/image-20230819113244-8.png?width=367&height=183&rev=1.1||alt="image-20230819113244-8.png"]] | ||
271 | )))|(% style="width:170px" %) | ||
272 | |(% style="width:127px" %)[[DataCake>>url:http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H3.4Datacake]]|(% style="width:385px" %)((( | ||
273 | [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-NBS31B-NB_BN-IoT_Outdoor_Temperature_Humidity_Sensor_User_Manual/WebHome/image-20230819113244-9.png?width=367&height=119&rev=1.1||alt="image-20230819113244-9.png"]] | ||
274 | )))|(% style="width:170px" %) | ||
275 | |(% style="width:127px" %)[[Tago.IO>>url:http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H3.7A0Tago.ioA028viaA0MQTT29]]|(% style="width:385px" %) |(% style="width:170px" %) | ||
276 | |(% style="width:127px" %)[[General UDP>>url:http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H3.1GeneralA0UDPA0Connection]]|(% style="width:385px" %)Raw Payload. Need Developer to design Dash Board|(% style="width:170px" %) | ||
277 | |(% style="width:127px" %)[[General MQTT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H3.2GeneralA0MQTTA0Connection]]|(% style="width:385px" %)Raw Payload. Need Developer to design Dash Board|(% style="width:170px" %) | ||
278 | |(% style="width:127px" %)[[ThingSpeak>>url:http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H3.3A0ThingSpeakA028viaA0MQTT29]]|(% style="width:385px" %)((( | ||
279 | [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-NBS31B-NB_BN-IoT_Outdoor_Temperature_Humidity_Sensor_User_Manual/WebHome/image-20230819113244-10.png?width=367&height=104&rev=1.1||alt="image-20230819113244-10.png"]] | ||
280 | )))|(% style="width:170px" %) | ||
281 | |(% style="width:127px" %)[[ThingsBoard>>url:http://wiki.dragino.com/xwiki/bin/view/Main/General%20Configure%20to%20Connect%20to%20IoT%20server%20for%20-NB%20%26%20-NS%20NB-IoT%20models/#H3.6A0ThingsBoard.CloudA028viaA0MQTT29]]|(% style="width:385px" %)((( | ||
282 | [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-NBS31B-NB_BN-IoT_Outdoor_Temperature_Humidity_Sensor_User_Manual/WebHome/image-20230819113244-11.png?width=367&height=141&rev=1.1||alt="image-20230819113244-11.png"]] | ||
283 | )))|(% style="width:170px" %) | ||
284 | |||
285 | (% style="color:blue" %)**1T Version**(%%): This version has 1NCE SIM card pre-installed and configure to send value to ThingsEye. User Just need to select the sensor type in ThingsEyeand Activate CS01-CB/CS and user will be able to see data in ThingsEye. See here for [[ThingsEye Config Instruction>>url:https://wiki.thingseye.io/xwiki/bin/view/Main/]]. | ||
286 | |||
287 | |||
288 | == 2.2 Payload Types == | ||
289 | |||
290 | |||
291 | To meet different server requirement, CS01-CB/CS supports different payload type. | ||
292 | |||
293 | **Includes:** | ||
294 | |||
295 | * [[General JSON format payload>>||anchor="H2.2.1GeneralJsonFormat28Type3D529"]]. (Type=5) | ||
296 | |||
297 | * [[HEX format Payload>>||anchor="H2.2.2HEXformatPayload28Type3D029"]]. (Type=0) | ||
298 | |||
299 | * [[ThingSpeak Format>>||anchor="H2.2.4ThingSpeakPayload28Type3D129"]]. (Type=1) | ||
300 | |||
301 | * [[ThingsBoard Format>>||anchor="H2.2.3ThingsBoardPayload28Type3D329"]]. (Type=3) | ||
302 | |||
303 | User can specify the payload type when choose the connection protocol. Example: | ||
304 | |||
305 | (% style="color:#037691" %)**AT+PRO=1,0** (%%) ~/~/ Use COAP Connection & hex Payload | ||
306 | |||
307 | (% style="color:#037691" %)**AT+PRO=1,5** (%%) ~/~/ Use COAP Connection & Json Payload | ||
308 | |||
309 | (% style="color:#037691" %)**AT+PRO=2,0** (%%) ~/~/ Use UDP Connection & hex Payload | ||
310 | |||
311 | (% style="color:#037691" %)**AT+PRO=2,5** (%%) ~/~/ Use UDP Connection & Json Payload | ||
312 | |||
313 | (% style="color:#037691" %)**AT+PRO=3,0** (%%) ~/~/ Use MQTT Connection & hex Payload | ||
314 | |||
315 | (% style="color:#037691" %)**AT+PRO=3,5** (%%) ~/~/ Use MQTT Connection & Json Payload | ||
316 | |||
317 | (% style="color:#037691" %)**AT+PRO=4,0** (%%) ~/~/ Use TCP Connection & hex Payload | ||
318 | |||
319 | (% style="color:#037691" %)**AT+PRO=4,5** (%%) ~/~/ Use TCP Connection & Json Payload | ||
320 | |||
321 | |||
322 | == 2.3 Working Mode & Uplink Payload == | ||
323 | |||
324 | === 2.3.1 Working Mode === | ||
325 | |||
326 | ==== 2.3.1.1 General acquisition mode (MOD~=1) ==== | ||
327 | |||
328 | |||
329 | MOD=1 is the default mode. End Node will uplink the real-time current sensor value in two case: | ||
330 | |||
331 | * Each TDC Interval. | ||
332 | * Trigger Alarm according to **AT+CALARM **configure. | ||
333 | |||
334 | ==== 2.3.1.2 Continuous Sampling Mode (MOD~=2) ==== | ||
335 | |||
336 | |||
337 | In Continuous Sampling Mode**(AT+MOD=2,aa,bb,cc)**, CS01 will record the current sensor data at a fix interval, and report multiply group of data together to IoT server later. | ||
338 | |||
339 | (% style="color:red" %)**Notice: This mode has high power consumption. External power supply might be needed. More detail please check power consumption section.** | ||
340 | |||
341 | |||
342 | **AT+MOD=2,aa,bb,cc format:** | ||
343 | |||
344 | * (% style="color:blue" %)**First Parameter set to 2**(%%)**:** Set CS01-CB/CS to work in Continuous Sampling Mode. | ||
345 | * (% style="color:blue" %)**aa** (%%): Set Sampling Interval, Unit: Second. | ||
346 | * (% style="color:blue" %)**bb** (%%): Define how many group of data will be uplink together. | ||
347 | * (% style="color:#0000ff" %)**cc : **(%%)Set whether 5V is normally open or not.(Normally open 5V will produce 16mA standby current) | ||
348 | |||
349 | When CS01-CB/CS is in Continuous Sampling Mode, the TDC time setting is disabled, and CS01-CB/CS will send uplink once it finished the number of sampling define in "bb". | ||
350 | |||
351 | |||
352 | **Example Command:(% style="color:blue" %)AT+MOD=2,60,5,0(%%)** | ||
353 | CS01-CB/CS will read 4 channels data every 1 minutes. When it reads 5 groups, CS01-CB/CS will send an uplink. So the uplink interval is 5 minutes. Each uplink will include 5 groups of sensor value. Each Group include 4 channels data. so the payload for each uplink will include: | ||
354 | |||
355 | * f+IMEI(8 bytes) + Version(2 bytes) + Battery (2 bytes) + Signal(1 byte) + GPIO_EXIT Level(1 byte) + GPIO_EXIT Flag(1 byte)+Timestamp(4 bytes) | ||
356 | * + Group1 Sensor Value (12 Bytes): **the last 4th** reading for Channel 1 + Channel 2 + Channel 3 + Channel 4 | ||
357 | * + Group2 Sensor Value (12 Bytes): **the last 3rd** reading for Channel 1 + Channel 2 + Channel 3 + Channel 4 | ||
358 | * + Group3 Sensor Value (12 Bytes): **the last 2nd** reading for Channel 1 + Channel 2 + Channel 3 + Channel 4 | ||
359 | * + Group4 Sensor Value (12 Bytes): **the last** reading for Channel 1 + Channel 2 + Channel 3 + Channel 4 | ||
360 | * + Group5 Sensor Value (12 Bytes): **current** reading for Channel 1 + Channel 2 + Channel 3 + Channel 4 | ||
361 | |||
362 | (% style="color:red" %)**Note: The maximum number of groups is set to 50, and it is recommended that the sampling interval be at least 5 seconds.** | ||
363 | |||
364 | |||
365 | === 2.3.2 HEX format Payload(Type~=0) === | ||
366 | |||
367 | ==== 2.3.2.1 MOD~=1 (General acquisition mode) ==== | ||
368 | |||
369 | |||
370 | (% style="color:#4472c4" %)**f868508065601703f460240210507483636e0cc618000000000000000000000000000000000fff000ff200103c0000026784fbb80000000000000000000000006784f2c70000000000000000000000006784ef430000000000000000000000006784ebbf0000000000000000000000006784e83b0000000000000000000000006784e4b70000000000000000000000006784ddf50000000000000000000000006784da710000000000000000000000006784cec5** | ||
371 | |||
372 | [[image:image-20250114152726-3.png]] | ||
373 | |||
374 | If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NB sensor uplink data. | ||
375 | |||
376 | [[image:image-20250114152619-1.png]] | ||
377 | |||
378 | |||
379 | (% style="color:blue" %)**Device ID(f+IMEI): **(%%)f868508065601703 =868508065601703 | ||
380 | |||
381 | (% style="color:blue" %)**SIM Card ID(f+IMSI): **(%%)f460240210507483 =460240210507483 | ||
382 | |||
383 | (% style="color:blue" %)**Version:** | ||
384 | |||
385 | These bytes include the hardware and software version. | ||
386 | |||
387 | (% style="color:#037691" %)**Higher byte:**(%%) Specify Sensor Model: 0x63 for CS01-CB/CS | ||
388 | |||
389 | (% style="color:#037691" %)**Lower byte:**(%%) Specify the software version: 0x6e=110, means firmware version 1.1.0 | ||
390 | |||
391 | |||
392 | (% style="color:blue" %)**Battery Info:** | ||
393 | |||
394 | Check the battery voltage for CS01-CB/CS. | ||
395 | |||
396 | Ex1: 0x0CC6&0x3FFF = 3270mV | ||
397 | |||
398 | Ex2: 0x0B49&0x3FFF = 2889mV | ||
399 | |||
400 | |||
401 | (% style="color:blue" %)**Signal Strength:** | ||
402 | |||
403 | NB-IoT Network signal Strength. | ||
404 | |||
405 | **Ex1: 0x16 = 24** | ||
406 | |||
407 | **0** -113dBm or less | ||
408 | |||
409 | **1** -111dBm | ||
410 | |||
411 | **2...30** -109dBm... -53dBm | ||
412 | |||
413 | **31** -51dBm or greater | ||
414 | |||
415 | **99** Not known or not detectable | ||
416 | |||
417 | |||
418 | (% style="color:blue" %)**GPIO_EXIT Level:** | ||
419 | |||
420 | GPIO_EXTI is used as Interrupt Pin. | ||
421 | |||
422 | **Example:** | ||
423 | |||
424 | 01 (H): GPIO_EXTI pin is high level. | ||
425 | |||
426 | 00 (L): GPIO_EXTI pin is low level. | ||
427 | |||
428 | Level of PA4 pin. (0: Low level 1: High level) | ||
429 | |||
430 | |||
431 | (% style="color:blue" %)**GPIO_EXIT Flag:** | ||
432 | |||
433 | This data field shows if this packet is generated by **Interrupt Pin** or not. | ||
434 | |||
435 | Note: The Interrupt Pin is a separate pin in the screw terminal. | ||
436 | |||
437 | **Example:** | ||
438 | |||
439 | 0x00: Normal uplink packet. | ||
440 | |||
441 | 0x01: Interrupt Uplink Packet. | ||
442 | |||
443 | |||
444 | (% style="color:blue" %)**Current_alarm:** | ||
445 | |||
446 | **Current_alarm** is a combination for Cur1L_status, Cur1H_status, Cur2L_status, Cur2H_status, Cur3L_status, Cur3H_status, Cur4L_status and Cur4H_status. | ||
447 | |||
448 | Totally 1bytes as below: | ||
449 | |||
450 | (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:480px" %) | ||
451 | |=(% style="width: 60px;background-color:#4F81BD;color:white" %)((( | ||
452 | **Bit7** | ||
453 | )))|=(% style="width: 60px;background-color:#4F81BD;color:white" %)Bit6|=(% style="width: 60px;background-color:#4F81BD;color:white" %)Bit5|=(% style="width: 60px; background-color: #4F81BD;color:white" %)Bit4|=(% style="width: 60px; background-color: #4F81BD;color:white" %)Bit3|=(% style="width: 60px; background-color: #4F81BD;color:white" %)Bit2|=(% style="width: 60px; background-color: #4F81BD;color:white" %)Bit1|=(% style="width: 60px; background-color: #4F81BD;color:white" %)Bit0 | ||
454 | |(% style="width:99px" %)((( | ||
455 | Cur1L | ||
456 | )))|(% style="width:69px" %)((( | ||
457 | Cur1H | ||
458 | )))|(% style="width:130px" %)((( | ||
459 | Cur2L | ||
460 | )))|(% style="width:194px" %)((( | ||
461 | Cur2H | ||
462 | )))|(% style="width:106px" %)((( | ||
463 | Cur3L | ||
464 | )))|(% style="width:97px" %)((( | ||
465 | Cur3H | ||
466 | )))|(% style="width:97px" %)((( | ||
467 | Cur4L | ||
468 | )))|(% style="width:97px" %)((( | ||
469 | Cur4H | ||
470 | ))) | ||
471 | |||
472 | **Cur1L_status:** | ||
473 | |||
474 | When setting the current threshold alarm of channel 1, this flag is True when it is lower than the set threshold, otherwise it is False. | ||
475 | |||
476 | **Cur1H_status:** | ||
477 | |||
478 | When setting the current threshold alarm of channel 1, this flag is True when it is higher than the set threshold, otherwise it is False. | ||
479 | |||
480 | **Cur2L_status:** | ||
481 | |||
482 | When setting the current threshold alarm of channel 2, this flag is True when it is lower than the set threshold, otherwise it is False. | ||
483 | |||
484 | **Cur2H_status:** | ||
485 | |||
486 | When setting the current threshold alarm of channel 2, this flag is True when it is higher than the set threshold, otherwise it is False. | ||
487 | |||
488 | **Cur3L_status:** | ||
489 | |||
490 | When setting the current threshold alarm of channel 3, this flag is True when it is lower than the set threshold, otherwise it is False. | ||
491 | |||
492 | **Cur3H_status:** | ||
493 | |||
494 | When setting the current threshold alarm of channel 3, this flag is True when it is higher than the set threshold, otherwise it is False. | ||
495 | |||
496 | **Cur4L_status:** | ||
497 | |||
498 | When setting the current threshold alarm of channel 4, this flag is True when it is lower than the set threshold, otherwise it is False. | ||
499 | |||
500 | **Cur4H_status:** | ||
501 | |||
502 | When setting the current threshold alarm of channel 4, this flag is True when it is higher than the set threshold, otherwise it is False. | ||
503 | |||
504 | |||
505 | (% style="color:blue" %)**Latitude:** | ||
506 | |||
507 | EX1:** **0x00000000 ~/~/ Locating fails or is not enabled. | ||
508 | |||
509 | EX2:** **0x015a771e(H)=22705950(D)=22.705950 | ||
510 | |||
511 | |||
512 | (% style="color:blue" %)**Longitude:** | ||
513 | |||
514 | EX1:** **0x00000000 ~/~/ Locating fails or is not enabled. | ||
515 | |||
516 | EX2:** **0x114242500(H)=114242500(D)=114.242500 | ||
517 | |||
518 | |||
519 | (% style="color:blue" %)**GPS_Timestamp:** | ||
520 | |||
521 | EX1: 0x00000000 ~/~/ The value is "1970-01-01T00:00:00Z" in JSON format. The initial GPS time is not refreshed if GPS positioning is disabled or fails. | ||
522 | |||
523 | EX2: 0x6682595d =1719818589 = 2024-07-01 15:23:09 | ||
524 | |||
525 | |||
526 | (% class="wikigeneratedid" id="HCurrentchannel1:" %) | ||
527 | (% style="color:blue" %)**Current channel 1:** | ||
528 | |||
529 | Channel 1 for measuring AC current. Resolution 0.001A. | ||
530 | |||
531 | Ex1: 0x000fff =4095/1000= 4.095A | ||
532 | |||
533 | EX2: 0x002710 =10000/1000=10.000A | ||
534 | |||
535 | |||
536 | (% class="wikigeneratedid" id="HCurrentchannel2:" %) | ||
537 | (% style="color:blue" %)**Current channel 2:** | ||
538 | |||
539 | Channel 2 for measuring AC current. Resolution 0.001A. | ||
540 | |||
541 | Ex1: 0x000ff2 =4082/1000= 4.082A | ||
542 | |||
543 | Ex2: 0x002904 =10500/1000=10.500A | ||
544 | |||
545 | |||
546 | (% class="wikigeneratedid" id="HCurrentchannel3:" %) | ||
547 | (% style="color:blue" %)**Current channel 3:** | ||
548 | |||
549 | Channel 3 for measuring AC current. Resolution 0.001A. | ||
550 | |||
551 | Ex1: 0x00103c =4156/1000=4.156A | ||
552 | |||
553 | Ex2: 0x002AF8 =11000/1000=11.000A | ||
554 | |||
555 | |||
556 | (% class="wikigeneratedid" id="HCurrentchannel4:" %) | ||
557 | (% style="color:blue" %)**Current channel 4:** | ||
558 | |||
559 | Channel 4 for measuring AC current. Resolution 0.001A. | ||
560 | |||
561 | Ex1: 0x000002 =2/1000=0.002A | ||
562 | |||
563 | Ex2: 0x002EE0 =12000/1000=12.000A | ||
564 | |||
565 | |||
566 | (% style="color:blue" %)**TimeStamp: ** | ||
567 | |||
568 | Unit TimeStamp Example: 6784fbb8(H) = 1736768440(D) | ||
569 | |||
570 | Put the decimal value into this link(https://www.epochconverter.com/) to get the time. | ||
571 | |||
572 | |||
573 | ==== 2.3.2.2 MOD~=2 (Continuous Sampling Mode) ==== | ||
574 | |||
575 | |||
576 | (% style="color:red" %)**Notice: The payload is determined by the command setting:** | ||
577 | |||
578 | **Example: ** | ||
579 | |||
580 | (% style="color:blue" %)**AT+MOD=2,60,5,0**(%%) | ||
581 | CS01-CB/CS read 4 channels data every 1 minutes. When it reads 5 groups, CS01-CB/CS will send an uplink. So the uplink interval is 5 minutes. Each uplink will include 5 groups of sensor value. Each Group include 4 channels data. | ||
582 | |||
583 | (% style="color:#4472c4" %)**f868508065601703f460240210507483636e0c861c000000000000000000000000000067861c92000e5a000e57000e7f000002000e5d000e5b000e84000002000e65000e64000e8d000001000e6d000e6a000e93000001000e6f000e70000e9a000001** | ||
584 | |||
585 | [[image:image-20241217160636-2.png]] | ||
586 | |||
587 | If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NB sensor uplink data. | ||
588 | |||
589 | [[image:image-20250114161630-8.png]] | ||
590 | |||
591 | |||
592 | === 2.3.3 General Json Format(Type~=5) === | ||
593 | |||
594 | ==== 2.3.3.1 MOD~=1 (General acquisition mode) ==== | ||
595 | |||
596 | |||
597 | (% style="color:#4472c4" %)**{"IMEI":"868508065601703","IMSI":"460240210507483","Model":"CS01-CB","current_alarm":"NNNN","current_chan1":10.417,"current_chan2":10.367,"current_chan3":10.553,"current_chan4":0.001,"battery":3.274,"signal":24,"time":"2025-01-13T11:31:53Z","latitude":0.000000,"longitude":0.000000,"gps_time":"1970-01-01T00:00:00Z","1":[0.000,0.000,0.000,0.000,"2025-01-13T11:02:31Z"],"2":[0.000,0.000,0.000,0.000,"2025-01-13T10:47:31Z"],"3":[0.000,0.000,0.000,0.000,"2025-01-13T10:32:31Z"],"4":[0.000,0.000,0.000,0.000,"2025-01-13T10:17:31Z"],"5":[0.000,0.000,0.000,0.000,"2025-01-13T10:02:31Z"],"6":[0.000,0.000,0.000,0.000,"2025-01-13T09:33:41Z"],"7":[0.000,0.000,0.000,0.000,"2025-01-13T09:18:41Z"],"8":[0.000,0.000,0.000,0.000,"2025-01-13T08:28:53Z"]}** | ||
598 | |||
599 | If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NB sensor uplink data. | ||
600 | |||
601 | [[image:image-20250114152702-2.png]] | ||
602 | |||
603 | (% style="color:red" %)**Notice, from above payload:** | ||
604 | |||
605 | * Current_alarm, Current_chan1, Current_chan2, Current_chan3, Current_chan4, Battery, Signal, time, latitude, longitude & gps_time are the value at uplink time. | ||
606 | |||
607 | * Json entry 1 ~~ 8 are the last 1 ~~ 8 sampling data as specify by (% style="color:#037691" %)**AT+CLOCKLOG=1,65535,15,8 ** (%%)Command. Each entry includes (from left to right): Current_chan1, Current_chan2, Current_chan3, Current_chan4, Sampling time. | ||
608 | |||
609 | * For "Current_alarm" : NNNN, four characters indicate the alarm status of four channels. (% style="color:#037691" %)**N **(%%)indicates a non-alarm, (% style="color:#037691" %)**H**(%%) indicates a high-threshold alarm, and (% style="color:#037691" %)**L**(%%) indicates a low-threshold alarm. | ||
610 | |||
611 | ==== 2.3.3.2 MOD~=2 (Continuous Sampling Mode) ==== | ||
612 | |||
613 | |||
614 | (% style="color:red" %)**Notice: The payload is determined by the command setting:** | ||
615 | |||
616 | **Example: ** | ||
617 | |||
618 | (% style="color:blue" %)**AT+MOD=2,60,5,0**(%%) | ||
619 | CS01-CB/CS read 4 channels data every 1 minutes. When it reads 5 groups, CS01-CB/CS will send an uplink. So the uplink interval is 5 minutes. Each uplink will include 5 groups of sensor value. Each Group include 4 channels data. | ||
620 | |||
621 | (% style="color:#4472c4" %)**{"IMEI":"868508065601703","IMSI":"460240210507483","Model":"CS01-CB","interrupt":0,"interrupt_level":0,"battery":3.206,"signal":28,"time":"2025-01-14T07:32:14Z","latitude":0.000000,"longitude":0.000000,"gps_time":"1970-01-01T00:00:00Z","Data":"(3.990,3.988,4.032,0.002)(3.975,3.974,4.018,0.001)(3.986,3.984,4.028,0.001)(3.996,3.993,4.034,0.001)(3.992,3.990,4.034,0.002)"}** | ||
622 | |||
623 | If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NB sensor uplink data. | ||
624 | |||
625 | [[image:image-20250114153624-7.png]] | ||
626 | |||
627 | |||
628 | === 2.3.4 ThingsBoard Payload(Type~=3) (The format will be adjusted later) === | ||
629 | |||
630 | |||
631 | Type3 payload special design for ThingsBoard, it will also configure other default server to ThingsBoard. | ||
632 | |||
633 | |||
634 | ==== 2.3.4.1 MOD~=1 (General acquisition mode) ==== | ||
635 | |||
636 | |||
637 | (% style="color:#4472c4" %)**{ | ||
638 | "topic": "002_CB", | ||
639 | "payload": { | ||
640 | "IMEI": "868508065601703", | ||
641 | "IMSI": "460240210507483", | ||
642 | "Model": "CS01-CB", | ||
643 | "current_alarm": "NNNN", | ||
644 | "current_chan1": 15.628, | ||
645 | "current_chan2": 15.54, | ||
646 | "current_chan3": 15.809, | ||
647 | "current_chan4": 0.001, | ||
648 | "battery": 3.227, | ||
649 | "signal": 25, | ||
650 | "time": "2025-01-13T11:46:27Z", | ||
651 | "latitude": 0.0, | ||
652 | "longitude": 0.0, | ||
653 | "gps_time": "1970-01-01T00:00:00Z", | ||
654 | "1": [0.0, 0.0, 0.0, 0.0, "2025-01-13T11:02:31Z"], | ||
655 | "2": [0.0, 0.0, 0.0, 0.0, "2025-01-13T10:47:31Z"], | ||
656 | "3": [0.0, 0.0, 0.0, 0.0, "2025-01-13T10:32:31Z"], | ||
657 | "4": [0.0, 0.0, 0.0, 0.0, "2025-01-13T10:17:31Z"], | ||
658 | "5": [0.0, 0.0, 0.0, 0.0, "2025-01-13T10:02:31Z"], | ||
659 | "6": [0.0, 0.0, 0.0, 0.0, "2025-01-13T09:33:41Z"], | ||
660 | "7": [0.0, 0.0, 0.0, 0.0, "2025-01-13T09:18:41Z"], | ||
661 | "8": [0.0, 0.0, 0.0, 0.0, "2025-01-13T08:28:53Z"] | ||
662 | } | ||
663 | }** | ||
664 | |||
665 | [[image:image-20250114152821-4.png]] | ||
666 | |||
667 | |||
668 | ==== 2.3.4.2 MOD~=2 (Continuous Sampling Mode) ==== | ||
669 | |||
670 | |||
671 | (% style="color:#4472c4" %)**{ | ||
672 | "topic": "004_NB", | ||
673 | "payload": { | ||
674 | "IMEI": "868508065601703", | ||
675 | "IMSI": "460240210507483", | ||
676 | "Model": "CS01-CB", | ||
677 | "interrupt": 0, | ||
678 | "interrupt_level": 0, | ||
679 | "battery": 3.233, | ||
680 | "signal": 30, | ||
681 | "time": "2025-01-21T08:15:53Z", | ||
682 | "latitude": 0, | ||
683 | "longitude": 0, | ||
684 | "gps_time": "1970-01-01T00:00:00Z", | ||
685 | "Data": "(11.187,11.168,11.245,0.002)(11.189,11.165,11.238,0.002)(11.165,11.159,11.236,0.002)(11.173,11.148,11.220,0.000)(11.146,11.125,11.200,0.002)" | ||
686 | }** | ||
687 | |||
688 | (% style="color:#4472c4" %)**}** | ||
689 | |||
690 | [[image:image-20250121162210-1.png]] | ||
691 | |||
692 | |||
693 | === 2.3.5 ThingSpeak Payload(Type~=1) === | ||
694 | |||
695 | |||
696 | MOD=2 does not support ThingSpeak platform requirement, (% style="color:red" %)**only MOD=1.** | ||
697 | |||
698 | * **MOD=1 (General acquisition mode)** | ||
699 | |||
700 | This payload meets ThingSpeak platform requirement. It includes only six fields. Form 1~~6 are: | ||
701 | |||
702 | Current 1, Current 2, Current 3, Current 4, Battery, Signal. This payload type only valid for ThingSpeak Platform. | ||
703 | |||
704 | (% style="color:#4472c4" %)**field1=Current 1 value&field2=Current 2 value&field3=Current 3 value&field4=Current 4 value&field5=Battery value&field6=Signal value** | ||
705 | |||
706 | [[image:image-20250114152907-5.png||height="488" width="742"]] | ||
707 | |||
708 | [[image:image-20250114152924-6.png||height="487" width="741"]] | ||
709 | |||
710 | |||
711 | == 2.5 Firmware Change Log == | ||
712 | |||
713 | |||
714 | Firmware download link:** **[[link>>https://www.dropbox.com/scl/fo/ztlw35a9xbkomu71u31im/AC1iaLTaMt5ZmzJAqu19ihU/LTE-M/CS01-CB?rlkey=ojjcsw927eaow01dgooldq3nu&subfolder_nav_tracking=1&dl=0]] | ||
715 | |||
716 | |||
717 | = 3. Configure CS01-CB/CS = | ||
718 | |||
719 | == 3.1 Configure Methods == | ||
720 | |||
721 | |||
722 | CS01-CB/CS supports below configure method: | ||
723 | |||
724 | * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. | ||
725 | |||
726 | * AT Command via UART Connection : See [[UART Connection>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. | ||
727 | |||
728 | == 3.2 Serial Access Password == | ||
729 | |||
730 | |||
731 | After the Bluetooth or UART connection is successful, use the Serial Access Password to enter the AT command window. | ||
732 | |||
733 | The label on the box of the node will print the initial password: AT+PIN=**xxxxxx**, and directly use the six-digit password to access the AT instruction window. | ||
734 | |||
735 | [[image:image-20240826164647-1.png]] | ||
736 | |||
737 | |||
738 | If you need to change the password, use **AT+PWORD=**xxxxxx (6 characters), NB nodes only support lowercase letters. | ||
739 | |||
740 | [[image:image-20240826164655-2.png]] | ||
741 | |||
742 | |||
743 | (% style="color:red" %)**Note: After entering the command, you need to add a line break, and you can also set automatic line breaks in the Bluetooth tool or UART connection tool.** | ||
744 | |||
745 | [[image:image-20240826164700-3.png]] | ||
746 | |||
747 | |||
748 | == 3.3 AT Commands Set == | ||
749 | |||
750 | |||
751 | AT+<CMD>? : Help on <CMD> | ||
752 | |||
753 | AT+<CMD> : Run <CMD> | ||
754 | |||
755 | AT+<CMD>=<value> : Set the value | ||
756 | |||
757 | AT+<CMD>=? : Get the value | ||
758 | |||
759 | |||
760 | (% style="color:blue" %)**General**(%%) (% style="color:blue" %)**Commands** | ||
761 | |||
762 | AT+MODEL : Get module information | ||
763 | |||
764 | ATZ : Trig a reset of the MCU | ||
765 | |||
766 | AT+DEUI : Get or set the Device ID | ||
767 | |||
768 | AT+SLEEP : Get or set the sleep status | ||
769 | |||
770 | AT+DEBUG : Set more info output | ||
771 | |||
772 | AT+SERVADDR: Get or Set the Server address | ||
773 | |||
774 | AT+TDC : Get or set the application data transmission interval in s | ||
775 | |||
776 | AT+INTMOD : Get or Set the trigger interrupt mode (0:input,1:falling or rising,2:falling,3:rising) | ||
777 | |||
778 | AT+APN : Get or set the APN | ||
779 | |||
780 | AT+3V3T : Get or Set extend the time of 3V3 power | ||
781 | |||
782 | AT+PROPORTION: Set the current proportion parameter | ||
783 | |||
784 | AT+PRO : Get or Set usage agreement (1:COAP,2:UDP,3:MQTT,4:TCP) | ||
785 | |||
786 | AT+RXDL : Get or Set the receiving time | ||
787 | |||
788 | AT+GETSENSORVALUE : Returns the current sensor measurement | ||
789 | |||
790 | AT+DNSCFG : Get or Set DNS Server | ||
791 | |||
792 | AT+CSQTIME : Get or Set the time to join the network | ||
793 | |||
794 | AT+GDNS : Get or Set the DNS | ||
795 | |||
796 | AT+TLSMOD : Get or Set the TLS mode | ||
797 | |||
798 | AT+IPTYPE : Set the IPv4 or IPv6 | ||
799 | |||
800 | AT+QSW : Power on and power off BG95 module | ||
801 | |||
802 | AT+MOD: Get or Set work mode | ||
803 | |||
804 | AT+ENCHANNEL: Get or set enable or disable of four channels | ||
805 | |||
806 | AT+CCAL: Get or set calibration value of current channel | ||
807 | |||
808 | AT+CALARM: Get or set current alarm threshold | ||
809 | |||
810 | AT+ATDC: Get or set the application minimum alarm interval in min | ||
811 | |||
812 | AT+QBAND: Get or set Frequency Band | ||
813 | |||
814 | AT+IOTMOD: Configure Network Category to be Searched for under LTE RAT | ||
815 | |||
816 | AT+CLOCKLOG: Enable or Disable Clock Logging | ||
817 | |||
818 | AT+DOWNTE: Get or set the conversion between the standard version and 1T version downlinks | ||
819 | |||
820 | AT+TIMESTAMP : Get or Set UNIX timestamp in second | ||
821 | |||
822 | |||
823 | (% style="color:blue" %)**MQTT Management** | ||
824 | |||
825 | AT+CLIENT : Get or Set the MQTT clientID | ||
826 | |||
827 | AT+UNAME : Get or Set the MQTT Username | ||
828 | |||
829 | AT+PWD : Get or Set the MQTT password | ||
830 | |||
831 | AT+PUBTOPIC: Get or set MQTT publishing topic | ||
832 | |||
833 | AT+SUBTOPIC: Get or set MQTT subscription topic | ||
834 | |||
835 | AT+MQOS : Set the QoS level of MQTT | ||
836 | |||
837 | |||
838 | (% style="color:blue" %)**Coap Management** | ||
839 | |||
840 | AT+URI1: Get or set CoAP option 1 | ||
841 | |||
842 | AT+URI2: Get or set CoAP option 2 | ||
843 | |||
844 | AT+URI3: Get or set CoAP option 3 | ||
845 | |||
846 | AT+URI4: Get or set CoAP option 4 | ||
847 | |||
848 | AT+URI5: Get or set CoAP option 5 | ||
849 | |||
850 | AT+URI6: Get or set CoAP option 6 | ||
851 | |||
852 | AT+URI7: Get or set CoAP option 7 | ||
853 | |||
854 | AT+URI8: Get or set CoAP option 8 | ||
855 | |||
856 | |||
857 | (% style="color:blue" %)**GPS** | ||
858 | |||
859 | AT+GNSST : Extend the time to turn on GNSS | ||
860 | |||
861 | AT+GPS : Turn off and on GPS | ||
862 | |||
863 | AT+GTDC : Get or set GPS positioning interval in units of h | ||
864 | |||
865 | |||
866 | (% style="color:blue" %)**Information ** | ||
867 | |||
868 | AT+PWORD : Get or set the System password | ||
869 | |||
870 | AT+FDR1 : Reset parameters to factory default values except for passwords | ||
871 | |||
872 | AT+FDR : Reset Parameters to Factory Default | ||
873 | |||
874 | AT+CFG : Print all settings | ||
875 | |||
876 | AT+CDP : Read or Clear cached data | ||
877 | |||
878 | AT+LDATA : Get the last upload data | ||
879 | |||
880 | AT+GETLOG : Print serial port logs | ||
881 | |||
882 | |||
883 | == 3.4 Test Uplink and Change Update Interval == | ||
884 | |||
885 | |||
886 | By default, Sensor will send uplinks **every 2 hours.** | ||
887 | |||
888 | User can use below commands to change the uplink interval. | ||
889 | |||
890 | (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+TDC** (%%) | ||
891 | |||
892 | Example: AT+TDC=7200 ~/~/ Set Update Interval to 7200 seconds | ||
893 | |||
894 | (% style="color:blue" %)**Downlink Commands: **(% style="color:#037691" %)**0x01** | ||
895 | |||
896 | Format: Command Code (0x01) followed by 3 bytes. | ||
897 | |||
898 | Example: 12 hours= 43200 seconds 43200(D)=0xA8C0(H) | ||
899 | |||
900 | Downlink Payload: **01 00 A8 C0** ~/~/ AT+TDC=43200, Set Update Interval to 12 hours. | ||
901 | |||
902 | (% style="color:red" %)**Note: User can also push the button for more than 1 seconds to activate an uplink.** | ||
903 | |||
904 | |||
905 | == 3.5 Set the receiving time == | ||
906 | |||
907 | |||
908 | Feature: Extend the receiving time | ||
909 | |||
910 | (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+RXDL** | ||
911 | |||
912 | Example: AT+RXDL=1000 ~/~/ Set the receiving time delay to 1000ms | ||
913 | |||
914 | (% style="color:blue" %)**Downlink Commands: **(% style="color:#037691" %)**0x03** | ||
915 | |||
916 | Format: Command Code (0x03) followed by 3 bytes. | ||
917 | |||
918 | Example: Downlink Payload: **03 00 03 E8 **~/~/ AT+RXDL=1000 | ||
919 | |||
920 | |||
921 | == 3.6 Reset == | ||
922 | |||
923 | |||
924 | Feature: Trig a reset of the MCU. | ||
925 | |||
926 | (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**ATZ** | ||
927 | |||
928 | (% style="color:blue" %)**Downlink Commands: **(% style="color:#037691" %)**0x04FF** | ||
929 | |||
930 | |||
931 | == 3.7 Set Power Output Duration == | ||
932 | |||
933 | |||
934 | Control the output duration 3V3(pin of VBAT_OUT) . Before each sampling, device will | ||
935 | |||
936 | ~1. first enable the power output to external sensor, | ||
937 | |||
938 | 2. keep it on as per duration, read sensor value and construct uplink payload | ||
939 | |||
940 | 3. final, close the power output. | ||
941 | |||
942 | (% style="color:blue" %)**AT Command: AT+3V3T** | ||
943 | |||
944 | (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) | ||
945 | |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** | ||
946 | |(% style="width:154px" %)AT+3V3T=?|(% style="width:196px" %)Show 3V3 open time.|(% style="width:157px" %)0 (default) | ||
947 | OK | ||
948 | |(% style="width:154px" %)AT+3V3T=1000|(% style="width:196px" %)Close after a delay of 1000 milliseconds.|(% style="width:157px" %)OK | ||
949 | |(% style="width:154px" %)AT+3V3T=0|(% style="width:196px" %)Always turn on the power supply of 3V3 pin.|(% style="width:157px" %)OK | ||
950 | |(% style="width:154px" %)AT+3V3T=65535|(% style="width:196px" %)Always turn off the power supply of 3V3 pin.|(% style="width:157px" %)OK | ||
951 | |||
952 | (% style="color:blue" %)**Downlink Command: 0x07**(%%) | ||
953 | Format: Command Code (0x07) followed by 3 bytes. | ||
954 | |||
955 | The first byte is 01,the second and third bytes are the time to turn on. | ||
956 | |||
957 | * Example 1: Downlink Payload: 07 01 00 00 **~-~-->** AT+3V3T=0 | ||
958 | * Example 2: Downlink Payload: 07 01 01 F4 **~-~-->** AT+3V3T=500 | ||
959 | * Example 3: Downlink Payload: 07 01 FF FF **~-~-->** AT+3V3T=65535 | ||
960 | |||
961 | == 3.8 Trigger an uplink by external interrupt == | ||
962 | |||
963 | |||
964 | LDS25-CB has an external trigger interrupt function. Users can use the GPIO_EXTI pin to trigger the upload of data packets. | ||
965 | |||
966 | (% style="color:blue" %)**AT command:** | ||
967 | |||
968 | * (% style="color:#037691" %)**AT+INTMOD **(%%) ~/~/ Set the trigger interrupt mode | ||
969 | |||
970 | * (% style="color:#037691" %)**AT+INTMOD=0 **(%%) ~/~/ Disable Interrupt | ||
971 | |||
972 | * (% style="color:#037691" %)**AT+INTMOD=1 **(%%) ~/~/ Trigger by rising and falling edge | ||
973 | |||
974 | * (% style="color:#037691" %)**AT+INTMOD=2 **(%%) ~/~/ Trigger by falling edge | ||
975 | |||
976 | * (% style="color:#037691" %)**AT+INTMOD=3 **(%%) ~/~/ Trigger by rising edge | ||
977 | |||
978 | (% style="color:blue" %)**Downlink Commands: **(% style="color:#037691" %)**0x06** | ||
979 | |||
980 | Format: Command Code (0x06) followed by 3 bytes. | ||
981 | |||
982 | Example1: Downlink Payload: **06 00 00 01 **~/~/ AT+INTMOD=1 | ||
983 | |||
984 | Example2: Downlink Payload: **06 00 00 03 **~/~/ AT+INTMOD=3 | ||
985 | |||
986 | |||
987 | == 3.9 Set the QoS level == | ||
988 | |||
989 | |||
990 | This command is used to set the QoS level of **MQTT**. | ||
991 | |||
992 | (% style="color:blue" %)**AT command:** | ||
993 | |||
994 | * (% style="color:#037691" %)**AT+MQOS=xx**(%%)** **~/~/ 0~~2 | ||
995 | |||
996 | (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x07(%%)** | ||
997 | |||
998 | Format: Command Code (0x07) followed by 1 byte. | ||
999 | |||
1000 | **Ex1:** Downlink payload: **0x0700** ~/~/ AT+MQOS=0 | ||
1001 | |||
1002 | **Ex2:** Downlink payload: **0x0701** ~/~/ AT+MQOS=1 | ||
1003 | |||
1004 | |||
1005 | == 3.10 Clock logging(Takes effect only when AT+MOD~=1) == | ||
1006 | |||
1007 | |||
1008 | Sometimes when we deploy lots of end nodes in field. We want all sensors sample data at the same time, and upload these data together for analyze. In such case, we can use clock loging feature. | ||
1009 | |||
1010 | We can use this command to set the start time of data recording and the time interval to meet the requirements of the specific collection time of data. | ||
1011 | |||
1012 | (% style="color:blue" %)**AT command:**(%%)** (% style="color:#037691" %)AT+CLOCKLOG=a,b,c,d(%%)** | ||
1013 | |||
1014 | (% style="color:#037691" %)**a: **(%%)**0:** Disable Clock logging. ** 1: **Enable Clock Logging | ||
1015 | |||
1016 | (% style="color:#037691" %)**b:**(%%)** **Specify First sampling start second: range **(0 ~~ 3599, 65535) ** ~/~/ (% style="color:red" %)**Note: **(%%)If parameter b is set to 65535, the log period starts after the node accesses the network and sends packets. | ||
1017 | |||
1018 | (% style="color:#037691" %)**c: **(%%)Specify the sampling interval: range **(0 ~~ 255 minutes)** | ||
1019 | |||
1020 | (% style="color:#037691" %)**d:**(%%)** **How many entries should be uplink on every TDC **(max 32)** | ||
1021 | |||
1022 | (% style="color:red" %)**Note: To disable clock recording, set the following parameters: AT+CLOCKLOG=1,65535,0,0** | ||
1023 | |||
1024 | [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SPH01-NB_NB-IoT_Soil_pH_Sensor_User_Manual/WebHome/image-20240315141254-1.png?rev=1.1||alt="image-20240315141254-1.png"]] | ||
1025 | |||
1026 | **Example:** | ||
1027 | |||
1028 | **AT+CLOCKLOG=1,65535,1,5** | ||
1029 | |||
1030 | After the node sends the first packet, data is recorded to the memory at intervals of 1 minute. For each TDC uplink, the uplink load will include: battery information + the last 5 memory records (payload + timestamp). | ||
1031 | |||
1032 | |||
1033 | [[image:image-20250114175342-9.png||height="604" width="773"]] | ||
1034 | |||
1035 | (% class="wikigeneratedid" %) | ||
1036 | (% style="color:red" %)**Note: Users need to synchronize the server time before configuring this command. If the server time is not synchronized before this command is configured, the command takes effect only after the node is reset.** | ||
1037 | |||
1038 | (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x08(%%)** | ||
1039 | |||
1040 | Format: Command Code (0x08) followed by 5 bytes. | ||
1041 | |||
1042 | * **Example 1**: Downlink Payload:** 08 01 FFFF 0F 08** ~/~/ Set SHT record time: AT+CLOCKLOG=1,65535,15,8 | ||
1043 | * **Example 2**: Downlink Payload:** 08 01 04B0 0F 08** ~/~/ Set SHT record time: AT+CLOCKLOG=1,1200,15,8 | ||
1044 | |||
1045 | (% style="color:red" %)**Note: When entering the downlink payload, there must be no Spaces between bytes.** | ||
1046 | |||
1047 | |||
1048 | == 3.11 Set the TLS mode == | ||
1049 | |||
1050 | |||
1051 | Refer to this link ([[MQTT Connection to send data to Tago.io>>http://wiki.dragino.com/xwiki/bin/view/Main/General%20Manual%20for%20-CB%20%2C%20-CS%20models/#H3.7Tago.io28viaMQTT29]])to use the TLS mode. | ||
1052 | |||
1053 | (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+TLSMOD** | ||
1054 | |||
1055 | **Example 1: ** AT+TLSMOD=0,0 ~/~/ Disable TLS Mode. | ||
1056 | |||
1057 | **Example 2:** AT+TLSMOD=1,0 ~/~/ No authentication | ||
1058 | |||
1059 | AT+TLSMOD=1,1 ~/~/ Perform server authentication | ||
1060 | |||
1061 | AT+TLSMOD=1,2 ~/~/ Perform server and client authentication if requested by the remote server | ||
1062 | |||
1063 | (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x09(%%)** | ||
1064 | |||
1065 | Format: Command Code (0x09) followed by 2 bytes. | ||
1066 | |||
1067 | Example1: Downlink Payload: **09 00 00 **~/~/ AT+TLSMOD=0,0 | ||
1068 | |||
1069 | Example2: Downlink Payload: **09 01 02 **~/~/ AT+TLSMOD=1,2 | ||
1070 | |||
1071 | |||
1072 | == 3.12 Set GNSS open time == | ||
1073 | |||
1074 | |||
1075 | Extend the time to turn on GNSS. The automatic GPS location time is extended when the node is activated. | ||
1076 | |||
1077 | (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GNSST** | ||
1078 | |||
1079 | Example: AT+GNSST=30 ~/~/ Set the GPS positioning time to 30 seconds | ||
1080 | |||
1081 | (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x10(%%)** | ||
1082 | |||
1083 | Format: Command Code (0x10) followed by 2 bytes. | ||
1084 | |||
1085 | Example: Downlink Payload: **10 00 1E **~/~/ AT+GNSST=30 | ||
1086 | |||
1087 | |||
1088 | == 3.13 Turn on/off GPS == | ||
1089 | |||
1090 | |||
1091 | (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GPS ** | ||
1092 | |||
1093 | **Ex1: **AT+GPS=0 ~/~/ Turn off GPS | ||
1094 | |||
1095 | **Ex2: **AT+GPS=1 ~/~/ Turn on GPS | ||
1096 | |||
1097 | (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x11(%%)** | ||
1098 | |||
1099 | Format: Command Code (0x11) followed by 1 byte. | ||
1100 | |||
1101 | Example: Downlink Payload: **11 01 **~/~/ AT+GPS=1 | ||
1102 | |||
1103 | |||
1104 | == 3.14 Set GPS positioning interval == | ||
1105 | |||
1106 | |||
1107 | Feature: Set GPS positioning interval (unit: hour). | ||
1108 | |||
1109 | When GPS is enabled, the node automatically locates and uplinks each time it passes **GTDC time** after activation. | ||
1110 | |||
1111 | (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+GTDC** | ||
1112 | |||
1113 | Example: AT+GTDC=24 ~/~/ Set the GPS positioning interval to 24h. | ||
1114 | |||
1115 | (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x12(%%)** | ||
1116 | |||
1117 | Format: Command Code (0x12) followed by 3 bytes. | ||
1118 | |||
1119 | Example: 24 hours: 24(D)=0x18(H) | ||
1120 | |||
1121 | Downlink Payload: **12 00 00 18 **~/~/ AT+GTDC=24 | ||
1122 | |||
1123 | |||
1124 | == 3.15 Set the search network time == | ||
1125 | |||
1126 | |||
1127 | Feature: Get or Set the time to join the network(unit: minutes). | ||
1128 | |||
1129 | (% style="color:blue" %)**AT Command: **(% style="color:#037691" %)**AT+CSQTIME** | ||
1130 | |||
1131 | Example: AT+CSQTIME=10 ~/~/ Set the search time to 10 minutes. | ||
1132 | |||
1133 | (% style="color:blue" %)**Downlink command:**(%%)** (% style="color:#037691" %)0x13(%%)** | ||
1134 | |||
1135 | Format: Command Code (0x13) followed by 1 byte. | ||
1136 | |||
1137 | Example: Downlink Payload: **13 0A **~/~/ AT+CSQTIME=10 | ||
1138 | |||
1139 | |||
1140 | == 3.16 Set working mode == | ||
1141 | |||
1142 | |||
1143 | Feature, Get or Set working mode. | ||
1144 | |||
1145 | (% style="color:blue" %)**AT Command: AT+MOD** | ||
1146 | |||
1147 | (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) | ||
1148 | |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** | ||
1149 | |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Shows the current working mode|(% style="width:157px" %)1 (default) | ||
1150 | OK | ||
1151 | |(% style="width:154px" %)AT+MOD=2,60,5,0|(% style="width:196px" %)Set working mode 2|(% style="width:157px" %)OK | ||
1152 | |||
1153 | (% style="color:blue" %)**Description of AT instruction for setting working mode 2:** | ||
1154 | |||
1155 | (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) | ||
1156 | |=(% style="width: 155px; background-color:#4F81BD; color: white" %)**Command Example**|=(% style="width: 186.5px; background-color:#4F81BD; color: white" %)**Function**|=(% style="width: 168.5px; background-color:#4F81BD;color: white" %)Parameter | ||
1157 | |(% colspan="1" style="width:158px" %)AT+MOD=1|(% style="width:185px" %)Set General acquisition mode.|(% style="width:165px" %)1:General acquisition mode. | ||
1158 | |(% colspan="1" rowspan="5" style="width:158px" %)((( | ||
1159 | AT+MOD=2,60,5,0 | ||
1160 | )))|(% style="width:185px" %)The first parameter sets the continuous detection mode 2.|(% style="width:165px" %)2: Continuous acquisition mode. | ||
1161 | |(% style="width:185px" %)The second parameter sets the detection sampling interval.|(% style="width:165px" %)((( | ||
1162 | 60: Data were collected every 60 seconds. (Min: 5s) | ||
1163 | ))) | ||
1164 | |(% style="width:185px" %)The third bit parameter sets the number of groups to record data.|(% style="width:165px" %)((( | ||
1165 | After 5 groups of data are collected, the uplink is performed.(Max: 50 groups) | ||
1166 | ))) | ||
1167 | |(% style="width:185px" %)The fourth parameter setting 5V normally open.|(% style="width:165px" %)((( | ||
1168 | 0: Not set 5V normally open | ||
1169 | |||
1170 | 1: Setting 5V normally open (% style="color:red" %)**(High power consumption)** | ||
1171 | ))) | ||
1172 | |(% colspan="2" rowspan="1" style="width:185px" %)(% style="color:red" %)**Note: If the collection interval is very short, that is, a group of data needs to be collected in a few seconds, you are advised to set 5V on normally. The module startup time can be removed, but the power consumption is relatively high.** | ||
1173 | |||
1174 | (% style="color:blue" %)**Downlink Command: 0x0A** | ||
1175 | |||
1176 | Format: Command Code (0x0A) followed by 1 byte or 5 bytes. | ||
1177 | |||
1178 | * Example 1: Downlink Payload: 0A 01 **~-~-->** AT+MOD=1 | ||
1179 | * Example 2: Downlink Payload: 0A 02 00 3C 05 00 **~-~-->** AT+MOD=2,60,5,0 | ||
1180 | |||
1181 | == 3.17 Set the alarm threshold == | ||
1182 | |||
1183 | |||
1184 | Feature, Get or set current alarm threshold. (% style="color:red" %)**(Takes effect only when AT+MOD=1)** | ||
1185 | |||
1186 | (% style="color:red" %)**Note: the units of the third, fifth, seventh, and ninth parameters are mA.** | ||
1187 | |||
1188 | |||
1189 | (% style="color:blue" %)**AT Command: AT+CALARM** | ||
1190 | |||
1191 | (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) | ||
1192 | |=(% style="width: 186px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 191px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 133px; background-color: rgb(79, 129, 189); color: white;" %)Parameter | ||
1193 | |(% colspan="1" rowspan="5" style="width:186px" %)((( | ||
1194 | AT+CALARM= | ||
1195 | |||
1196 | 1,1,10000,0,20000,0,0,0,0 | ||
1197 | |||
1198 | )))|(% style="width:191px" %)The first parameter enables or disables the threshold alarm. |(% style="width:200px" %)0: Not Alarm | ||
1199 | 1: Alarm | ||
1200 | |(% style="width:191px" %)The second and third parameters set "current 1" below threshold alarm or above threshold alarm. |(% style="width:200px" %)((( | ||
1201 | 0,xx: Means if value <xx, Then Alarm | ||
1202 | 1,xx: Means if value >xx, Then Alarm | ||
1203 | |||
1204 | **eg:**1,10000: if value >10000mA(10A), Then Alarm | ||
1205 | ))) | ||
1206 | |(% style="width:191px" %)The fourth and fifth parameters set "current 2" below the threshold alarm or above the threshold alarm. |(% style="width:200px" %)((( | ||
1207 | 0,xx: Means if value <xx, Then Alarm | ||
1208 | 1,xx: Means if value >xx, Then Alarm | ||
1209 | |||
1210 | **eg:**0,20000: if value <20000mA(20A), Then Alarm | ||
1211 | ))) | ||
1212 | |(% style="width:191px" %)The sixth and seventh parameters set "current 3" below the threshold alarm or above the threshold alarm.|(% style="width:200px" %)((( | ||
1213 | 0,0: Means if value <xx, Then Alarm | ||
1214 | 0,0: Means if value >xx, Then Alarm | ||
1215 | |||
1216 | **eg:**0,0: Disable this channel alarm | ||
1217 | ))) | ||
1218 | |(% style="width:191px" %)The eighth and ninth parameters set "current 4" below the threshold alarm or above the threshold alarm.|(% style="width:200px" %)((( | ||
1219 | 0,0: Means if value <xx, Then Alarm | ||
1220 | 0,0: Means if value >xx, Then Alarm | ||
1221 | |||
1222 | **eg:**0,0: Disable this channel alarm | ||
1223 | ))) | ||
1224 | |||
1225 | (% style="color:blue" %)**Downlink Command: 0x0B** | ||
1226 | |||
1227 | Format: Command Code (0x0B) followed by 17 bytes. | ||
1228 | |||
1229 | * Example 1: Downlink Payload: 0B 01 01 00 27 10 00 00 4E 20 00 00 00 00 00 00 00 00 **~-~-->** AT+CALARM=1,1,10000,0,20000,0,0,0,0 =>1(01),1(01),10000(00 27 10),0(00),20000(00 4E 20),0(00),0(00 00 00),0(00),0(00 00 00) | ||
1230 | * Example 2: Downlink Payload: 0B 01 00 00 00 00 00 00 00 00 00 00 03 E8 01 00 07 D0 **~-~-->** AT+CALARM=1,0,0,0,0,0,1000,1,2000 =>1(01),0(00),0(00 00 00),0(00),0(00 00 00),0(00),1000(00 03 E8),1(01),2000(00 07 D0) | ||
1231 | * Example 3: Downlink Payload: 0B 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 **~-~-->** AT+CALARM=0,0,0,0,0,0,0,0,0 =>0(00),0(00),0(00 00 00),0(00),0(00 00 00),0(00),0(00 00 00),0(00),0(00 00 00) | ||
1232 | |||
1233 | Format: The first byte(Command Code ) is 0x0B, the last byte is 0x01 or 0x02, and the middle 9 bytes. | ||
1234 | |||
1235 | When the last byte is 0x01, you can set the first, second, third, fourth and fifth parameters of the AT command. | ||
1236 | |||
1237 | * Example 1: Downlink Payload: 0B 01 01 00 27 10 00 00 4E 20 01**~-~-->** AT+CALARM=1,1,10000,0,20000,0,0,0,0 =>1(01),1(01),10000(00 27 10),0(00),20000(00 4E 20) | ||
1238 | |||
1239 | When the last byte is 0x02, you can set the first, sixth, seventh, eighth and ninth parameters of the AT command. | ||
1240 | |||
1241 | * Example 2: Downlink Payload: 0B 01 00 00 03 E8 01 00 07 D0 02**~-~-->** AT+CALARM=1,0,0,0,0,0,1000,1,2000 =>1(01),0(00),1000(00 03 E8),1(01),2000(00 07 D0) | ||
1242 | |||
1243 | Format: Command Code (0x0B) followed by 9 bytes. | ||
1244 | |||
1245 | * Example 1: Downlink Payload: 0B 01 01 14 01 14 00 00 00 00 **~-~-->** AT+CALARM=1,1,20,1,20,0,0,0,0 (v1.0 version) =>1(01),1(01),20(14),1(01),20(14),0(00),0(00),0(00),0(00) | ||
1246 | * Example 2: Downlink Payload: 0B 01 01 14 01 14 00 00 00 00 **~-~-->** AT+CALARM=1,1,20000,1,20000,0,0,0,0 (Versions after v1.1) =>1(01),1(01),20(14),1(01),20(14),0(00),0(00),0(00),0(00) | ||
1247 | * Example 3: Downlink Payload: 0B 00 00 00 00 00 00 00 00 00 **~-~-->** AT+CALARM=0,0,0,0,0,0,0,0,0 =>0(00),0(00),0(00),0(00),0(00),0(00),0(00),0(00),0(00) | ||
1248 | |||
1249 | == 3.18 Set Alarm Interval == | ||
1250 | |||
1251 | |||
1252 | The shortest time of two Alarm packet(unit: min). The default is 20 minutes. | ||
1253 | |||
1254 | * (% style="color:blue" %)**AT Command:** | ||
1255 | |||
1256 | (% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes. | ||
1257 | |||
1258 | * (% style="color:blue" %)**Downlink Payload:** | ||
1259 | |||
1260 | (% style="color:#037691" %)**0x(0C 1E)**(%%) **~-~--> ** Set AT+ATDC=0x 1E = 30 minutes | ||
1261 | |||
1262 | |||
1263 | == 3.19 Set enable or disable of the measurement channel == | ||
1264 | |||
1265 | |||
1266 | This command can be used when user connects **less than four current sensors**. This command can turn off unused measurement channels to **save battery life**. | ||
1267 | |||
1268 | (% style="color:blue" %)**AT Command: AT+ENCHANNEL** | ||
1269 | |||
1270 | (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %) | ||
1271 | |=(% style="width: 185px; background-color: #4F81BD; color: white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD; color: white" %)**Function**|=(% style="width: 122px; background-color: #4F81BD; color: white" %)**Response** | ||
1272 | |(% style="width:199px" %)AT+ENCHANNEL=?|(% style="width:199px" %)Get enabled channels.|(% style="width:150px" %)1,1,1,1 (default) | ||
1273 | OK | ||
1274 | |(% style="width:199px" %)AT+ENCHANNEL=1,1,1,0|(% style="width:199px" %)Channel 4 disabled.|(% style="width:150px" %)OK | ||
1275 | |(% style="width:199px" %)AT+ENCHANNEL=1,1,0,0|(% style="width:199px" %)Channel 3 and 4 disabled.|(% style="width:150px" %)OK | ||
1276 | |||
1277 | (% style="color:blue" %)**Downlink Command: 0x08** | ||
1278 | |||
1279 | Format: Command Code (0x08) followed by 4 bytes. | ||
1280 | |||
1281 | The first byte means the first channel, the second byte means the second channel, the third byte means the third channel, and the fourth byte means the fourth channel.And 1 means enable channel, 0 means disable channel. | ||
1282 | |||
1283 | * Example 1: Downlink Payload: 08 01 01 01 01 **~-~-->** AT+ENCHANNEL=1,1,1,1 ~/~/ All channels are enabled | ||
1284 | |||
1285 | * Example 2: Downlink Payload: 08 01 01 01 00 **~-~-->** AT+ENCHANNEL=1,1,1,0 ~/~/ Channel 4 disabled | ||
1286 | |||
1287 | * Example 3: Downlink Payload: 08 01 01 00 00 **~-~-->** AT+ENCHANNEL=1,1,0,0 ~/~/ Channel 3 and 4 disabled | ||
1288 | |||
1289 | == 3.20 Set the current proportion parameter == | ||
1290 | |||
1291 | |||
1292 | This command sets the processing multiplier of the actual value to get the displayed value. | ||
1293 | |||
1294 | The default current ratio parameter is 100, meaning the displayed value equals the actual value multiplied by 1, which is suitable for a standard 100A current transformer. | ||
1295 | |||
1296 | The valid range is (% style="color:red" %)**0 to 65535 (cannot be set to 0)**(%%). If this value is set to 1000, the displayed value will be 10 times the actual value. | ||
1297 | |||
1298 | (% class="wikigeneratedid" %) | ||
1299 | (% style="color:blue" %)**AT Command: AT+PROPORTION** | ||
1300 | |||
1301 | (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %) | ||
1302 | |=(% style="width: 185px; background-color: #4F81BD; color: white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD; color: white" %)**Function**|=(% style="width: 122px; background-color: #4F81BD; color: white" %)**Response** | ||
1303 | |(% style="width:199px" %)((( | ||
1304 | AT+PROPORTION=? | ||
1305 | )))|(% style="width:199px" %)Get the current proportion parameter|(% style="width:150px" %)((( | ||
1306 | 100 (Default) | ||
1307 | OK | ||
1308 | ))) | ||
1309 | |(% style="width:199px" %)AT+PROPORTION=1|(% style="width:199px" %)Set the displayed value to 1/100 of the actual value|(% style="width:150px" %)OK | ||
1310 | |(% style="width:199px" %)AT+PROPORTION=300|(% style="width:199px" %)Setting the display value to 3 times the actual value|(% style="width:150px" %)OK | ||
1311 | |||
1312 | (% style="color:blue" %)**Downlink Command: 0x0D** | ||
1313 | |||
1314 | (% class="wikigeneratedid" %) | ||
1315 | Format: Command Code (0x0D) followed by 2 bytes. | ||
1316 | |||
1317 | * Example 1: Downlink Payload: 0D 00 64 ~-~--> AT+PROPORTION=100 ~/~/ Set the displayed value to the actual value multiplied by 1, which is suitable for standard 100A current transformers. | ||
1318 | * Example 2: Downlink Payload: 0D 01 2C ~-~--> AT+PROPORTION=300 ~/~/ Set the displayed value to the actual value multiplied by 3,which is suitable for standard 300A current transformers. | ||
1319 | * Example 3: Downlink Payload: 0D 02 58 ~-~--> AT+PROPORTION=600 ~/~/ Set the displayed value to the actual value multiplied by 6,which is suitable for standard 600A current transformers. | ||
1320 | |||
1321 | (% style="color:red" %)**Note: When using this command to set the current ratio parameter, it will simultaneously apply to all four channels. For example, setting AT+PROPORTION=300 means all four channels will use 300A CTs. If you need to use CTs with different measurement ranges across the four channels, please refer to [[FAQ 7.2>>||anchor="H7.2HowtomodifyPayloadtomatch100A2F300A2F600Asensorsrespectively3F"]].** | ||
1322 | |||
1323 | |||
1324 | == 3.21 Set the IPv4 or IPv6 == | ||
1325 | |||
1326 | |||
1327 | This command is used to set IP version. | ||
1328 | |||
1329 | (% style="color:blue" %)**AT command:** | ||
1330 | |||
1331 | * (% style="color:#037691; font-weight:bold" %)**AT+IPTYPE**(% style="color:#037691" %)**=1**(%%)** **~/~/ IPv4 | ||
1332 | * (% style="color:#037691; font-weight:bold" %)**AT+IPTYPE**(% style="color:#037691" %)**=2**(%%)** **~/~/ IPv6 | ||
1333 | |||
1334 | == 3.22 Configure Network Category to be Searched for under LTE RAT. == | ||
1335 | |||
1336 | |||
1337 | (% style="color:blue" %)**AT command:**(%%)** (% style="color:#037691" %)AT+IOTMOD=xx(%%)** | ||
1338 | |||
1339 | (% style="color:#037691" %)**xx:**(%%) **0:** eMTC | ||
1340 | |||
1341 | **1:** NB-IoT | ||
1342 | |||
1343 | **2:** eMTC and NB-IoT | ||
1344 | |||
1345 | |||
1346 | == 3.23 Factory data reset == | ||
1347 | |||
1348 | |||
1349 | Two different restore factory Settings configurations. | ||
1350 | |||
1351 | (% style="color:blue" %)**AT command:** | ||
1352 | |||
1353 | * (% style="color:#037691; font-weight:bold" %)**AT+FDR**(%%)** **~/~/ Reset Parameters to Factory Default. | ||
1354 | * (% style="color:#037691; font-weight:bold" %)**AT+FDR1**(%%)** **~/~/ Reset parameters to factory default values **except for passwords**. | ||
1355 | |||
1356 | == 3.24 Set CoAP option == | ||
1357 | |||
1358 | |||
1359 | Feature: Set CoAP option, follow this link to set up the CoaP protocol. | ||
1360 | |||
1361 | (% style="color:blue" %)**AT command: **(% style="color:#037691; font-weight:bold" %)**AT+URI1~~AT+URI8** | ||
1362 | |||
1363 | (% style="color:#037691; font-weight:bold" %)**AT+URI1=11,"i" **(%%)~/~/ "i/" indicates that the endpoint supports observation mode. In -CB products, fixed setting AT+URI1=11,"i" | ||
1364 | |||
1365 | (% style="color:#037691; font-weight:bold" %)**AT+URI2=11,"CoAP endpoint URl" **(%%)~/~/ 11 is a fixed parameter. | ||
1366 | |||
1367 | **Example: ** i/13a35fbe-9515-6e55-36e8-081fb6aacf86 | ||
1368 | |||
1369 | AT+URI1=11,"i" | ||
1370 | |||
1371 | AT+URI2=11,"13a35fbe-9515-6e55-36e8-081fb6aacf86" | ||
1372 | |||
1373 | ~-~->If multiple groups of CoAP endpoint urls: | ||
1374 | |||
1375 | AT+URI3=11,"i" | ||
1376 | |||
1377 | AT+URI4=11,"CoAP endpoint URl" | ||
1378 | |||
1379 | |||
1380 | == 3.25 Power on / power off BG95 module == | ||
1381 | |||
1382 | |||
1383 | This command is used to power on and power off BG95 module. | ||
1384 | |||
1385 | * (% style="color:blue" %)**AT command: **(% style="color:#037691" %)**AT+QSW** | ||
1386 | |||
1387 | The module is powered on after the command is sent for the first time, and powered off after the command is sent again. | ||
1388 | |||
1389 | [[image:image-20250114175705-13.png]] | ||
1390 | |||
1391 | |||
1392 | == 3.26 Example Query saved historical records == | ||
1393 | |||
1394 | |||
1395 | * (% style="color:blue" %)**AT command:**(%%)** (% style="color:#037691" %)AT+CDP(%%)** | ||
1396 | |||
1397 | This command can be used to search the saved history, recording up to 32 groups of data, each group of historical data contains a maximum of 100 bytes. | ||
1398 | |||
1399 | (% class="wikigeneratedid" %) | ||
1400 | [[image:image-20250114175611-12.png]] | ||
1401 | |||
1402 | |||
1403 | == 3.27 Uplink log query == | ||
1404 | |||
1405 | |||
1406 | * (% style="color:blue" %)**AT command:**(%%)** (% style="color:#037691" %)AT+GETLOG(%%)** | ||
1407 | |||
1408 | This command can be used to query upstream logs of data packets. | ||
1409 | |||
1410 | [[image:image-20250114175557-11.png]] | ||
1411 | |||
1412 | |||
1413 | == 3.28 Set the downlink debugging mode(Since firmware v1.1.0) == | ||
1414 | |||
1415 | |||
1416 | Feature: Set the conversion between the standard version and 1T version downlinks. | ||
1417 | |||
1418 | (% style="color:blue" %)**AT command: AT+DOWNTE** | ||
1419 | |||
1420 | (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) | ||
1421 | |=(% style="width: 138px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 143px; background-color: rgb(79, 129, 189); color: white;" %)**Function/Parameters**|=(% style="width: 229px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation** | ||
1422 | |(% style="width:134px" %)AT+DOWNTE=?|(% style="width:143px" %)Get current Settings|(% style="width:229px" %)((( | ||
1423 | 0,0 (default) | ||
1424 | OK | ||
1425 | ))) | ||
1426 | |(% colspan="1" rowspan="2" style="width:134px" %)((( | ||
1427 | ((( | ||
1428 | |||
1429 | |||
1430 | |||
1431 | |||
1432 | AT+DOWNTE=0,a | ||
1433 | ))) | ||
1434 | |||
1435 | ((( | ||
1436 | |||
1437 | ))) | ||
1438 | )))|(% style="width:143px" %)**0**: Disable downlink debugging|(% style="width:229px" %)((( | ||
1439 | OK | ||
1440 | ))) | ||
1441 | |(% style="width:143px" %)**1**: Enable downlink debugging, users can see the original downlink reception.|(% style="width:229px" %)((( | ||
1442 | OK | ||
1443 | ))) | ||
1444 | |||
1445 | **Example:** | ||
1446 | |||
1447 | * AT+DOWNTE=0,0 ~/~/ Disable downlink debugging. | ||
1448 | * AT+DOWNTE=0,1 ~/~/ Enable downlink debugging. | ||
1449 | |||
1450 | (% style="color:blue" %)**Downlink Command: ** | ||
1451 | |||
1452 | No downlink commands for feature | ||
1453 | |||
1454 | |||
1455 | == 3.29 Domain name resolution settings(Since firmware v1.1.0) == | ||
1456 | |||
1457 | |||
1458 | Feature: Set static DNS resolution IP address. | ||
1459 | |||
1460 | (% style="color:blue" %)**AT command: AT+BKDNS** | ||
1461 | |||
1462 | (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) | ||
1463 | |=(% style="width: 138px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 143px; background-color: rgb(79, 129, 189); color: white;" %)**Function/Parameters**|=(% style="width: 229px; background-color: rgb(79, 129, 189); color: white;" %)**Response/Explanation** | ||
1464 | |(% style="width:134px" %)((( | ||
1465 | AT+BKDNS=? | ||
1466 | )))|(% style="width:143px" %)Get current Settings|(% style="width:606px" %)((( | ||
1467 | 1,0,NULL (default) | ||
1468 | OK | ||
1469 | ))) | ||
1470 | |(% colspan="1" rowspan="3" style="width:134px" %)((( | ||
1471 | |||
1472 | |||
1473 | |||
1474 | |||
1475 | |||
1476 | |||
1477 | AT+BKDNS=a,b,c | ||
1478 | )))|(% style="width:143px" %)((( | ||
1479 | **a**: Enable/Disable static DNS resolution. | ||
1480 | )))|(% style="width:606px" %)((( | ||
1481 | **0:** Disable static DNS resolution | ||
1482 | |||
1483 | **1**: Enable static DNS resolution. The ip address will be saved after the domain name is resolved, if the next domain name resolution fails, the last saved ip address will be used. | ||
1484 | ))) | ||
1485 | |(% style="width:143px" %)**b**: Meaningless.|(% style="width:606px" %)((( | ||
1486 | Set to **0**. | ||
1487 | ))) | ||
1488 | |(% style="width:143px" %)((( | ||
1489 | **c**: Set the IP address manually. | ||
1490 | )))|(% style="width:606px" %)((( | ||
1491 | The format is the same as AT+SERVADDR. | ||
1492 | If domain name resolution fails, this ip address will be used directly, if domain name resolution succeeds, parameter c will be updated to the successfully resolved IP address. | ||
1493 | ))) | ||
1494 | |||
1495 | **Example:** | ||
1496 | |||
1497 | * AT+BKDNS=0,0,NULL ~/~/ Disable static DNS resolution. | ||
1498 | * AT+BKDNS=1,0,NULL ~/~/ Enable static DNS resolution. | ||
1499 | * AT+BKDNS=1,0,3.69.98.183,1883 ~/~/ Enable static DNS resolution, if domain name resolution succeeds, the node uses the ip address successfully resolved and saves it to parameter c. If the domain name resolution fails, use the manually set ip address: 3.69.98.183 for communication. | ||
1500 | |||
1501 | (% style="color:blue" %)**Downlink Command: ** | ||
1502 | |||
1503 | No downlink commands for feature. | ||
1504 | |||
1505 | |||
1506 | == 3.30 Get data == | ||
1507 | |||
1508 | |||
1509 | Feature: Get the current sensor data. | ||
1510 | |||
1511 | (% style="color:blue" %)**AT Command:** | ||
1512 | |||
1513 | * **AT+GETSENSORVALUE=0** ~/~/ The serial port gets the reading of the current sensor | ||
1514 | * **AT+GETSENSORVALUE=1** ~/~/ The serial port gets the current sensor reading and uploads it. | ||
1515 | |||
1516 | = 4. [[Use Case>>Main.User Manual for LoRaWAN End Nodes.CS01-LB_LoRaWAN_4_Channels_Current_Sensor_Converter_User_Manual.CS01_Use_Cases.WebHome]] = | ||
1517 | |||
1518 | == 4.1 Monitor the power status of office == | ||
1519 | |||
1520 | |||
1521 | [[image:image-20240505210624-1.png||height="234" width="697"]] | ||
1522 | |||
1523 | This is a case study for CS01-CB/CS current sensor. It shows how to use CS01 to monitor office power use status. | ||
1524 | |||
1525 | Click here for more: **[[Case 1: Monitor the power status of office>>Main.User Manual for LoRaWAN End Nodes.CS01-LB_LoRaWAN_4_Channels_Current_Sensor_Converter_User_Manual.CS01_Use_Cases.WebHome||anchor="HCase1:Monitorthepowerstatusofoffice"]]** | ||
1526 | |||
1527 | |||
1528 | == 4.2 Function setting power consumption calculation case == | ||
1529 | |||
1530 | |||
1531 | Set alarm for, when current = 0.1 send data | ||
1532 | Set alarm interval for 5 mins | ||
1533 | Set regular data interval for 6 hours or so Power outage alarm is the priority. | ||
1534 | Then switch OFF the connected load. | ||
1535 | Look for alarm message, as the current will drop to very minimum. | ||
1536 | Repeat LOAD OFF after 8 mins ( we have set alarm interval as 5 mins) and check for alarm message. | ||
1537 | When a scenario like 4 outages per day, then we should get 4 Alarm + 4 regular current messages (data frequency set to 6 hours), then how much will be the battery life. | ||
1538 | |||
1539 | |||
1540 | (% style="color:red" %)**The third, fifth, seventh and ninth parameter units of the v1.0 version are A, and the units of the third, fifth, seventh, and ninth parameters of versions after v1.1 are mA.** | ||
1541 | |||
1542 | (% style="color:red" %)**Below I set | ||
1543 | AT+CALARM=1,0,0,0,0,0,0,0,100 | ||
1544 | AT+ENCHANNEL=0,0,0,1** | ||
1545 | |||
1546 | [[image:image-20240723152145-3.png||height="61" width="568"]] | ||
1547 | |||
1548 | According to the settings, three aspects need to be calculated, as follows | ||
1549 | (1) The alarm interval is once every five minutes, 12 times per hour, a total of 288 times a day, one alarm is equivalent to one detection, and the consumption per detection is ≈0.0172mAh, so the daily consumption is calculated as follows | ||
1550 | 0.0172*288=4.9536mAh | ||
1551 | (2) The sleep current consumption per day is ≈0.0053268*24=0.1278432mAh | ||
1552 | (3) 4 alarms + 4 regular current messages, equivalent to sending 8 uplink messages a day, each upload will consume | ||
1553 | Single sensor: 0.076761064mAh | ||
1554 | Four sensors: 0.109365489mAh | ||
1555 | So | ||
1556 | Single sensor consumption per day: 0.076761064*8=0.614088512mAh | ||
1557 | Four sensors consumption per day: 0.109365489*8=0.874923912mAh | ||
1558 | The CS01-CB/CS battery capacity is 8500mAh. Calculated by the above data | ||
1559 | Single sensor: 8500/(4.9536+0.1278432+0.614088512)=1492 days | ||
1560 | Four sensors: 8500/(4.9536+0.1278432+0.874923912)=1427 days | ||
1561 | The above calculation is the approximate battery life. | ||
1562 | The battery life is also related to the frequency band and DR you use. See the figure below for details. | ||
1563 | |||
1564 | [[image:image-20240723152001-2.png]] | ||
1565 | |||
1566 | |||
1567 | = 5. Battery & Power Consumption = | ||
1568 | |||
1569 | |||
1570 | CS01-CB/CS use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. | ||
1571 | |||
1572 | [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . | ||
1573 | |||
1574 | |||
1575 | (% style="color:red" %)**Notice: Continuous Sampling Mode will increase the power consumption a lot.** | ||
1576 | |||
1577 | (% style="color:blue" %)**For example, if use all four channels to sampling data:** | ||
1578 | |||
1579 | ~-~- Sample every minute and uplink data every 5 minutes. The battery life is about 10 monthes. | ||
1580 | ~-~- Sample every minute and uplink data every 20 minutes. The battery life is about 12 monthes. | ||
1581 | |||
1582 | If user want to use external DC Adapter, to power the CS01-CB/CS in this case, please refer [[Power Device use 3.3v Power Adapter>>http://wiki.dragino.com/xwiki/bin/view/Main/Can%20I%20use%20an%20external%20power%20adapter%20or%20solar%20panel%20to%20power%20LSN50v2%3F/#H1.1A0Poweritviaexternalpower283.3v29andnoneedbackupbattery]]. | ||
1583 | |||
1584 | |||
1585 | = 6. Firmware update = | ||
1586 | |||
1587 | |||
1588 | User can change device firmware to: | ||
1589 | |||
1590 | * Update with new features. | ||
1591 | |||
1592 | * Fix bugs. | ||
1593 | |||
1594 | Firmware and changelog can be downloaded from : **[[Firmware download link>>https://www.dropbox.com/scl/fo/1xk8rn2ntji50rmay58ah/AKw0sGyPrSH-s2iBiAJde-w?rlkey=z214uqkty6cje2wlgt88kj377&st=fple7pgh&dl=0]]** | ||
1595 | |||
1596 | Methods to Update Firmware: | ||
1597 | |||
1598 | * (Recommended way) OTA firmware update via BLE: [[**Instruction**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE_Firmware_Update_NB_Sensors_BC660K-GL/]]. | ||
1599 | |||
1600 | * Update through UART TTL interface : **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART_Access_for_NB_ST_BC660K-GL/#H4.2UpdateFirmware28Assumethedevicealreadyhaveabootloader29]]**. | ||
1601 | |||
1602 | = 7. FAQ = | ||
1603 | |||
1604 | == 7.1 Why can't current clamps measure current over range? == | ||
1605 | |||
1606 | First, we take the SCT036-600 as an example to explain the specifications of the current clamp. | ||
1607 | |||
1608 | [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CS01-LB_LoRaWAN_4_Channels_Current_Sensor_Converter_User_Manual/WebHome/image-20250220135957-1.png?rev=1.1||alt="image-20250220135957-1.png"]] | ||
1609 | |||
1610 | (% style="color:blue" %)**Meaning of *Spec: 600A/50mA :** | ||
1611 | |||
1612 | * 600A: indicates that the maximum range of the current clamp is 600 amps, that is, the maximum current value that can be measured. | ||
1613 | * 50mA: Indicates that the resolution of the current clamp is 50mA, which is the smallest current change that can be detected. | ||
1614 | |||
1615 | Why can't you measure current over range: | ||
1616 | |||
1617 | **Reduced accuracy:** Exceeding the range will lead to increased measurement errors and inaccurate results. | ||
1618 | |||
1619 | **Equipment damage:** Excessive current may damage the sensor or circuit inside the current clamp. | ||
1620 | |||
1621 | **Safety risks:** Over-range measurement may cause overheating, short circuit and other problems, resulting in safety risks. | ||
1622 | |||
1623 | |||
1624 | == 7.2 How to modify Payload to match 100A/300A/600A sensors respectively? == | ||
1625 | |||
1626 | When using 300A or 600A current transformers, discrepancies may occur between the measured current values and actual readings due to parameter ratio inconsistencies | ||
1627 | |||
1628 | Users need to amplify the current readings in equal proportions: | ||
1629 | |||
1630 | When users use 300A transformers, they need to amplify the current readings by 3 times. | ||
1631 | |||
1632 | When users use 600A transformers, they need to amplify the current readings by 6 times. | ||
1633 | |||
1634 | There are two ways: | ||
1635 | |||
1636 | ~1. You can use the **AT+PROPORTION** command to simultaneously control the amplification of 4 channels to the same multiple. For specific usage, please refer to: [[AT+PROPORTION>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/CS01-NBNS_NB-IoT_4_Channels_Current_Sensor_Converter_User_Manual/#H3.4.10Setthecurrentproportionparameter]] | ||
1637 | |||
1638 | |||
1639 | 2. If the 4 channels use sensors with different ranges, you need to change the output ratio in decoding. The operation is as follows: | ||
1640 | |||
1641 | When the user uses the json format, the user can create a new parameter in the application server and change the current reading x3/x6. | ||
1642 | |||
1643 | Example: | ||
1644 | |||
1645 | If you use the uplink when the format is JSON: | ||
1646 | |||
1647 | * var actual reading = current_chan1 * 3 | ||
1648 | * var actual reading2 = current_chan2 * 3 | ||
1649 | |||
1650 | (Please refer to the actual syntax in the application server, the example is in json format) | ||
1651 | |||
1652 | |||
1653 | When users upload data in hex format, they can create a decoder in the application server and add the multiplier to the current parsing part. | ||
1654 | |||
1655 | **Example:** | ||
1656 | |||
1657 | If you use the uplink when the format is Hex: | ||
1658 | |||
1659 | * decode.Current1_A=((bytes[2]<<8 | bytes[3])/100) * factor; | ||
1660 | * decode.Current2_A=((bytes[4]<<8 | bytes[5])/100) * factor; | ||
1661 | * decode.Current3_A=((bytes[6]<<8 | bytes[7])/100) * factor; | ||
1662 | * decode.Current4_A=((bytes[8]<<8 | bytes[9])/100) * factor; | ||
1663 | |||
1664 | Example: | ||
1665 | |||
1666 | If channel 1, channel 2 is using a 300A transformer, it needs to be modified to: | ||
1667 | |||
1668 | decode.Current1_A=((bytes[2]<<8 | bytes[3])/100) * 3; | ||
1669 | |||
1670 | decode.Current2_A=((bytes[4]<<8 | bytes[5])/100) * 3; | ||
1671 | |||
1672 | If channel 3, channel 4 is using a 600A transformer, it needs to be modified to: | ||
1673 | |||
1674 | decode.Current3_A=((bytes[6]<<8 | bytes[7])/100) * 6; | ||
1675 | |||
1676 | decode.Current4_A=((bytes[8]<<8 | bytes[9])/100) * 6; | ||
1677 | |||
1678 | |||
1679 | = 8. Troubleshooting = | ||
1680 | |||
1681 | == 8.1 Why are the collected current values inaccurate? == | ||
1682 | |||
1683 | |||
1684 | When the current value collected by the node is inaccurate, please check whether the calibration value is set by the AT+CCAL command in the node. If so, please change the calibration value to 0, that is: AT+CCAL=0,0,0,0. | ||
1685 | |||
1686 | |||
1687 | = 9. Order Info = | ||
1688 | |||
1689 | |||
1690 | **Part Number: (% style="color:blue" %)CS01-CB/CS(%%)** | ||
1691 | |||
1692 | (% style="color:red" %)**XX**(%%): | ||
1693 | |||
1694 | * (% style="color:#037691" %)**GE**(%%): General version ( Exclude SIM card) | ||
1695 | |||
1696 | * (% style="color:#037691" %)**1T**(%%): with 1NCE* 10 years 500MB SIM card and Pre-configure to ThingsEye server | ||
1697 | |||
1698 | (% style="color:red" %)**Notice: CS01-CB/CS doesn't include current sensor. User need to purchase seperately.** | ||
1699 | |||
1700 | **Reference Model for current sensor:** | ||
1701 | |||
1702 | * (% style="color:red" %)**SCT013G-D-100**(%%): **100A/50mA** | ||
1703 | * (% style="color:red" %)**SCT024-300**(%%): **300A/50mA** | ||
1704 | * (% style="color:red" %)**SCT036-600**(%%): **600A/50mA** | ||
1705 | |||
1706 | = 10. Packing Info = | ||
1707 | |||
1708 | |||
1709 | (% style="color:#037691" %)**Package Includes**: | ||
1710 | |||
1711 | * CS01-CB/CS NB-IoT 4 Channels Current Sensor Converter | ||
1712 | |||
1713 | (% style="color:#037691" %)**Dimension and weight**: | ||
1714 | |||
1715 | (% style="color:blue" %)**Package Size / pcs :** | ||
1716 | |||
1717 | * For CS01-CB: 145*105*55 mm | ||
1718 | * For CS01-CS: mm | ||
1719 | |||
1720 | (% style="color:blue" %)**Weight / pcs :**(%%)** ** | ||
1721 | |||
1722 | * For CS01-CB: 310 g | ||
1723 | * For CS01-CS: g | ||
1724 | |||
1725 | (% style="color:#037691" %)**Transformer size and weight:** | ||
1726 | |||
1727 | (% style="color:blue" %)**Package Size / pcs :** | ||
1728 | |||
1729 | * For SCT013G-D-100: 100*80*30 mm | ||
1730 | * For SCT024-300: 69*50*107 mm | ||
1731 | * For SCT036-600: 74*74*100 mm | ||
1732 | |||
1733 | (% style="color:blue" %)**Weight / pcs :**(%%)** ** | ||
1734 | |||
1735 | * For SCT013G-D-100: 80g | ||
1736 | * For SCT024-300: 209 g | ||
1737 | * For SCT036-600: 330 g | ||
1738 | |||
1739 | = 11. Support = | ||
1740 | |||
1741 | |||
1742 | * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. | ||
1743 | |||
1744 | * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]. |