<
From version < 13.1 >
edited by Edwin Chen
on 2022/10/31 23:35
To version < 9.1 >
edited by Edwin Chen
on 2022/10/06 19:11
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -4,117 +4,81 @@
4 4  
5 5  
6 6  
7 -= 1.  OverView =
7 += OverView =
8 8  
9 -
10 10  In real-world deployment for LoRa, distance is a common topic. We always want to have the longest distance. This chapter shows some instructions for how to improve this.
11 11  
12 12  
12 += Analyze at the software side =
13 13  
14 -= 2.  Analyze at the software side =
14 +== LoRa parameters that effect distance ==
15 15  
16 -== 2.1  LoRa parameters that effect distance ==
17 -
18 -
19 19  Some settings in End Node will affect the transfer distance. They are:
20 20  
21 -* (% style="color:blue" %)**TXPower: **(%%)This means the output power from End Node. There is a command [[AT+TXP>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.14TransmitPower]] can be used to set the output power. TXP parameters follow the LoRaWAN regional document (rp2-1.0.3-lorawan-regional-parameters.pdf). Set to (% style="color:#037691" %)**AT+TXP=0**(%%) is always has the maximum output, but (% style="color:#037691" %)**AT+TXP=0**(%%) has different value in different frequency bands.
18 +* **TXPower: **This means the output power from End Node. There is a command [[AT+TXP>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.14TransmitPower]] can be used to set the output power. TXP parameters follow the LoRaWAN regional document (rp2-1.0.3-lorawan-regional-parameters.pdf). Set to AT+TXP=0 is always has the maximum output, but AT+TXP=0 has different value in different frequency bands.
22 22  
23 -* (% style="color:blue" %)**Data Rate(DR): **(%%)This is a combination of Spreading Factor and Band Width. Lowest Data Rate (DR=0) always has the longest transmit distance in LoRaWAN protocol.
20 +* **Data Rate(DR): **This is a combination of Spreading Factor and Band Width. Lowest Data Rate (DR=0) always has the longest transmit distance in LoRaWAN protocol.
24 24  
25 25  Below is the TXPower and DR table of EU868 Frequency band as reference.
26 26  
27 -
28 28  [[image:image-20221006185826-1.png]]
29 29  
30 -
31 31  [[image:image-20221006185826-2.png]]
32 32  
33 33  
34 -Set (% style="color:#037691" %)**AT+TXP=0**(%%) **and** (% style="color:#037691" %)**AT+DR=0**(%%) will always has the longest transmit distance. But note that different frequency band has different TXP and DR coding according to LoRaWAN regional settings. Below is example for EU868, US915 and AS923 compare for example.
29 +Set AT+TXP=0 and AT+DR=0 will always has the longest transmit distance. But note that different frequency band has different TXP and DR coding according to LoRaWAN regional settings. Below is example for EU868, US915 and AS923 compare for example.
35 35  
36 36  
37 -**End node actually value when TXP=0 and DR=0**
32 +End node actually value when TXP=0 and DR=0
38 38  
39 -(% border="1.5" cellspacing="4" style="background-color:#ffffcc; color:black; width:1002px" %)
40 -|(% style="width:134px" %)**Frequency band**|(% style="width:400px" %)**Output Power in LoRa Module (consider 2dB antenna)**|(% style="width:362px" %)(((
41 -**Spreading Factor(Higher SF can transmit further)**
42 -)))|(% style="width:102px" %)**Band Width**
43 -|(% style="width:134px" %)**EU868**|(% style="width:400px" %)14dBm|(% style="width:362px" %)SF=12|(% style="width:102px" %)125Khz
44 -|(% style="width:134px" %)**US915**|(% style="width:400px" %)20 or 22 dBm (depends on max output of module)|(% style="width:362px" %)SF=10|(% style="width:102px" %)125Khz
45 -|(% style="width:134px" %)**AS923**|(% style="width:400px" %)14dBm|(% style="width:362px" %)SF=12|(% style="width:102px" %)125Khz
34 +| |**Output Power in LoRa Module (consider 2dB antenna)**|(((
35 +**Spreading Factor**
46 46  
37 +**(Higher SF can transmit further)**
38 +)))|**Band Width**
39 +|**EU868**|14dBm|SF=12|125Khz
40 +|**US915**|20 or 22 dBm (depends on max output of module)|SF=10|125Khz
41 +|**AS923**|14dBm|SF=12|125Khz
47 47  
43 +== Adaptive Data Rate (ADR) and set max distance ==
48 48  
49 -== 2.2  Adaptive Data Rate (ADR) and set max distance ==
45 +ADR is the feature that Server will ask End Node to adjust the TXP and DR according to some rules in the server. This is for the purpose of Network Management and Optimize End Node battery life-time.
50 50  
51 51  
52 -**ADR** is the feature that Server will ask End Node to adjust the TXP and DR according to some rules in the server. This is for the purpose of Network Management and Optimize End Node battery life-time.
48 +By default, ADR is turn on(AT+ADR=1) so End node ADR feature is enable.
53 53  
54 54  
55 -By default, ADR is turn on((% style="color:#037691" %)**AT+ADR=1**) (%%)so End node ADR feature is enable.
51 +Normally, user can set the max distance by setting:
56 56  
53 +AT+ADR=0
57 57  
58 -(% style="color:blue" %)**Normally, user can set the max distance by setting:**
55 +AT+DR=0
59 59  
60 -(% style="color:#037691" %)**AT+ADR=0**
57 +AT+TXP=0
61 61  
62 -(% style="color:#037691" %)**AT+DR=0**
63 63  
64 -(% style="color:#037691" %)**AT+TXP=0**
65 -
66 -
67 67  This can be downlink via the LoRaWAN downlink command, see [[this link>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H8.2UseDownlinkCommandtosetafixuplinkDR]] for reference.
68 68  
69 69  
70 70  
71 -== 2.3  Check for short distance problem ==
64 +== Check for short distance problem ==
72 72  
73 -
74 74  According to the above technology, if we have a problem on the distance, we can first check if the end node is trying to longest distance modulation already. We can see that from the LoRaWAN server. Below is an example from Chirpstack.
75 75  
76 76  
77 -We can see the traffic in gateway's page and know that the distance is SF12 / BW125. (note, server is not able to know Transmit Power settings from End Node)
69 +We can see the traffic in gateways page and know that the distance is SF12 / BW125. (note, server is not able to know Transmit Power settings from End Node)
78 78  
79 -
80 80  [[image:image-20221006185826-3.png]]
81 81  
82 82  
83 83  
84 -== 2.4  Best software settings for the longest distance ==
75 += Installation Guidelines =
85 85  
77 +== Check the use environment ==
86 86  
87 -Below are the settings for longest distance transmission. ( will reduce battery life)
88 -
89 -* (% style="color:#037691" %)**AT+ADR=0**     (%%)~/~/  Disable ADR
90 -* (% style="color:#037691" %)**AT+DR=  0**     (%%)~/~/  Use the smallest DR
91 -* (% style="color:#037691" %)**AT+TXP=0**    (%%) ~/~/  Use max power.
92 -
93 -
94 -
95 -
96 -= 3.  Analyze at the hardware side =
97 -
98 -== 3.1  Check if the antenna path is good ~-~- For LSn50v2 series end node ==
99 -
100 -
101 -a) Open Enclosure and Check if the antenna connection to module is good.
102 -
103 -b) check if the connector match.
104 -
105 -
106 -[[image:image-20221016081725-1.png||height="426" width="706"]]
107 -
108 -
109 -
110 -= 4.  Installation Guidelines =
111 -
112 -== 4.1  Check the use environment ==
113 -
114 -
115 115  First , User should notice: Radio link quality and performances are highly dependent of the environment.
116 116  
117 -(% style="color:blue" %)**Better performances can be reached with:**
81 +Better performances can be reached with:
118 118  
119 119  * Outdoor environment.
120 120  * No obstacles.
... ... @@ -121,8 +121,9 @@
121 121  * No high level radio interferes in the ISM band you use.
122 122  * At least 1 meter above the ground.
123 123  
124 -(% style="color:blue" %)**Radio performances are degraded with:**
125 125  
89 +Radio performances are degraded with:
90 +
126 126  * Obstacles: buildings, trees...
127 127  * Inner buildings environments.
128 128  * High ISM band usage by other technologies.
... ... @@ -129,20 +129,15 @@
129 129  * Radio communication are usually killed with bad topographic conditions. It is usually not possible to communicate through a hill, even very small.
130 130  
131 131  
97 +== Improve the Antenna ==
132 132  
133 -
134 -== 4.2  Improve the Antenna ==
135 -
136 -
137 137  In some case, we have to install the device inside the chamber or next to a metal case. So the signal between the antenna and the receiver (gateway) is blocked by the metal. This will greatly reduce the signal. In such case, we can consider using antenna extend cable to extend the antenna to a better position.
138 138  
139 139  
102 += Some real-world case =
140 140  
141 -= 5.  Some real-world case =
104 +== Server reason cause end node has problem on Join. ==
142 142  
143 -== 5.1  Server reason cause end node has problem on Join. ==
144 -
145 -
146 146  In one case, the customer is using AWS IoT Core and gateway to connect to AWS via Basic Station Connection, Frequency Band is AU915 sub-band 2. For some unknown reason, AWS always set downlink power to 0dBm, which cause the gateway only emit a very low power and lead to a short distance for sensor.
147 147  
148 148  
... ... @@ -154,6 +154,6 @@
154 154  
155 155  The fix of this issue is to set the output power to a high value even server ask to send out 0dBm.
156 156  
157 -Reference Link:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Change%20Gateway%20Power/#H1.A0Overview>>http://wiki.dragino.com/xwiki/bin/view/Main/Change%20Gateway%20Power/#H1.A0Overview]]
117 +Reference Link:
158 158  
159 -
119 +http:~/~/wiki.dragino.com/xwiki/bin/view/Main/Change%20Gateway%20Power/#H1.A0Overview
image-20221016081725-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -569.8 KB
Content
image-20221031233524-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -75.1 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0