Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1.Introduction =
15
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49
50
51 )))
52
53 [[image:1652953304999-717.png||height="424" width="733"]]
54
55
56
57 == 1.2 Specifications ==
58
59
60 **Hardware System:**
61
62 * STM32L072CZT6 MCU
63 * SX1276/78 Wireless Chip 
64 * Power Consumption (exclude RS485 device):
65 ** Idle: 6uA@3.3v
66 ** 20dB Transmit: [[130mA@3.3v>>mailto:130mA@3.3v]]
67 * 5V sampling maximum current:500mA
68
69 **Interface for Model:**
70
71 * 1 x RS485 Interface
72 * 1 x TTL Serial , 3.3v or 5v.
73 * 1 x I2C Interface, 3.3v or 5v.
74 * 1 x one wire interface
75 * 1 x Interrupt Interface
76 * 1 x Controllable 5V output, max
77
78 **LoRa Spec:**
79
80 * Frequency Range:
81 ** Band 1 (HF): 862 ~~ 1020 Mhz
82 ** Band 2 (LF): 410 ~~ 528 Mhz
83 * 168 dB maximum link budget.
84 * +20 dBm - 100 mW constant RF output vs.
85 * Programmable bit rate up to 300 kbps.
86 * High sensitivity: down to -148 dBm.
87 * Bullet-proof front end: IIP3 = -12.5 dBm.
88 * Excellent blocking immunity.
89 * Fully integrated synthesizer with a resolution of 61 Hz.
90 * LoRa modulation.
91 * Built-in bit synchronizer for clock recovery.
92 * Preamble detection.
93 * 127 dB Dynamic Range RSSI.
94 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
95
96 == 1.3 Features ==
97
98
99 * LoRaWAN Class A & Class C protocol (default Class A)
100 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
101 * AT Commands to change parameters
102 * Remote configure parameters via LoRaWAN Downlink
103 * Firmware upgradable via program port
104 * Support multiply RS485 devices by flexible rules
105 * Support Modbus protocol
106 * Support Interrupt uplink
107
108 == 1.4 Applications ==
109
110
111 * Smart Buildings & Home Automation
112 * Logistics and Supply Chain Management
113 * Smart Metering
114 * Smart Agriculture
115 * Smart Cities
116 * Smart Factory
117
118 == 1.5 Firmware Change log ==
119
120
121 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
122
123
124
125 == 1.6 Hardware Change log ==
126
127 (((
128
129
130 (((
131 **v1.4**
132 )))
133 )))
134
135 (((
136 (((
137 ~1. Change Power IC to TPS22916
138 )))
139 )))
140
141 (((
142
143 )))
144
145 (((
146 (((
147 **v1.3**
148 )))
149 )))
150
151 (((
152 (((
153 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
154 )))
155 )))
156
157 (((
158
159 )))
160
161 (((
162 (((
163 **v1.2**
164 )))
165 )))
166
167 (((
168 (((
169 Release version ​​​​​
170 )))
171
172
173 )))
174
175
176 = 2. Pin mapping and Power ON Device =
177
178
179 (((
180 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
181 )))
182
183 [[image:1652953055962-143.png||height="387" width="728"]]
184
185
186 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
187
188
189
190 = 3. Operation Mode =
191
192
193 == 3.1 How it works? ==
194
195
196 (((
197 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
198
199
200
201 )))
202
203 == 3.2 Example to join LoRaWAN network ==
204
205
206 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
207
208 [[image:1652953414711-647.png||height="337" width="723"]]
209
210
211 (((
212 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
213 )))
214
215 (((
216 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
217
218
219 )))
220
221 (((
222 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
223 )))
224
225 (((
226 Each RS485-BL is shipped with a sticker with unique device EUI:
227 )))
228
229 [[image:1652953462722-299.png]]
230
231
232 (((
233 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
234 )))
235
236 (((
237 **Add APP EUI in the application.**
238 )))
239
240
241 [[image:image-20220519174512-1.png]]
242
243 [[image:image-20220519174512-2.png||height="328" width="731"]]
244
245 [[image:image-20220519174512-3.png||height="556" width="724"]]
246
247 [[image:image-20220519174512-4.png]]
248
249
250 You can also choose to create the device manually.
251
252 [[image:1652953542269-423.png||height="710" width="723"]]
253
254
255 Add APP KEY and DEV EUI
256
257 [[image:1652953553383-907.png||height="514" width="724"]]
258
259
260
261 (((
262 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
263 )))
264
265 [[image:1652953568895-172.png||height="232" width="724"]]
266
267
268
269 == 3.3 Configure Commands to read data ==
270
271
272 (((
273 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
274
275
276
277 )))
278
279 === 3.3.1 Configure UART settings for RS485 or TTL communication ===
280
281
282 (((
283 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
284 )))
285
286 (((
287 **~1. RS485-MODBUS mode:**
288 )))
289
290 (((
291 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
292
293
294 )))
295
296 (((
297 **2. TTL mode:**
298 )))
299
300 (((
301 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
302 )))
303
304 (((
305 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
306 )))
307
308 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
309 |=(% style="width: 80px;" %)(((
310 (((
311 **AT Commands**
312 )))
313 )))|=(% style="width: 210px;" %)(((
314 (((
315 **Description**
316 )))
317 )))|=(% style="width: 210px;" %)(((
318 (((
319 **Example**
320 )))
321 )))
322 |(% style="width:80px" %)(((
323 (((
324 AT+BAUDR
325 )))
326 )))|(% style="width:210px" %)(((
327 (((
328 Set the baud rate (for RS485 connection). Default Value is: 9600.
329 )))
330 )))|(% style="width:210px" %)(((
331 (((
332 (((
333 AT+BAUDR=9600
334 )))
335 )))
336
337 (((
338 (((
339 Options: (1200,2400,4800,14400,19200,115200)
340 )))
341 )))
342 )))
343 |(% style="width:80px" %)(((
344 (((
345 AT+PARITY
346 )))
347 )))|(% style="width:210px" %)(((
348 (((
349 (((
350 Set UART parity (for RS485 connection)
351 )))
352 )))
353
354 (((
355 (((
356 Default Value is: no parity.
357 )))
358 )))
359 )))|(% style="width:210px" %)(((
360 (((
361 (((
362 AT+PARITY=0
363 )))
364 )))
365
366 (((
367 (((
368 Option: 0: no parity, 1: odd parity, 2: even parity
369 )))
370 )))
371 )))
372 |(% style="width:80px" %)(((
373 (((
374 AT+STOPBIT
375 )))
376 )))|(% style="width:210px" %)(((
377 (((
378 (((
379 Set serial stopbit (for RS485 connection)
380 )))
381 )))
382
383 (((
384 (((
385 Default Value is: 1bit.
386 )))
387 )))
388 )))|(% style="width:210px" %)(((
389 (((
390 (((
391 AT+STOPBIT=0 for 1bit
392 )))
393 )))
394
395 (((
396 (((
397 AT+STOPBIT=1 for 1.5 bit
398 )))
399 )))
400
401 (((
402 (((
403 AT+STOPBIT=2 for 2 bits
404 )))
405 )))
406 )))
407
408 === 3.3.2 Configure sensors ===
409
410
411 (((
412 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
413 )))
414
415 (((
416 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
417 )))
418
419 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
420 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
421 |AT+CFGDEV|(% style="width:80px" %)(((
422 (((
423 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
424 )))
425
426 (((
427 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
428 )))
429
430 (((
431 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
432 )))
433 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
434
435 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
436
437
438
439 === 3.3.3 Configure read commands for each sampling ===
440
441
442 (((
443 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
444 )))
445
446 (((
447 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
448 )))
449
450 (((
451 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
452 )))
453
454 (((
455 This section describes how to achieve above goals.
456 )))
457
458 (((
459 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
460
461
462 )))
463
464 (((
465 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
466 )))
467
468 (((
469 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
470
471
472 )))
473
474 (((
475 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
476 )))
477
478 (((
479 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
480 )))
481
482 * (((
483 (% style="color:blue" %)**AT+DATACUT**
484 )))
485
486 (((
487 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
488
489
490 )))
491
492 * (((
493 (% style="color:blue" %)**AT+SEARCH**
494 )))
495
496 (((
497 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
498 )))
499
500 (((
501
502
503 (% style="color:blue" %)**Define wait timeout:**
504 )))
505
506 (((
507 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
508 )))
509
510 (((
511 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
512 )))
513
514 (((
515
516
517 **Examples:**
518 )))
519
520 (((
521 Below are examples for the how above AT Commands works.
522 )))
523
524 (((
525 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
526 )))
527
528 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:497px" %)
529 |(% style="width:494px" %)(((
530 (((
531 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
532 )))
533
534 (((
535 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
536 )))
537
538 (((
539 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
540 )))
541 )))
542
543 (((
544 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
545 )))
546
547 (((
548 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
549 )))
550
551 (((
552
553 )))
554
555 (((
556 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
557 )))
558
559 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:473px" %)
560 |(% style="width:470px" %)(((
561 (((
562 **AT+SEARCHx=aa,xx xx xx xx xx**
563 )))
564
565 * (((
566 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
567 )))
568 * (((
569 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
570 )))
571 )))
572
573 (((
574
575
576 **Examples:**
577 )))
578
579 (((
580 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
581 )))
582
583 (((
584 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
585 )))
586
587 (((
588 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
589 )))
590
591 (((
592 [[image:1653271044481-711.png]]
593
594
595 )))
596
597 (((
598 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
599 )))
600
601 (((
602 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
603 )))
604
605 (((
606 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
607 )))
608
609 (((
610 [[image:1653271276735-972.png]]
611 )))
612
613 (((
614 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
615 )))
616
617 (% style="background-color:#4f81bd; color:white; width:496px" %)
618 |(% style="width:493px" %)(((
619 (((
620 **AT+DATACUTx=a,b,c**
621 )))
622
623 * (((
624 **a: length for the return of AT+COMMAND**
625 )))
626 * (((
627 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
628 )))
629 * (((
630 **c: define the position for valid value.  **
631 )))
632 )))
633
634 (((
635
636
637
638 **Examples:**
639 )))
640
641 * (((
642 (% style="color:blue" %)**Grab bytes:**
643 )))
644
645 (((
646 [[image:1653271581490-837.png||height="313" width="722"]]
647 )))
648
649 (((
650
651
652
653 )))
654
655 * (((
656 (% style="color:blue" %)**Grab a section.**
657 )))
658
659 (((
660 [[image:1653271648378-342.png||height="326" width="720"]]
661 )))
662
663 (((
664
665
666
667 )))
668
669 * (((
670 (% style="color:blue" %)**Grab different sections.**
671 )))
672
673 (((
674 [[image:1653271657255-576.png||height="305" width="730"]]
675
676
677 )))
678
679 (((
680 (((
681 (% style="color:red" %)**Note:**
682 )))
683 )))
684
685 (((
686 (((
687 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
688
689
690 )))
691 )))
692
693 (((
694 (((
695 **Example:**
696 )))
697 )))
698
699 (((
700 (((
701 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
702 )))
703 )))
704
705 (((
706 (((
707 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
708 )))
709 )))
710
711 (((
712 (((
713 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
714 )))
715 )))
716
717 (((
718 (((
719 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
720 )))
721 )))
722
723 (((
724 (((
725 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
726 )))
727 )))
728
729 (((
730 (((
731 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
732 )))
733 )))
734
735 (((
736 [[image:1653271763403-806.png]]
737 )))
738
739
740
741 === 3.3.4 Compose the uplink payload ===
742
743
744 (((
745 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
746
747
748 )))
749
750 (((
751 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
752
753
754 )))
755
756 (((
757 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
758 )))
759
760 (((
761 Final Payload is
762 )))
763
764 (((
765 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
766 )))
767
768 (((
769 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
770 )))
771
772 [[image:1653272787040-634.png||height="515" width="719"]]
773
774
775
776 (((
777 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
778
779
780 )))
781
782 (((
783 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
784 )))
785
786 (((
787 Final Payload is
788 )))
789
790 (((
791 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
792 )))
793
794 1. (((
795 Battery Info (2 bytes): Battery voltage
796 )))
797 1. (((
798 PAYVER (1 byte): Defined by AT+PAYVER
799 )))
800 1. (((
801 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
802 )))
803 1. (((
804 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
805 )))
806 1. (((
807 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
808
809
810 )))
811
812 [[image:1653272817147-600.png||height="437" width="717"]]
813
814 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
815
816
817 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
818
819 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
820
821 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
822
823
824 Below are the uplink payloads:
825
826 [[image:1653272901032-107.png]]
827
828
829 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
830
831 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
832
833 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
834
835 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
836
837 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
838
839
840
841
842 === 3.3.5 Uplink on demand ===
843
844
845 (((
846 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
847 )))
848
849 (((
850 Downlink control command:
851 )))
852
853 (((
854 **0x08 command**: Poll an uplink with current command set in RS485-BL.
855 )))
856
857 (((
858 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
859
860
861
862 )))
863
864 === 3.3.6 Uplink on Interrupt ===
865
866
867 Put the interrupt sensor between 3.3v_out and GPIO ext.
868
869 [[image:1653273818896-432.png]]
870
871
872 (((
873 AT+INTMOD=0  Disable Interrupt
874 )))
875
876 (((
877 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
878 )))
879
880 (((
881 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
882 )))
883
884 (((
885 AT+INTMOD=3  Interrupt trigger by rising edge.
886
887
888
889 )))
890
891 == 3.4 Uplink Payload ==
892
893
894 [[image:image-20220606105412-1.png]]
895
896 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
897
898 (((
899 {{{function Decoder(bytes, port) {}}}
900 )))
901
902 (((
903 {{{//Payload Formats of RS485-BL Deceive}}}
904 )))
905
906 (((
907 {{{return {}}}
908 )))
909
910 (((
911 {{{ //Battery,units:V}}}
912 )))
913
914 (((
915 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
916 )))
917
918 (((
919 {{{ //GPIO_EXTI }}}
920 )))
921
922 (((
923 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
924 )))
925
926 (((
927 {{{ //payload of version}}}
928 )))
929
930 (((
931 {{{ Pay_ver:bytes[2],}}}
932 )))
933
934 (((
935 {{{ }; }}}
936 )))
937
938 (((
939 **}**
940
941
942 )))
943
944 (((
945 TTN V3 uplink screen shot.
946 )))
947
948 [[image:1653274001211-372.png||height="192" width="732"]]
949
950
951
952 == 3.5 Configure RS485-BL via AT or Downlink ==
953
954
955 (((
956 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
957 )))
958
959 (((
960 There are two kinds of Commands:
961 )))
962
963 * (((
964 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
965 )))
966
967 * (((
968 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
969
970
971
972
973 )))
974
975 === 3.5.1 Common Commands: ===
976
977
978 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
979
980
981
982 === 3.5.2 Sensor related commands: ===
983
984
985
986 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)**(%%) ====
987
988
989 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
990
991 * (% style="color:#037691" %)**AT Command**
992
993 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
994
995 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
996
997
998 * (% style="color:#037691" %)**Downlink Payload**
999
1000 **0A aa**  ~-~->  same as AT+MOD=aa
1001
1002
1003
1004
1005 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1006
1007
1008 (((
1009 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
1010 )))
1011
1012 * (((
1013 (% style="color:#037691" %)**AT Command**
1014
1015 (((
1016 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1017 )))
1018 )))
1019
1020 (((
1021
1022 )))
1023
1024 * (((
1025 (% style="color:#037691" %)**Downlink Payload**
1026 )))
1027
1028 (((
1029 Format: A8 MM NN XX XX XX XX YY
1030 )))
1031
1032 (((
1033 Where:
1034 )))
1035
1036 * (((
1037 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1038 )))
1039 * (((
1040 NN: The length of RS485 command
1041 )))
1042 * (((
1043 XX XX XX XX: RS485 command total NN bytes
1044 )))
1045 * (((
1046 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1047
1048
1049
1050 )))
1051
1052 (((
1053 (% style="color:blue" %)**Example 1:**
1054 )))
1055
1056 (((
1057 To connect a Modbus Alarm with below commands.
1058 )))
1059
1060 * (((
1061 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1062 )))
1063
1064 * (((
1065 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1066 )))
1067
1068 (((
1069 So if user want to use downlink command to control to RS485 Alarm, he can use:
1070 )))
1071
1072 (((
1073 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1074 )))
1075
1076 (((
1077 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1078 )))
1079
1080 (((
1081 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1082 )))
1083
1084 (((
1085
1086
1087
1088 )))
1089
1090 (((
1091 (% style="color:blue" %)**Example 2:**
1092 )))
1093
1094 (((
1095 Check TTL Sensor return:
1096 )))
1097
1098 (((
1099 [[image:1654132684752-193.png]]
1100 )))
1101
1102
1103
1104
1105 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1106
1107
1108 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1109
1110 * (% style="color:#037691" %)**AT Command:**
1111
1112 **AT+PAYVER:   **Set PAYVER field = 1
1113
1114
1115 * (% style="color:#037691" %)**Downlink Payload:**
1116
1117 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1118
1119 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1120
1121
1122
1123
1124 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1125
1126
1127 (((
1128 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1129 )))
1130
1131 (((
1132 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1133 )))
1134
1135 (((
1136
1137 )))
1138
1139 * (((
1140 (% style="color:#037691" %)**AT Command:**
1141 )))
1142
1143 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1144
1145 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1146
1147 **AT+SEARCHx:  Configure search command**
1148
1149
1150 * (((
1151 (% style="color:#037691" %)**Downlink Payload:**
1152 )))
1153
1154 (((
1155 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1156 )))
1157
1158 (((
1159 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1160 )))
1161
1162 (((
1163 Format: AF MM NN LL XX XX XX XX YY
1164 )))
1165
1166 (((
1167 Where:
1168 )))
1169
1170 * (((
1171 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1172 )))
1173 * (((
1174 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1175 )))
1176 * (((
1177 LL:  The length of AT+COMMAND or AT+DATACUT command
1178 )))
1179 * (((
1180 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1181 )))
1182 * (((
1183 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1184 )))
1185
1186 (((
1187 **Example:**
1188 )))
1189
1190 (((
1191 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1192 )))
1193
1194 (((
1195 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1196 )))
1197
1198 (((
1199 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1200 )))
1201
1202 (((
1203
1204 )))
1205
1206 (((
1207 **0xAB** downlink command can be used for set AT+SEARCHx
1208 )))
1209
1210 (((
1211 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1212 )))
1213
1214 * (((
1215 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1216 )))
1217 * (((
1218 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1219 )))
1220
1221 (((
1222 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1223 )))
1224
1225
1226
1227
1228 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1229
1230
1231 (((
1232 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1233 )))
1234
1235 (((
1236 This command is valid since v1.3 firmware version
1237 )))
1238
1239 (((
1240
1241 )))
1242
1243 (((
1244 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1245 )))
1246
1247 * (((
1248 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1249 )))
1250
1251 (((
1252 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1253 )))
1254
1255 * (((
1256 **AT+MBFUN=0**: Disable Modbus fast reading.
1257 )))
1258
1259 (((
1260
1261
1262 **Example:**
1263 )))
1264
1265 * (((
1266 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1267 )))
1268 * (((
1269 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1270 )))
1271 * (((
1272 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1273 )))
1274
1275 [[image:1654133913295-597.png]]
1276
1277
1278 [[image:1654133954153-643.png]]
1279
1280
1281 * (((
1282 (% style="color:#037691" %)**Downlink Commands:**
1283 )))
1284
1285 (((
1286 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1287 )))
1288
1289
1290
1291
1292 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1293
1294
1295 (((
1296 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1297 )))
1298
1299 (((
1300 Default value: 0, range:  0 ~~ 5 seconds
1301 )))
1302
1303 (((
1304
1305 )))
1306
1307 * (((
1308 (% style="color:#037691" %)**AT Command:**
1309
1310 **AT+CMDDLaa=hex(bb cc)**
1311
1312
1313 )))
1314
1315 (((
1316 **Example:**
1317 )))
1318
1319 (((
1320 **AT+CMDDL1=1000** to send the open time to 1000ms
1321 )))
1322
1323 (((
1324
1325 )))
1326
1327 * (((
1328 (% style="color:#037691" %)**Downlink Payload:**
1329 )))
1330
1331 (((
1332 0x AA aa bb cc
1333 )))
1334
1335 (((
1336 Same as: AT+CMDDLaa=hex(bb cc)
1337 )))
1338
1339 (((
1340 **Example:**
1341 )))
1342
1343 (((
1344 (% _mstmutation="1" %)**0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1345 )))
1346
1347
1348
1349
1350 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1351
1352
1353 (((
1354 Define to use one uplink or multiple uplinks for the sampling.
1355 )))
1356
1357 (((
1358 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1359 )))
1360
1361 * (((
1362 (% style="color:#037691" %)**AT Command:**
1363
1364 **AT+DATAUP=0**
1365
1366 **AT+DATAUP=1**
1367 )))
1368
1369 (((
1370
1371 )))
1372
1373 * (((
1374 (% style="color:#037691" %)**Downlink Payload:**
1375 )))
1376
1377 (((
1378 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1379 )))
1380
1381 (((
1382 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1383 )))
1384
1385
1386
1387
1388 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1389
1390
1391 Ask device to send an uplink immediately.
1392
1393 * (% style="color:#037691" %)**Downlink Payload:**
1394
1395 **0x08 FF**, RS485-BL will immediately send an uplink.
1396
1397
1398
1399
1400 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1401
1402
1403 (((
1404 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1405 )))
1406
1407 (((
1408
1409 )))
1410
1411 * (((
1412 (% style="color:#037691" %)**AT Command:**
1413 )))
1414
1415 (((
1416 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1417 )))
1418
1419 (((
1420 Example screen shot after clear all RS485 commands. 
1421 )))
1422
1423 (((
1424
1425 )))
1426
1427 (((
1428 The uplink screen shot is:
1429 )))
1430
1431 (((
1432 [[image:1654134704555-320.png]]
1433 )))
1434
1435 (((
1436
1437 )))
1438
1439 * (((
1440 (% style="color:#037691" %)**Downlink Payload:**
1441 )))
1442
1443 (((
1444 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1445 )))
1446
1447
1448
1449
1450 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1451
1452
1453 (((
1454 Set the Rs485 serial communication parameters:
1455 )))
1456
1457 * (((
1458 (% style="color:#037691" %)**AT Command:**
1459 )))
1460
1461 (((
1462
1463
1464 * Set Baud Rate:
1465 )))
1466
1467 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1468
1469
1470 * Set UART Parity
1471
1472 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1473
1474
1475 * Set STOPBIT
1476
1477 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1478
1479
1480 * (((
1481 (% style="color:#037691" %)**Downlink Payload:**
1482 )))
1483
1484 (((
1485 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1486 )))
1487
1488 (((
1489
1490
1491 **Example:**
1492 )))
1493
1494 * (((
1495 A7 01 00 60   same as AT+BAUDR=9600
1496 )))
1497 * (((
1498 A7 01 04 80  same as AT+BAUDR=115200
1499 )))
1500
1501 (((
1502 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1503 )))
1504
1505 (((
1506 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1507 )))
1508
1509
1510
1511
1512 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1513
1514
1515 (((
1516 User can set the output power duration before each sampling.
1517 )))
1518
1519 * (((
1520 (% style="color:#037691" %)**AT Command:**
1521 )))
1522
1523 (((
1524 **Example:**
1525 )))
1526
1527 (((
1528 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1529 )))
1530
1531 (((
1532 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1533 )))
1534
1535 (((
1536
1537 )))
1538
1539 * (((
1540 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1541 )))
1542
1543 (((
1544 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1545 )))
1546
1547 (((
1548 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1549 )))
1550
1551
1552
1553 == 3.6 Buttons ==
1554
1555
1556 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1557 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1558 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1559
1560 == 3.7 +3V3 Output ==
1561
1562
1563 (((
1564 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1565 )))
1566
1567 (((
1568 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1569 )))
1570
1571 (((
1572 The +3V3 output time can be controlled by AT Command.
1573 )))
1574
1575 (((
1576
1577 )))
1578
1579 (((
1580 (% style="color:#037691" %)**AT+3V3T=1000**
1581 )))
1582
1583 (((
1584
1585 )))
1586
1587 (((
1588 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1589 )))
1590
1591 (((
1592 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1593 )))
1594
1595
1596
1597 == 3.8 +5V Output ==
1598
1599
1600 (((
1601 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1602 )))
1603
1604 (((
1605 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1606 )))
1607
1608 (((
1609 The 5V output time can be controlled by AT Command.
1610 )))
1611
1612 (((
1613 (% style="color:#037691" %)**(AT+5VT increased from the maximum 5000ms to 65000ms.Since v1.4.0)**
1614 )))
1615
1616 (((
1617 (% style="color:#037691" %)**AT+5VT=1000**
1618 )))
1619
1620 (((
1621
1622 )))
1623
1624 (((
1625 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1626 )))
1627
1628 (((
1629 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1630 )))
1631
1632
1633
1634 == 3.9 LEDs ==
1635
1636
1637 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1638 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1639 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1640
1641 == 3.10 Switch Jumper ==
1642
1643
1644 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1645 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1646 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1647 Flash position: Configure device, check running status.
1648 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1649 3.3v position: set to compatible with 3.3v I/O.,
1650
1651 (((
1652 **+3.3V**: is always ON
1653 )))
1654
1655 (((
1656 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1657 )))
1658
1659
1660
1661 = 4. Case Study =
1662
1663
1664 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1665
1666
1667
1668 = 5. Use AT Command =
1669
1670
1671 == 5.1 Access AT Command ==
1672
1673
1674 (((
1675 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1676 )))
1677
1678 [[image:1654135840598-282.png]]
1679
1680
1681 (((
1682 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1683 )))
1684
1685 [[image:1654136105500-922.png]]
1686
1687
1688 (((
1689 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1690 )))
1691
1692
1693
1694 == 5.2 Common AT Command Sequence ==
1695
1696
1697 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1698
1699
1700 If device has not joined network yet:
1701
1702 * (% style="color:#037691" %)**AT+FDR**
1703 * (% style="color:#037691" %)**AT+NJM=0**
1704 * (% style="color:#037691" %)**ATZ**
1705
1706 (((
1707
1708
1709 If device already joined network:
1710
1711 * (% style="color:#037691" %)**AT+NJM=0**
1712 * (% style="color:#037691" %)**ATZ**
1713 )))
1714
1715
1716
1717
1718 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1719
1720
1721 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1722
1723 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1724
1725 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1726
1727 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1728
1729 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1730
1731 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1732
1733 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1734
1735 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1736
1737 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1738
1739 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1740
1741
1742 (% style="color:red" %)**Note:**
1743
1744 (((
1745 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1746 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1747 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1748 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1749 )))
1750
1751 [[image:1654136435598-589.png]]
1752
1753
1754
1755 = 6. FAQ =
1756
1757
1758 == 6.1 How to upgrade the image? ==
1759
1760
1761 (((
1762 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1763 )))
1764
1765 * (((
1766 Support new features
1767 )))
1768 * (((
1769 For bug fix
1770 )))
1771 * (((
1772 Change LoRaWAN bands.
1773 )))
1774
1775 (((
1776 Below shows the hardware connection for how to upload an image to RS485-BL:
1777 )))
1778
1779 [[image:1654136646995-976.png]]
1780
1781 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1782
1783 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1784
1785 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1786
1787 [[image:image-20220602102605-1.png]]
1788
1789
1790 [[image:image-20220602102637-2.png]]
1791
1792
1793 [[image:image-20220602102715-3.png]]
1794
1795
1796
1797 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1798
1799
1800 (((
1801 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1802 )))
1803
1804
1805
1806 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1807
1808
1809 (((
1810 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1811 )))
1812
1813
1814
1815 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
1816
1817
1818 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
1819
1820
1821
1822 = 7. Trouble Shooting =
1823
1824
1825 == 7.1 Downlink doesn't work, how to solve it? ==
1826
1827
1828 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1829
1830
1831
1832 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
1833
1834
1835 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1836
1837
1838
1839 = 8. Order Info =
1840
1841
1842 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1843
1844 (% style="color:blue" %)**XXX:**
1845
1846 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
1847 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
1848 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
1849 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
1850 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
1851 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
1852 * (% style="color:red" %)**US915**(%%):  frequency bands US915
1853 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
1854 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
1855 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
1856
1857
1858 = 9. Packing Info =
1859
1860
1861 (((
1862 **Package Includes**:
1863 )))
1864
1865 * (((
1866 RS485-BL x 1
1867 )))
1868 * (((
1869 Stick Antenna for LoRa RF part x 1
1870 )))
1871 * (((
1872 Program cable x 1
1873 )))
1874
1875 (((
1876 **Dimension and weight**:
1877 )))
1878
1879 * (((
1880 Device Size: 13.5 x 7 x 3 cm
1881 )))
1882 * (((
1883 Device Weight: 105g
1884 )))
1885 * (((
1886 Package Size / pcs : 14.5 x 8 x 5 cm
1887 )))
1888 * (((
1889 Weight / pcs : 170g
1890
1891
1892
1893
1894 )))
1895
1896 = 10. Support =
1897
1898
1899 * (((
1900 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1901 )))
1902 * (((
1903 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1904
1905
1906
1907 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0