Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14 = 1.Introduction =
15
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49
50
51 )))
52
53 [[image:1652953304999-717.png||height="424" width="733"]]
54
55
56
57 == 1.2 Specifications ==
58
59
60 **Hardware System:**
61
62 * STM32L072CZT6 MCU
63 * SX1276/78 Wireless Chip 
64 * Power Consumption (exclude RS485 device):
65 ** Idle: 6uA@3.3v
66 ** 20dB Transmit: 130mA@3.3v
67
68
69 **Interface for Model:**
70
71 * 1 x RS485 Interface
72 * 1 x TTL Serial , 3.3v or 5v.
73 * 1 x I2C Interface, 3.3v or 5v.
74 * 1 x one wire interface
75 * 1 x Interrupt Interface
76 * 1 x Controllable 5V output, max
77
78
79 **LoRa Spec:**
80
81 * Frequency Range:
82 ** Band 1 (HF): 862 ~~ 1020 Mhz
83 ** Band 2 (LF): 410 ~~ 528 Mhz
84 * 168 dB maximum link budget.
85 * +20 dBm - 100 mW constant RF output vs.
86 * Programmable bit rate up to 300 kbps.
87 * High sensitivity: down to -148 dBm.
88 * Bullet-proof front end: IIP3 = -12.5 dBm.
89 * Excellent blocking immunity.
90 * Fully integrated synthesizer with a resolution of 61 Hz.
91 * LoRa modulation.
92 * Built-in bit synchronizer for clock recovery.
93 * Preamble detection.
94 * 127 dB Dynamic Range RSSI.
95 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
96
97
98
99
100 == 1.3 Features ==
101
102
103 * LoRaWAN Class A & Class C protocol (default Class A)
104 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
105 * AT Commands to change parameters
106 * Remote configure parameters via LoRaWAN Downlink
107 * Firmware upgradable via program port
108 * Support multiply RS485 devices by flexible rules
109 * Support Modbus protocol
110 * Support Interrupt uplink
111
112
113
114
115 == 1.4 Applications ==
116
117
118 * Smart Buildings & Home Automation
119 * Logistics and Supply Chain Management
120 * Smart Metering
121 * Smart Agriculture
122 * Smart Cities
123 * Smart Factory
124
125
126
127
128 == 1.5 Firmware Change log ==
129
130
131 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
132
133
134
135 == 1.6 Hardware Change log ==
136
137 (((
138
139
140 (((
141 **v1.4**
142 )))
143 )))
144
145 (((
146 (((
147 ~1. Change Power IC to TPS22916
148 )))
149 )))
150
151 (((
152
153 )))
154
155 (((
156 (((
157 **v1.3**
158 )))
159 )))
160
161 (((
162 (((
163 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
164 )))
165 )))
166
167 (((
168
169 )))
170
171 (((
172 (((
173 **v1.2**
174 )))
175 )))
176
177 (((
178 (((
179 Release version ​​​​​
180 )))
181
182
183 )))
184
185
186 = 2. Pin mapping and Power ON Device =
187
188
189 (((
190 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
191 )))
192
193 [[image:1652953055962-143.png||height="387" width="728"]]
194
195
196 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
197
198
199
200 = 3. Operation Mode =
201
202
203 == 3.1 How it works? ==
204
205
206 (((
207 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
208
209
210
211 )))
212
213 == 3.2 Example to join LoRaWAN network ==
214
215
216 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
217
218 [[image:1652953414711-647.png||height="337" width="723"]]
219
220
221 (((
222 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
223 )))
224
225 (((
226 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
227
228
229 )))
230
231 (((
232 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
233 )))
234
235 (((
236 Each RS485-BL is shipped with a sticker with unique device EUI:
237 )))
238
239 [[image:1652953462722-299.png]]
240
241
242 (((
243 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
244 )))
245
246 (((
247 **Add APP EUI in the application.**
248 )))
249
250
251 [[image:image-20220519174512-1.png]]
252
253 [[image:image-20220519174512-2.png||height="328" width="731"]]
254
255 [[image:image-20220519174512-3.png||height="556" width="724"]]
256
257 [[image:image-20220519174512-4.png]]
258
259
260 You can also choose to create the device manually.
261
262 [[image:1652953542269-423.png||height="710" width="723"]]
263
264
265 Add APP KEY and DEV EUI
266
267 [[image:1652953553383-907.png||height="514" width="724"]]
268
269
270
271 (((
272 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
273 )))
274
275 [[image:1652953568895-172.png||height="232" width="724"]]
276
277
278
279 == 3.3 Configure Commands to read data ==
280
281
282 (((
283 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
284
285
286
287 )))
288
289 === 3.3.1 Configure UART settings for RS485 or TTL communication ===
290
291
292 (((
293 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
294 )))
295
296 (((
297 **~1. RS485-MODBUS mode:**
298 )))
299
300 (((
301 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
302
303
304 )))
305
306 (((
307 **2. TTL mode:**
308 )))
309
310 (((
311 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
312 )))
313
314 (((
315 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
316 )))
317
318 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
319 |=(% style="width: 80px;" %)(((
320 (((
321 **AT Commands**
322 )))
323 )))|=(% style="width: 210px;" %)(((
324 (((
325 **Description**
326 )))
327 )))|=(% style="width: 210px;" %)(((
328 (((
329 **Example**
330 )))
331 )))
332 |(% style="width:80px" %)(((
333 (((
334 AT+BAUDR
335 )))
336 )))|(% style="width:210px" %)(((
337 (((
338 Set the baud rate (for RS485 connection). Default Value is: 9600.
339 )))
340 )))|(% style="width:210px" %)(((
341 (((
342 (((
343 AT+BAUDR=9600
344 )))
345 )))
346
347 (((
348 (((
349 Options: (1200,2400,4800,14400,19200,115200)
350 )))
351 )))
352 )))
353 |(% style="width:80px" %)(((
354 (((
355 AT+PARITY
356 )))
357 )))|(% style="width:210px" %)(((
358 (((
359 (((
360 Set UART parity (for RS485 connection)
361 )))
362 )))
363
364 (((
365 (((
366 Default Value is: no parity.
367 )))
368 )))
369 )))|(% style="width:210px" %)(((
370 (((
371 (((
372 AT+PARITY=0
373 )))
374 )))
375
376 (((
377 (((
378 Option: 0: no parity, 1: odd parity, 2: even parity
379 )))
380 )))
381 )))
382 |(% style="width:80px" %)(((
383 (((
384 AT+STOPBIT
385 )))
386 )))|(% style="width:210px" %)(((
387 (((
388 (((
389 Set serial stopbit (for RS485 connection)
390 )))
391 )))
392
393 (((
394 (((
395 Default Value is: 1bit.
396 )))
397 )))
398 )))|(% style="width:210px" %)(((
399 (((
400 (((
401 AT+STOPBIT=0 for 1bit
402 )))
403 )))
404
405 (((
406 (((
407 AT+STOPBIT=1 for 1.5 bit
408 )))
409 )))
410
411 (((
412 (((
413 AT+STOPBIT=2 for 2 bits
414 )))
415 )))
416 )))
417
418
419
420
421 === 3.3.2 Configure sensors ===
422
423
424 (((
425 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
426 )))
427
428 (((
429 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
430 )))
431
432 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
433 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
434 |AT+CFGDEV|(% style="width:80px" %)(((
435 (((
436 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
437 )))
438
439 (((
440 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
441 )))
442
443 (((
444 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
445 )))
446 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
447
448 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
449
450
451
452 === 3.3.3 Configure read commands for each sampling ===
453
454
455 (((
456 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
457 )))
458
459 (((
460 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
461 )))
462
463 (((
464 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
465 )))
466
467 (((
468 This section describes how to achieve above goals.
469 )))
470
471 (((
472 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
473
474
475 )))
476
477 (((
478 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
479 )))
480
481 (((
482 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
483
484
485 )))
486
487 (((
488 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
489 )))
490
491 (((
492 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
493 )))
494
495 * (((
496 (% style="color:blue" %)**AT+DATACUT**
497 )))
498
499 (((
500 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
501
502
503 )))
504
505 * (((
506 (% style="color:blue" %)**AT+SEARCH**
507 )))
508
509 (((
510 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
511 )))
512
513 (((
514
515
516 (% style="color:blue" %)**Define wait timeout:**
517 )))
518
519 (((
520 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
521 )))
522
523 (((
524 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
525 )))
526
527 (((
528
529
530 **Examples:**
531 )))
532
533 (((
534 Below are examples for the how above AT Commands works.
535 )))
536
537 (((
538 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
539 )))
540
541 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:497px" %)
542 |(% style="width:494px" %)(((
543 (((
544 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
545 )))
546
547 (((
548 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
549 )))
550
551 (((
552 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
553 )))
554 )))
555
556 (((
557 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
558 )))
559
560 (((
561 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
562 )))
563
564 (((
565
566 )))
567
568 (((
569 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
570 )))
571
572 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:473px" %)
573 |(% style="width:470px" %)(((
574 (((
575 **AT+SEARCHx=aa,xx xx xx xx xx**
576 )))
577
578 * (((
579 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
580 )))
581 * (((
582 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
583 )))
584 )))
585
586 (((
587
588
589 **Examples:**
590 )))
591
592 (((
593 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
594 )))
595
596 (((
597 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
598 )))
599
600 (((
601 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
602 )))
603
604 (((
605 [[image:1653271044481-711.png]]
606
607
608 )))
609
610 (((
611 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
612 )))
613
614 (((
615 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
616 )))
617
618 (((
619 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
620 )))
621
622 (((
623 [[image:1653271276735-972.png]]
624 )))
625
626 (((
627 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
628 )))
629
630 (% style="background-color:#4f81bd; color:white; width:496px" %)
631 |(% style="width:493px" %)(((
632 (((
633 **AT+DATACUTx=a,b,c**
634 )))
635
636 * (((
637 **a: length for the return of AT+COMMAND**
638 )))
639 * (((
640 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
641 )))
642 * (((
643 **c: define the position for valid value.  **
644 )))
645 )))
646
647 (((
648
649
650
651 **Examples:**
652 )))
653
654 * (((
655 (% style="color:blue" %)**Grab bytes:**
656 )))
657
658 (((
659 [[image:1653271581490-837.png||height="313" width="722"]]
660 )))
661
662 (((
663
664
665
666 )))
667
668 * (((
669 (% style="color:blue" %)**Grab a section.**
670 )))
671
672 (((
673 [[image:1653271648378-342.png||height="326" width="720"]]
674 )))
675
676 (((
677
678
679
680 )))
681
682 * (((
683 (% style="color:blue" %)**Grab different sections.**
684 )))
685
686 (((
687 [[image:1653271657255-576.png||height="305" width="730"]]
688
689
690 )))
691
692 (((
693 (((
694 (% style="color:red" %)**Note:**
695 )))
696 )))
697
698 (((
699 (((
700 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
701
702
703 )))
704 )))
705
706 (((
707 (((
708 **Example:**
709 )))
710 )))
711
712 (((
713 (((
714 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
715 )))
716 )))
717
718 (((
719 (((
720 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
721 )))
722 )))
723
724 (((
725 (((
726 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
727 )))
728 )))
729
730 (((
731 (((
732 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
733 )))
734 )))
735
736 (((
737 (((
738 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
739 )))
740 )))
741
742 (((
743 (((
744 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
745 )))
746 )))
747
748 (((
749 [[image:1653271763403-806.png]]
750 )))
751
752
753
754 === 3.3.4 Compose the uplink payload ===
755
756
757 (((
758 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
759
760
761 )))
762
763 (((
764 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
765
766
767 )))
768
769 (((
770 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
771 )))
772
773 (((
774 Final Payload is
775 )))
776
777 (((
778 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
779 )))
780
781 (((
782 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
783 )))
784
785 [[image:1653272787040-634.png||height="515" width="719"]]
786
787
788
789 (((
790 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
791
792
793 )))
794
795 (((
796 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
797 )))
798
799 (((
800 Final Payload is
801 )))
802
803 (((
804 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
805 )))
806
807 1. (((
808 Battery Info (2 bytes): Battery voltage
809 )))
810 1. (((
811 PAYVER (1 byte): Defined by AT+PAYVER
812 )))
813 1. (((
814 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
815 )))
816 1. (((
817 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
818 )))
819 1. (((
820 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
821
822
823 )))
824
825 [[image:1653272817147-600.png||height="437" width="717"]]
826
827 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
828
829
830 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
831
832 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
833
834 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
835
836
837 Below are the uplink payloads:
838
839 [[image:1653272901032-107.png]]
840
841
842 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
843
844 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
845
846 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
847
848 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
849
850 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
851
852
853
854
855 === 3.3.5 Uplink on demand ===
856
857
858 (((
859 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
860 )))
861
862 (((
863 Downlink control command:
864 )))
865
866 (((
867 **0x08 command**: Poll an uplink with current command set in RS485-BL.
868 )))
869
870 (((
871 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
872
873
874
875 )))
876
877 === 3.3.6 Uplink on Interrupt ===
878
879
880 Put the interrupt sensor between 3.3v_out and GPIO ext.
881
882 [[image:1653273818896-432.png]]
883
884
885 (((
886 AT+INTMOD=0  Disable Interrupt
887 )))
888
889 (((
890 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
891 )))
892
893 (((
894 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
895 )))
896
897 (((
898 AT+INTMOD=3  Interrupt trigger by rising edge.
899
900
901
902 )))
903
904 == 3.4 Uplink Payload ==
905
906
907 [[image:image-20220606105412-1.png]]
908
909 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
910
911 (((
912 {{{function Decoder(bytes, port) {}}}
913 )))
914
915 (((
916 {{{//Payload Formats of RS485-BL Deceive}}}
917 )))
918
919 (((
920 {{{return {}}}
921 )))
922
923 (((
924 {{{ //Battery,units:V}}}
925 )))
926
927 (((
928 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
929 )))
930
931 (((
932 {{{ //GPIO_EXTI }}}
933 )))
934
935 (((
936 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
937 )))
938
939 (((
940 {{{ //payload of version}}}
941 )))
942
943 (((
944 {{{ Pay_ver:bytes[2],}}}
945 )))
946
947 (((
948 {{{ }; }}}
949 )))
950
951 (((
952 **}**
953
954
955 )))
956
957 (((
958 TTN V3 uplink screen shot.
959 )))
960
961 [[image:1653274001211-372.png||height="192" width="732"]]
962
963
964
965 == 3.5 Configure RS485-BL via AT or Downlink ==
966
967
968 (((
969 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
970 )))
971
972 (((
973 There are two kinds of Commands:
974 )))
975
976 * (((
977 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
978 )))
979
980 * (((
981 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
982
983
984
985
986 )))
987
988 === 3.5.1 Common Commands: ===
989
990
991 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
992
993
994
995 === 3.5.2 Sensor related commands: ===
996
997
998
999 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)**(%%) ====
1000
1001
1002 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1003
1004 * (% style="color:#037691" %)**AT Command**
1005
1006 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1007
1008 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1009
1010
1011 * (% style="color:#037691" %)**Downlink Payload**
1012
1013 **0A aa**  ~-~->  same as AT+MOD=aa
1014
1015
1016
1017
1018 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
1019
1020
1021 (((
1022 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
1023 )))
1024
1025 * (((
1026 (% style="color:#037691" %)**AT Command**
1027
1028 (((
1029 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
1030 )))
1031 )))
1032
1033 (((
1034
1035 )))
1036
1037 * (((
1038 (% style="color:#037691" %)**Downlink Payload**
1039 )))
1040
1041 (((
1042 Format: A8 MM NN XX XX XX XX YY
1043 )))
1044
1045 (((
1046 Where:
1047 )))
1048
1049 * (((
1050 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1051 )))
1052 * (((
1053 NN: The length of RS485 command
1054 )))
1055 * (((
1056 XX XX XX XX: RS485 command total NN bytes
1057 )))
1058 * (((
1059 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1060
1061
1062
1063 )))
1064
1065 (((
1066 (% style="color:blue" %)**Example 1:**
1067 )))
1068
1069 (((
1070 To connect a Modbus Alarm with below commands.
1071 )))
1072
1073 * (((
1074 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1075 )))
1076
1077 * (((
1078 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1079 )))
1080
1081 (((
1082 So if user want to use downlink command to control to RS485 Alarm, he can use:
1083 )))
1084
1085 (((
1086 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1087 )))
1088
1089 (((
1090 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1091 )))
1092
1093 (((
1094 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1095 )))
1096
1097 (((
1098
1099
1100
1101 )))
1102
1103 (((
1104 (% style="color:blue" %)**Example 2:**
1105 )))
1106
1107 (((
1108 Check TTL Sensor return:
1109 )))
1110
1111 (((
1112 [[image:1654132684752-193.png]]
1113 )))
1114
1115
1116
1117
1118 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1119
1120
1121 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1122
1123 * (% style="color:#037691" %)**AT Command:**
1124
1125 **AT+PAYVER:   **Set PAYVER field = 1
1126
1127
1128 * (% style="color:#037691" %)**Downlink Payload:**
1129
1130 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1131
1132 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1133
1134
1135
1136
1137 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1138
1139
1140 (((
1141 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1142 )))
1143
1144 (((
1145 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1146 )))
1147
1148 (((
1149
1150 )))
1151
1152 * (((
1153 (% style="color:#037691" %)**AT Command:**
1154 )))
1155
1156 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1157
1158 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1159
1160 **AT+SEARCHx:  Configure search command**
1161
1162
1163 * (((
1164 (% style="color:#037691" %)**Downlink Payload:**
1165 )))
1166
1167 (((
1168 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1169 )))
1170
1171 (((
1172 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1173 )))
1174
1175 (((
1176 Format: AF MM NN LL XX XX XX XX YY
1177 )))
1178
1179 (((
1180 Where:
1181 )))
1182
1183 * (((
1184 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1185 )))
1186 * (((
1187 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1188 )))
1189 * (((
1190 LL:  The length of AT+COMMAND or AT+DATACUT command
1191 )))
1192 * (((
1193 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1194 )))
1195 * (((
1196 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1197 )))
1198
1199 (((
1200 **Example:**
1201 )))
1202
1203 (((
1204 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1205 )))
1206
1207 (((
1208 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1209 )))
1210
1211 (((
1212 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1213 )))
1214
1215 (((
1216
1217 )))
1218
1219 (((
1220 **0xAB** downlink command can be used for set AT+SEARCHx
1221 )))
1222
1223 (((
1224 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1225 )))
1226
1227 * (((
1228 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1229 )))
1230 * (((
1231 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1232 )))
1233
1234 (((
1235 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1236 )))
1237
1238
1239
1240
1241 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1242
1243
1244 (((
1245 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1246 )))
1247
1248 (((
1249 This command is valid since v1.3 firmware version
1250 )))
1251
1252 (((
1253
1254 )))
1255
1256 (((
1257 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1258 )))
1259
1260 * (((
1261 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1262 )))
1263
1264 (((
1265 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1266 )))
1267
1268 * (((
1269 **AT+MBFUN=0**: Disable Modbus fast reading.
1270 )))
1271
1272 (((
1273
1274
1275 **Example:**
1276 )))
1277
1278 * (((
1279 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1280 )))
1281 * (((
1282 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1283 )))
1284 * (((
1285 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1286 )))
1287
1288 [[image:1654133913295-597.png]]
1289
1290
1291 [[image:1654133954153-643.png]]
1292
1293
1294 * (((
1295 (% style="color:#037691" %)**Downlink Commands:**
1296 )))
1297
1298 (((
1299 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1300 )))
1301
1302
1303
1304
1305 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1306
1307
1308 (((
1309 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1310 )))
1311
1312 (((
1313 Default value: 0, range:  0 ~~ 5 seconds
1314 )))
1315
1316 (((
1317
1318 )))
1319
1320 * (((
1321 (% style="color:#037691" %)**AT Command:**
1322
1323 **AT+CMDDLaa=hex(bb cc)**
1324
1325
1326 )))
1327
1328 (((
1329 **Example:**
1330 )))
1331
1332 (((
1333 **AT+CMDDL1=1000** to send the open time to 1000ms
1334 )))
1335
1336 (((
1337
1338 )))
1339
1340 * (((
1341 (% style="color:#037691" %)**Downlink Payload:**
1342 )))
1343
1344 (((
1345 0x AA aa bb cc
1346 )))
1347
1348 (((
1349 Same as: AT+CMDDLaa=hex(bb cc)
1350 )))
1351
1352 (((
1353 **Example:**
1354 )))
1355
1356 (((
1357 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1358 )))
1359
1360
1361
1362
1363 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1364
1365
1366 (((
1367 Define to use one uplink or multiple uplinks for the sampling.
1368 )))
1369
1370 (((
1371 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1372 )))
1373
1374 * (((
1375 (% style="color:#037691" %)**AT Command:**
1376
1377 **AT+DATAUP=0**
1378
1379 **AT+DATAUP=1**
1380 )))
1381
1382 (((
1383
1384 )))
1385
1386 * (((
1387 (% style="color:#037691" %)**Downlink Payload:**
1388 )))
1389
1390 (((
1391 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1392 )))
1393
1394 (((
1395 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1396 )))
1397
1398
1399
1400
1401 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1402
1403
1404 Ask device to send an uplink immediately.
1405
1406 * (% style="color:#037691" %)**Downlink Payload:**
1407
1408 **0x08 FF**, RS485-BL will immediately send an uplink.
1409
1410
1411
1412
1413 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1414
1415
1416 (((
1417 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1418 )))
1419
1420 (((
1421
1422 )))
1423
1424 * (((
1425 (% style="color:#037691" %)**AT Command:**
1426 )))
1427
1428 (((
1429 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1430 )))
1431
1432 (((
1433 Example screen shot after clear all RS485 commands. 
1434 )))
1435
1436 (((
1437
1438 )))
1439
1440 (((
1441 The uplink screen shot is:
1442 )))
1443
1444 (((
1445 [[image:1654134704555-320.png]]
1446 )))
1447
1448 (((
1449
1450 )))
1451
1452 * (((
1453 (% style="color:#037691" %)**Downlink Payload:**
1454 )))
1455
1456 (((
1457 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1458 )))
1459
1460
1461
1462
1463 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1464
1465
1466 (((
1467 Set the Rs485 serial communication parameters:
1468 )))
1469
1470 * (((
1471 (% style="color:#037691" %)**AT Command:**
1472 )))
1473
1474 (((
1475
1476
1477 * Set Baud Rate:
1478 )))
1479
1480 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1481
1482
1483 * Set UART Parity
1484
1485 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1486
1487
1488 * Set STOPBIT
1489
1490 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1491
1492
1493 * (((
1494 (% style="color:#037691" %)**Downlink Payload:**
1495 )))
1496
1497 (((
1498 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1499 )))
1500
1501 (((
1502
1503
1504 **Example:**
1505 )))
1506
1507 * (((
1508 A7 01 00 60   same as AT+BAUDR=9600
1509 )))
1510 * (((
1511 A7 01 04 80  same as AT+BAUDR=115200
1512 )))
1513
1514 (((
1515 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1516 )))
1517
1518 (((
1519 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1520 )))
1521
1522
1523
1524
1525 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1526
1527
1528 (((
1529 User can set the output power duration before each sampling.
1530 )))
1531
1532 * (((
1533 (% style="color:#037691" %)**AT Command:**
1534 )))
1535
1536 (((
1537 **Example:**
1538 )))
1539
1540 (((
1541 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1542 )))
1543
1544 (((
1545 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1546 )))
1547
1548 (((
1549
1550 )))
1551
1552 * (((
1553 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1554 )))
1555
1556 (((
1557 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1558 )))
1559
1560 (((
1561 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1562 )))
1563
1564
1565
1566 == 3.6 Buttons ==
1567
1568
1569 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1570 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1571 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1572
1573 == 3.7 +3V3 Output ==
1574
1575
1576 (((
1577 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1578 )))
1579
1580 (((
1581 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1582 )))
1583
1584 (((
1585 The +3V3 output time can be controlled by AT Command.
1586 )))
1587
1588 (((
1589
1590 )))
1591
1592 (((
1593 (% style="color:#037691" %)**AT+3V3T=1000**
1594 )))
1595
1596 (((
1597
1598 )))
1599
1600 (((
1601 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1602 )))
1603
1604 (((
1605 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1606 )))
1607
1608
1609
1610 == 3.8 +5V Output ==
1611
1612
1613 (((
1614 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1615 )))
1616
1617 (((
1618 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1619 )))
1620
1621 (((
1622 The 5V output time can be controlled by AT Command.
1623 )))
1624
1625 (((
1626
1627 )))
1628
1629 (((
1630 (% style="color:#037691" %)**AT+5VT=1000**
1631 )))
1632
1633 (((
1634
1635 )))
1636
1637 (((
1638 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1639 )))
1640
1641 (((
1642 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1643 )))
1644
1645
1646
1647 == 3.9 LEDs ==
1648
1649
1650 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1651 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1652 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1653
1654 == 3.10 Switch Jumper ==
1655
1656
1657 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1658 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1659 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1660 Flash position: Configure device, check running status.
1661 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1662 3.3v position: set to compatible with 3.3v I/O.,
1663
1664 (((
1665 **+3.3V**: is always ON
1666 )))
1667
1668 (((
1669 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1670 )))
1671
1672
1673
1674 = 4. Case Study =
1675
1676
1677 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1678
1679
1680
1681 = 5. Use AT Command =
1682
1683
1684 == 5.1 Access AT Command ==
1685
1686
1687 (((
1688 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1689 )))
1690
1691 [[image:1654135840598-282.png]]
1692
1693
1694 (((
1695 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1696 )))
1697
1698 [[image:1654136105500-922.png]]
1699
1700
1701 (((
1702 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1703 )))
1704
1705
1706
1707 == 5.2 Common AT Command Sequence ==
1708
1709
1710 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1711
1712
1713 If device has not joined network yet:
1714
1715 * (% style="color:#037691" %)**AT+FDR**
1716 * (% style="color:#037691" %)**AT+NJM=0**
1717 * (% style="color:#037691" %)**ATZ**
1718
1719 (((
1720
1721
1722 If device already joined network:
1723
1724 * (% style="color:#037691" %)**AT+NJM=0**
1725 * (% style="color:#037691" %)**ATZ**
1726 )))
1727
1728
1729
1730
1731 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1732
1733
1734 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1735
1736 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%) Set to ABP mode
1737
1738 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) Set the Adaptive Data Rate Off
1739
1740 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%) Set Data Rate
1741
1742 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1743
1744 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%)  Set transmit frequency to 868.4Mhz
1745
1746 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1747
1748 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1749
1750 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1751
1752 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1753
1754
1755 (% style="color:red" %)**Note:**
1756
1757 (((
1758 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1759 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1760 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1761 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1762 )))
1763
1764 [[image:1654136435598-589.png]]
1765
1766
1767
1768 = 6. FAQ =
1769
1770
1771 == 6.1 How to upgrade the image? ==
1772
1773
1774 (((
1775 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1776 )))
1777
1778 * (((
1779 Support new features
1780 )))
1781 * (((
1782 For bug fix
1783 )))
1784 * (((
1785 Change LoRaWAN bands.
1786 )))
1787
1788 (((
1789 Below shows the hardware connection for how to upload an image to RS485-BL:
1790 )))
1791
1792 [[image:1654136646995-976.png]]
1793
1794 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1795
1796 (% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1797
1798 (% style="color:blue" %)**Step3**(%%)**: **Open flashloader; choose the correct COM port to update.
1799
1800 [[image:image-20220602102605-1.png]]
1801
1802
1803 [[image:image-20220602102637-2.png]]
1804
1805
1806 [[image:image-20220602102715-3.png]]
1807
1808
1809
1810 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1811
1812
1813 (((
1814 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1815 )))
1816
1817
1818
1819 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1820
1821
1822 (((
1823 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1824 )))
1825
1826
1827
1828 == 6.4 How to Use RS485-BL  to connect to RS232 devices? ==
1829
1830
1831 [[Use RS485-BL or RS485-LN to connect to RS232 devices. - DRAGINO>>url:http://8.211.40.43:8080/xwiki/bin/view/Main/RS485%20to%20RS232/]]
1832
1833
1834
1835 = 7. Trouble Shooting =
1836
1837
1838 == 7.1 Downlink doesn't work, how to solve it? ==
1839
1840
1841 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1842
1843
1844
1845 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
1846
1847
1848 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1849
1850
1851
1852 = 8. Order Info =
1853
1854
1855 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1856
1857 (% style="color:blue" %)**XXX:**
1858
1859 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
1860 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
1861 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
1862 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
1863 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
1864 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
1865 * (% style="color:red" %)**US915**(%%):  frequency bands US915
1866 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
1867 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
1868 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
1869
1870
1871
1872
1873
1874 = 9. Packing Info =
1875
1876
1877 (((
1878 **Package Includes**:
1879 )))
1880
1881 * (((
1882 RS485-BL x 1
1883 )))
1884 * (((
1885 Stick Antenna for LoRa RF part x 1
1886 )))
1887 * (((
1888 Program cable x 1
1889 )))
1890
1891 (((
1892 **Dimension and weight**:
1893 )))
1894
1895 * (((
1896 Device Size: 13.5 x 7 x 3 cm
1897 )))
1898 * (((
1899 Device Weight: 105g
1900 )))
1901 * (((
1902 Package Size / pcs : 14.5 x 8 x 5 cm
1903 )))
1904 * (((
1905 Weight / pcs : 170g
1906
1907
1908
1909
1910 )))
1911
1912 = 10. Support =
1913
1914
1915 * (((
1916 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1917 )))
1918 * (((
1919 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1920
1921
1922
1923 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0