Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="404" width="404"]]
3
4
5
6
7 **Table of Contents:**
8
9 {{toc/}}
10
11
12
13
14
15 = 1.Introduction =
16
17 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
18
19 (((
20
21 )))
22
23 (((
24 The Dragino RS485-BL is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
25 )))
26
27 (((
28 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
29 )))
30
31 (((
32 RS485-BL is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use for several years.
33 )))
34
35 (((
36 RS485-BL runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
37 )))
38
39 (((
40 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
41 )))
42
43 (((
44 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
45 )))
46
47 (((
48 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1652953304999-717.png||height="424" width="733"]]
52
53
54
55 == 1.2 Specifications ==
56
57
58 **Hardware System:**
59
60 * STM32L072CZT6 MCU
61 * SX1276/78 Wireless Chip 
62 * Power Consumption (exclude RS485 device):
63 ** Idle: 6uA@3.3v
64 ** 20dB Transmit: 130mA@3.3v
65
66
67 **Interface for Model:**
68
69 * 1 x RS485 Interface
70 * 1 x TTL Serial , 3.3v or 5v.
71 * 1 x I2C Interface, 3.3v or 5v.
72 * 1 x one wire interface
73 * 1 x Interrupt Interface
74 * 1 x Controllable 5V output, max
75
76
77 **LoRa Spec:**
78
79 * Frequency Range:
80 ** Band 1 (HF): 862 ~~ 1020 Mhz
81 ** Band 2 (LF): 410 ~~ 528 Mhz
82 * 168 dB maximum link budget.
83 * +20 dBm - 100 mW constant RF output vs.
84 * Programmable bit rate up to 300 kbps.
85 * High sensitivity: down to -148 dBm.
86 * Bullet-proof front end: IIP3 = -12.5 dBm.
87 * Excellent blocking immunity.
88 * Fully integrated synthesizer with a resolution of 61 Hz.
89 * LoRa modulation.
90 * Built-in bit synchronizer for clock recovery.
91 * Preamble detection.
92 * 127 dB Dynamic Range RSSI.
93 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
94
95
96
97
98 == 1.3 Features ==
99
100 * LoRaWAN Class A & Class C protocol (default Class A)
101 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
102 * AT Commands to change parameters
103 * Remote configure parameters via LoRaWAN Downlink
104 * Firmware upgradable via program port
105 * Support multiply RS485 devices by flexible rules
106 * Support Modbus protocol
107 * Support Interrupt uplink
108
109
110
111
112 == 1.4 Applications ==
113
114 * Smart Buildings & Home Automation
115 * Logistics and Supply Chain Management
116 * Smart Metering
117 * Smart Agriculture
118 * Smart Cities
119 * Smart Factory
120
121
122
123
124 == 1.5 Firmware Change log ==
125
126 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
127
128
129 == 1.6 Hardware Change log ==
130
131 (((
132
133
134 (((
135 v1.4
136 )))
137 )))
138
139 (((
140 (((
141 ~1. Change Power IC to TPS22916
142 )))
143 )))
144
145 (((
146
147 )))
148
149 (((
150 (((
151 v1.3
152 )))
153 )))
154
155 (((
156 (((
157 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
158 )))
159 )))
160
161 (((
162
163 )))
164
165 (((
166 (((
167 v1.2
168 )))
169 )))
170
171 (((
172 (((
173 Release version ​​​​​
174 )))
175
176
177 )))
178
179 = 2. Pin mapping and Power ON Device =
180
181 (((
182 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
183 )))
184
185 [[image:1652953055962-143.png||height="387" width="728"]]
186
187
188 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
189
190
191 = 3. Operation Mode =
192
193 == 3.1 How it works? ==
194
195 (((
196 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
197
198
199 )))
200
201 == 3.2 Example to join LoRaWAN network ==
202
203 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
204
205 [[image:1652953414711-647.png||height="337" width="723"]]
206
207
208 (((
209 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
210 )))
211
212 (((
213 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
214 )))
215
216 (((
217 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-BL.
218 )))
219
220 (((
221 Each RS485-BL is shipped with a sticker with unique device EUI:
222 )))
223
224 [[image:1652953462722-299.png]]
225
226
227 (((
228 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
229 )))
230
231 (((
232 **Add APP EUI in the application.**
233 )))
234
235
236 [[image:image-20220519174512-1.png]]
237
238 [[image:image-20220519174512-2.png||height="328" width="731"]]
239
240 [[image:image-20220519174512-3.png||height="556" width="724"]]
241
242 [[image:image-20220519174512-4.png]]
243
244
245 You can also choose to create the device manually.
246
247 [[image:1652953542269-423.png||height="710" width="723"]]
248
249
250 Add APP KEY and DEV EUI
251
252 [[image:1652953553383-907.png||height="514" width="724"]]
253
254
255
256 (((
257 (% style="color:blue" %)**Step 2**(%%): Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
258 )))
259
260 [[image:1652953568895-172.png||height="232" width="724"]]
261
262
263 == 3.3 Configure Commands to read data ==
264
265 (((
266 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
267
268
269 )))
270
271 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
272
273 (((
274 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
275 )))
276
277 (((
278 **~1. RS485-MODBUS mode:**
279 )))
280
281 (((
282 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
283 )))
284
285 (((
286 **2. TTL mode:**
287 )))
288
289 (((
290 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
291 )))
292
293 (((
294 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
295 )))
296
297 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
298 |=(% style="width: 80px;" %)(((
299 (((
300 **AT Commands**
301 )))
302 )))|=(% style="width: 210px;" %)(((
303 (((
304 **Description**
305 )))
306 )))|=(% style="width: 210px;" %)(((
307 (((
308 **Example**
309 )))
310 )))
311 |(% style="width:80px" %)(((
312 (((
313 AT+BAUDR
314 )))
315 )))|(% style="width:210px" %)(((
316 (((
317 Set the baud rate (for RS485 connection). Default Value is: 9600.
318 )))
319 )))|(% style="width:210px" %)(((
320 (((
321 (((
322 AT+BAUDR=9600
323 )))
324 )))
325
326 (((
327 (((
328 Options: (1200,2400,4800,14400,19200,115200)
329 )))
330 )))
331 )))
332 |(% style="width:80px" %)(((
333 (((
334 AT+PARITY
335 )))
336 )))|(% style="width:210px" %)(((
337 (((
338 (((
339 Set UART parity (for RS485 connection)
340 )))
341 )))
342
343 (((
344 (((
345 Default Value is: no parity.
346 )))
347 )))
348 )))|(% style="width:210px" %)(((
349 (((
350 (((
351 AT+PARITY=0
352 )))
353 )))
354
355 (((
356 (((
357 Option: 0: no parity, 1: odd parity, 2: even parity
358 )))
359 )))
360 )))
361 |(% style="width:80px" %)(((
362 (((
363 AT+STOPBIT
364 )))
365 )))|(% style="width:210px" %)(((
366 (((
367 (((
368 Set serial stopbit (for RS485 connection)
369 )))
370 )))
371
372 (((
373 (((
374 Default Value is: 1bit.
375 )))
376 )))
377 )))|(% style="width:210px" %)(((
378 (((
379 (((
380 AT+STOPBIT=0 for 1bit
381 )))
382 )))
383
384 (((
385 (((
386 AT+STOPBIT=1 for 1.5 bit
387 )))
388 )))
389
390 (((
391 (((
392 AT+STOPBIT=2 for 2 bits
393 )))
394 )))
395 )))
396
397
398
399
400 === 3.3.2 Configure sensors ===
401
402 (((
403 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
404 )))
405
406 (((
407 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
408 )))
409
410 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
411 |=(% style="width: 80px;" %)**AT Commands**|=(% style="width: 210px;" %)**Description**|=(% style="width: 210px;" %)**Example**
412 |AT+CFGDEV|(% style="width:80px" %)(((
413 (((
414 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
415 )))
416
417 (((
418 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
419 )))
420
421 (((
422 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
423 )))
424 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
425
426 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="HRS485DebugCommand28AT2BCFGDEV29"]].
427
428
429
430 === 3.3.3 Configure read commands for each sampling ===
431
432 (((
433 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
434 )))
435
436 (((
437 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
438 )))
439
440 (((
441 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
442 )))
443
444 (((
445 This section describes how to achieve above goals.
446 )))
447
448 (((
449 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
450
451
452 )))
453
454 (((
455 (% style="color:blue" %)**Command from RS485-BL to Sensor:**
456 )))
457
458 (((
459 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
460
461
462 )))
463
464 (((
465 (% style="color:blue" %)**Handle return from sensors to RS485-BL**:
466 )))
467
468 (((
469 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
470 )))
471
472 * (((
473 (% style="color:blue" %)**AT+DATACUT**
474 )))
475
476 (((
477 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
478
479
480 )))
481
482 * (((
483 (% style="color:blue" %)**AT+SEARCH**
484 )))
485
486 (((
487 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
488 )))
489
490 (((
491
492
493 (% style="color:blue" %)**Define wait timeout:**
494 )))
495
496 (((
497 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
498 )))
499
500 (((
501 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
502 )))
503
504 (((
505
506
507 **Examples:**
508 )))
509
510 (((
511 Below are examples for the how above AT Commands works.
512 )))
513
514 (((
515 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
516 )))
517
518 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
519 |(% style="width:498px" %)(((
520 (((
521 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
522 )))
523
524 (((
525 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
526 )))
527
528 (((
529 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
530 )))
531 )))
532
533 (((
534 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
535 )))
536
537 (((
538 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
539 )))
540
541 (((
542
543 )))
544
545 (((
546 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
547 )))
548
549 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:500px" %)
550 |(% style="width:577px" %)(((
551 (((
552 **AT+SEARCHx=aa,xx xx xx xx xx**
553 )))
554
555 * (((
556 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
557 )))
558 * (((
559 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
560 )))
561 )))
562
563 (((
564
565
566 **Examples:**
567 )))
568
569 (((
570 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
571 )))
572
573 (((
574 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
575 )))
576
577 (((
578 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
579 )))
580
581 (((
582 [[image:1653271044481-711.png]]
583
584
585 )))
586
587 (((
588 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
589 )))
590
591 (((
592 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
593 )))
594
595 (((
596 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
597 )))
598
599 (((
600 [[image:1653271276735-972.png]]
601 )))
602
603 (((
604 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
605 )))
606
607 (% style="background-color:#4f81bd; color:white; width:510px" %)
608 |(% style="width:726px" %)(((
609 (((
610 **AT+DATACUTx=a,b,c**
611 )))
612
613 * (((
614 **a: length for the return of AT+COMMAND**
615 )))
616 * (((
617 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
618 )))
619 * (((
620 **c: define the position for valid value.  **
621 )))
622 )))
623
624 (((
625
626
627 **Examples:**
628 )))
629
630 * (((
631 (% style="color:blue" %)**Grab bytes:**
632 )))
633
634 (((
635 [[image:1653271581490-837.png||height="313" width="722"]]
636 )))
637
638 (((
639
640 )))
641
642 * (((
643 (% style="color:blue" %)**Grab a section.**
644 )))
645
646 (((
647 [[image:1653271648378-342.png||height="326" width="720"]]
648 )))
649
650 (((
651
652 )))
653
654 * (((
655 (% style="color:blue" %)**Grab different sections.**
656 )))
657
658 (((
659 [[image:1653271657255-576.png||height="305" width="730"]]
660
661
662 )))
663
664 (((
665 (((
666 (% style="color:red" %)**Note:**
667 )))
668 )))
669
670 (((
671 (((
672 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
673 )))
674 )))
675
676 (((
677 (((
678 **Example:**
679 )))
680 )))
681
682 (((
683 (((
684 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
685 )))
686 )))
687
688 (((
689 (((
690 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
691 )))
692 )))
693
694 (((
695 (((
696 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
697 )))
698 )))
699
700 (((
701 (((
702 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
703 )))
704 )))
705
706 (((
707 (((
708 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
709 )))
710 )))
711
712 (((
713 (((
714 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
715 )))
716 )))
717
718 (((
719 [[image:1653271763403-806.png]]
720 )))
721
722
723 === 3.3.4 Compose the uplink payload ===
724
725 (((
726 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
727
728
729 )))
730
731 (((
732 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
733
734
735 )))
736
737 (((
738 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
739 )))
740
741 (((
742 Final Payload is
743 )))
744
745 (((
746 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
747 )))
748
749 (((
750 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
751 )))
752
753 [[image:1653272787040-634.png||height="515" width="719"]]
754
755
756
757 (((
758 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
759
760
761 )))
762
763 (((
764 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
765 )))
766
767 (((
768 Final Payload is
769 )))
770
771 (((
772 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
773 )))
774
775 1. (((
776 Battery Info (2 bytes): Battery voltage
777 )))
778 1. (((
779 PAYVER (1 byte): Defined by AT+PAYVER
780 )))
781 1. (((
782 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
783 )))
784 1. (((
785 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
786 )))
787 1. (((
788 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
789
790
791 )))
792
793 [[image:1653272817147-600.png||height="437" width="717"]]
794
795 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
796
797
798 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
799
800 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
801
802 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
803
804
805 Below are the uplink payloads:
806
807 [[image:1653272901032-107.png]]
808
809
810 (% style="color:red" %)Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
811
812 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
813
814 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
815
816 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
817
818 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
819
820
821
822 === 3.3.5 Uplink on demand ===
823
824 (((
825 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
826 )))
827
828 (((
829 Downlink control command:
830 )))
831
832 (((
833 **0x08 command**: Poll an uplink with current command set in RS485-BL.
834 )))
835
836 (((
837 **0xA8 command**: Send a command to RS485-BL and uplink the output from sensors.
838
839
840 )))
841
842 === 3.3.6 Uplink on Interrupt ===
843
844 Put the interrupt sensor between 3.3v_out and GPIO ext.
845
846 [[image:1653273818896-432.png]]
847
848
849 (((
850 AT+INTMOD=0  Disable Interrupt
851 )))
852
853 (((
854 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
855 )))
856
857 (((
858 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
859 )))
860
861 (((
862 AT+INTMOD=3  Interrupt trigger by rising edge.
863
864
865 )))
866
867 == 3.4 Uplink Payload ==
868
869 [[image:image-20220606105412-1.png]]
870
871 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
872
873 (((
874 {{{function Decoder(bytes, port) {}}}
875 )))
876
877 (((
878 {{{//Payload Formats of RS485-BL Deceive}}}
879 )))
880
881 (((
882 {{{return {}}}
883 )))
884
885 (((
886 {{{ //Battery,units:V}}}
887 )))
888
889 (((
890 {{{ BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,}}}
891 )))
892
893 (((
894 {{{ //GPIO_EXTI }}}
895 )))
896
897 (((
898 {{{ EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",}}}
899 )))
900
901 (((
902 {{{ //payload of version}}}
903 )))
904
905 (((
906 {{{ Pay_ver:bytes[2],}}}
907 )))
908
909 (((
910 {{{ }; }}}
911 )))
912
913 (((
914 }
915
916
917 )))
918
919 (((
920 TTN V3 uplink screen shot.
921 )))
922
923 [[image:1653274001211-372.png||height="192" width="732"]]
924
925
926 == 3.5 Configure RS485-BL via AT or Downlink ==
927
928 (((
929 User can configure RS485-BL via AT Commands or LoRaWAN Downlink Commands
930 )))
931
932 (((
933 There are two kinds of Commands:
934 )))
935
936 * (((
937 (% style="color:#4f81bd" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
938 )))
939
940 * (((
941 (% style="color:#4f81bd" %)**Sensor Related Commands**(%%): These commands are special designed for RS485-BL.  User can see these commands below:
942
943
944
945
946 )))
947
948 === 3.5.1 Common Commands: ===
949
950 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
951
952
953 === 3.5.2 Sensor related commands: ===
954
955
956
957 ==== (% style="color:blue" %)**Choose Device Type (RS485 or TTL)**(%%) ====
958
959 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
960
961 * (% style="color:#037691" %)**AT Command**
962
963 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
964
965 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
966
967
968 * (% style="color:#037691" %)**Downlink Payload**
969
970 **0A aa**  ~-~->  same as AT+MOD=aa
971
972
973
974
975 ==== (% style="color:blue" %)**RS485 Debug Command (AT+CFGDEV)**(%%) ====
976
977 (((
978 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
979 )))
980
981 * (((
982 (% style="color:#037691" %)**AT Command**
983
984 (((
985 **AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
986 )))
987 )))
988
989 (((
990
991 )))
992
993 * (((
994 (% style="color:#037691" %)**Downlink Payload**
995 )))
996
997 (((
998 Format: A8 MM NN XX XX XX XX YY
999 )))
1000
1001 (((
1002 Where:
1003 )))
1004
1005 * (((
1006 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1007 )))
1008 * (((
1009 NN: The length of RS485 command
1010 )))
1011 * (((
1012 XX XX XX XX: RS485 command total NN bytes
1013 )))
1014 * (((
1015 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
1016 )))
1017
1018 (((
1019 **Example 1:**
1020 )))
1021
1022 (((
1023 To connect a Modbus Alarm with below commands.
1024 )))
1025
1026 * (((
1027 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1028 )))
1029
1030 * (((
1031 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1032 )))
1033
1034 (((
1035 So if user want to use downlink command to control to RS485 Alarm, he can use:
1036 )))
1037
1038 (((
1039 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1040 )))
1041
1042 (((
1043 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1044 )))
1045
1046 (((
1047 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1048 )))
1049
1050 (((
1051
1052 )))
1053
1054 (((
1055 **Example 2:**
1056 )))
1057
1058 (((
1059 Check TTL Sensor return:
1060 )))
1061
1062 (((
1063 [[image:1654132684752-193.png]]
1064 )))
1065
1066
1067
1068
1069
1070 ==== (% style="color:blue" %)**Set Payload version**(%%) ====
1071
1072 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1073
1074 * (% style="color:#037691" %)**AT Command:**
1075
1076 **AT+PAYVER:   **Set PAYVER field = 1
1077
1078
1079 * (% style="color:#037691" %)**Downlink Payload:**
1080
1081 **0xAE 01**  ~-~-> Set PAYVER field =  0x01
1082
1083 **0xAE 0F**   ~-~-> Set PAYVER field =  0x0F
1084
1085
1086
1087
1088 ==== (% style="color:blue" %)**Set RS485 Sampling Commands**(%%) ====
1089
1090 (((
1091 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1092 )))
1093
1094 (((
1095 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1096 )))
1097
1098 (((
1099
1100 )))
1101
1102 * (((
1103 (% style="color:#037691" %)**AT Command:**
1104 )))
1105
1106 **AT+COMMANDx:  Configure RS485 read command to sensor.**
1107
1108 **AT+DATACUTx:  Configure how to handle return from RS485 devices.**
1109
1110 **AT+SEARCHx:  Configure search command**
1111
1112
1113 * (((
1114 (% style="color:#037691" %)**Downlink Payload:**
1115 )))
1116
1117 (((
1118 **0xAF** downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1119 )))
1120
1121 (((
1122 (% style="color:red" %)**Note**(%%): if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
1123 )))
1124
1125 (((
1126 Format: AF MM NN LL XX XX XX XX YY
1127 )))
1128
1129 (((
1130 Where:
1131 )))
1132
1133 * (((
1134 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1135 )))
1136 * (((
1137 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1138 )))
1139 * (((
1140 LL:  The length of AT+COMMAND or AT+DATACUT command
1141 )))
1142 * (((
1143 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1144 )))
1145 * (((
1146 YY:  If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
1147 )))
1148
1149 (((
1150 **Example:**
1151 )))
1152
1153 (((
1154 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1155 )))
1156
1157 (((
1158 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1159 )))
1160
1161 (((
1162 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1163 )))
1164
1165 (((
1166
1167 )))
1168
1169 (((
1170 **0xAB** downlink command can be used for set AT+SEARCHx
1171 )))
1172
1173 (((
1174 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1175 )))
1176
1177 * (((
1178 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1179 )))
1180 * (((
1181 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1182 )))
1183
1184 (((
1185 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1186 )))
1187
1188
1189
1190
1191 ==== (% style="color:blue" %)**Fast command to handle MODBUS device**(%%) ====
1192
1193 (((
1194 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1195 )))
1196
1197 (((
1198 This command is valid since v1.3 firmware version
1199 )))
1200
1201 (((
1202
1203 )))
1204
1205 (((
1206 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1207 )))
1208
1209 * (((
1210 **AT+MBFUN=1**: Enable Modbus reading. And get response base on the MODBUS return
1211 )))
1212
1213 (((
1214 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1215 )))
1216
1217 * (((
1218 **AT+MBFUN=0**: Disable Modbus fast reading.
1219 )))
1220
1221 (((
1222
1223
1224 **Example:**
1225 )))
1226
1227 * (((
1228 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1229 )))
1230 * (((
1231 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1232 )))
1233 * (((
1234 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1235 )))
1236
1237 [[image:1654133913295-597.png]]
1238
1239
1240 [[image:1654133954153-643.png]]
1241
1242
1243 * (((
1244 (% style="color:#037691" %)**Downlink Commands:**
1245 )))
1246
1247 (((
1248 **A9 aa** ~-~-> Same as AT+MBFUN=aa
1249 )))
1250
1251
1252
1253
1254 ==== (% style="color:blue" %)**RS485 command timeout**(%%) ====
1255
1256 (((
1257 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
1258 )))
1259
1260 (((
1261 Default value: 0, range:  0 ~~ 5 seconds
1262 )))
1263
1264 (((
1265
1266 )))
1267
1268 * (((
1269 (% style="color:#037691" %)**AT Command:**
1270
1271 **AT+CMDDLaa=hex(bb cc)**
1272
1273
1274 )))
1275
1276 (((
1277 **Example:**
1278 )))
1279
1280 (((
1281 **AT+CMDDL1=1000** to send the open time to 1000ms
1282 )))
1283
1284 (((
1285
1286 )))
1287
1288 * (((
1289 (% style="color:#037691" %)**Downlink Payload:**
1290 )))
1291
1292 (((
1293 0x AA aa bb cc
1294 )))
1295
1296 (((
1297 Same as: AT+CMDDLaa=hex(bb cc)
1298 )))
1299
1300 (((
1301 **Example:**
1302 )))
1303
1304 (((
1305 **0xAA 01 03 E8**  ~-~-> Same as **AT+CMDDL1=1000 ms**
1306 )))
1307
1308
1309
1310
1311 ==== (% style="color:blue" %)**Uplink payload mode**(%%) ====
1312
1313 (((
1314 Define to use one uplink or multiple uplinks for the sampling.
1315 )))
1316
1317 (((
1318 The use of this command please see: [[Compose Uplink payload>>||anchor="H3.3.4Composetheuplinkpayload"]]
1319 )))
1320
1321 * (((
1322 (% style="color:#037691" %)**AT Command:**
1323
1324 **AT+DATAUP=0**
1325
1326 **AT+DATAUP=1**
1327 )))
1328
1329 (((
1330
1331 )))
1332
1333 * (((
1334 (% style="color:#037691" %)**Downlink Payload:**
1335 )))
1336
1337 (((
1338 **0xAD 00**  **~-~->** Same as AT+DATAUP=0
1339 )))
1340
1341 (((
1342 **0xAD 01**  **~-~->** Same as AT+DATAUP=1
1343 )))
1344
1345
1346
1347
1348 ==== (% style="color:blue" %)**Manually trigger an Uplink**(%%) ====
1349
1350 Ask device to send an uplink immediately.
1351
1352 * (% style="color:#037691" %)**Downlink Payload:**
1353
1354 **0x08 FF**, RS485-BL will immediately send an uplink.
1355
1356
1357
1358
1359 ==== (% style="color:blue" %)**Clear RS485 Command**(%%) ====
1360
1361 (((
1362 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
1363 )))
1364
1365 (((
1366
1367 )))
1368
1369 * (((
1370 (% style="color:#037691" %)**AT Command:**
1371 )))
1372
1373 (((
1374 (% style="color:#037691" %)**AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
1375 )))
1376
1377 (((
1378 Example screen shot after clear all RS485 commands. 
1379 )))
1380
1381 (((
1382
1383 )))
1384
1385 (((
1386 The uplink screen shot is:
1387 )))
1388
1389 (((
1390 [[image:1654134704555-320.png]]
1391 )))
1392
1393 (((
1394
1395 )))
1396
1397 * (((
1398 (% style="color:#037691" %)**Downlink Payload:**
1399 )))
1400
1401 (((
1402 **0x09 aa bb** same as AT+CMDEAR=aa,bb
1403 )))
1404
1405
1406
1407
1408 ==== (% style="color:blue" %)**Set Serial Communication Parameters**(%%) ====
1409
1410 (((
1411 Set the Rs485 serial communication parameters:
1412 )))
1413
1414 * (((
1415 (% style="color:#037691" %)**AT Command:**
1416 )))
1417
1418 (((
1419
1420
1421 * Set Baud Rate:
1422 )))
1423
1424 **AT+BAUDR=9600**    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
1425
1426
1427 * Set UART Parity
1428
1429 **AT+PARITY=0**    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1430
1431
1432 * Set STOPBIT
1433
1434 **AT+STOPBIT=0**    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
1435
1436
1437 * (((
1438 (% style="color:#037691" %)**Downlink Payload:**
1439 )))
1440
1441 (((
1442 **A7 01 aa bb**: Same  AT+BAUDR=hex(aa bb)*100
1443 )))
1444
1445 (((
1446
1447
1448 **Example:**
1449 )))
1450
1451 * (((
1452 A7 01 00 60   same as AT+BAUDR=9600
1453 )))
1454 * (((
1455 A7 01 04 80  same as AT+BAUDR=115200
1456 )))
1457
1458 (((
1459 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1460 )))
1461
1462 (((
1463 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
1464 )))
1465
1466
1467
1468
1469 ==== (% style="color:blue" %)**Control output power duration**(%%) ====
1470
1471 (((
1472 User can set the output power duration before each sampling.
1473 )))
1474
1475 * (((
1476 (% style="color:#037691" %)**AT Command:**
1477 )))
1478
1479 (((
1480 **Example:**
1481 )))
1482
1483 (((
1484 **AT+3V3T=1000**  ~/~/ 3V3 output power will open 1s before each sampling.
1485 )))
1486
1487 (((
1488 **AT+5VT=1000**  ~/~/ +5V output power will open 1s before each sampling.
1489 )))
1490
1491 (((
1492
1493 )))
1494
1495 * (((
1496 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1497 )))
1498
1499 (((
1500 **07 01 aa bb**  Same as AT+5VT=(aa bb)
1501 )))
1502
1503 (((
1504 **07 02 aa bb**  Same as AT+3V3T=(aa bb)
1505 )))
1506
1507
1508
1509 == 3.6 Buttons ==
1510
1511 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:233px" %)
1512 |=(% style="width: 89px;" %)**Button**|=(% style="width: 141px;" %)**Feature**
1513 |(% style="width:89px" %)**RST**|(% style="width:141px" %)Reboot RS485-BL
1514
1515
1516
1517 == 3.7 +3V3 Output ==
1518
1519 (((
1520 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
1521 )))
1522
1523 (((
1524 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1525 )))
1526
1527 (((
1528 The +3V3 output time can be controlled by AT Command.
1529 )))
1530
1531 (((
1532
1533 )))
1534
1535 (((
1536 (% style="color:#037691" %)**AT+3V3T=1000**
1537 )))
1538
1539 (((
1540
1541 )))
1542
1543 (((
1544 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1545 )))
1546
1547 (((
1548 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1549 )))
1550
1551
1552 == 3.8 +5V Output ==
1553
1554 (((
1555 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1556 )))
1557
1558 (((
1559 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1560 )))
1561
1562 (((
1563 The 5V output time can be controlled by AT Command.
1564 )))
1565
1566 (((
1567
1568 )))
1569
1570 (((
1571 (% style="color:#037691" %)**AT+5VT=1000**
1572 )))
1573
1574 (((
1575
1576 )))
1577
1578 (((
1579 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1580 )))
1581
1582 (((
1583 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1584 )))
1585
1586
1587
1588 == 3.9 LEDs ==
1589
1590 (% border="1" style="background-color:#ffffcc; color:green; width:332px" %)
1591 |=**LEDs**|=(% style="width: 274px;" %)**Feature**
1592 |**LED1**|(% style="width:274px" %)Blink when device transmit a packet.
1593
1594
1595
1596 == 3.10 Switch Jumper ==
1597
1598 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:463px" %)
1599 |=(% style="width: 123px;" %)**Switch Jumper**|=(% style="width: 336px;" %)**Feature**
1600 |(% style="width:123px" %)**SW1**|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1601 Flash position: Configure device, check running status.
1602 |(% style="width:123px" %)**SW2**|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1603 3.3v position: set to compatible with 3.3v I/O.,
1604
1605 (((
1606 **+3.3V**: is always ON
1607 )))
1608
1609 (((
1610 **+5V**: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1611 )))
1612
1613
1614 = 4. Case Study =
1615
1616 User can check this URL for some case studies: [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1617
1618
1619 = 5. Use AT Command =
1620
1621 == 5.1 Access AT Command ==
1622
1623 (((
1624 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1625 )))
1626
1627 [[image:1654135840598-282.png]]
1628
1629
1630 (((
1631 In PC, User needs to set (% style="color:blue" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1632 )))
1633
1634 [[image:1654136105500-922.png]]
1635
1636
1637 (((
1638 More detail AT Command manual can be found at [[AT Command Manual>>||anchor="H3.5ConfigureRS485-BLviaATorDownlink"]]
1639 )))
1640
1641
1642 == 5.2 Common AT Command Sequence ==
1643
1644
1645 === 5.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
1646
1647 If device has not joined network yet:
1648
1649 * (% style="color:#037691" %)**AT+FDR**
1650 * (% style="color:#037691" %)**AT+NJM=0**
1651 * (% style="color:#037691" %)**ATZ**
1652
1653 (((
1654
1655
1656 If device already joined network:
1657
1658 * (% style="color:#037691" %)**AT+NJM=0**
1659 * (% style="color:#037691" %)**ATZ**
1660 )))
1661
1662
1663
1664 === 5.5.2 Single-channel ABP mode (Use with LG01/LG02) ===
1665
1666
1667 (% style="background-color:#dcdcdc" %)**AT+FDR** (%%) Reset Parameters to Factory Default, Keys Reserve
1668
1669 (% style="background-color:#dcdcdc" %)**AT+NJM=0 **(%%)Set to ABP mode
1670
1671 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%)Set the Adaptive Data Rate Off
1672
1673 (% style="background-color:#dcdcdc" %)**AT+DR=5**  (%%)Set Data Rate
1674
1675 (% style="background-color:#dcdcdc" %)**AT+TDC=60000** (%%) Set transmit interval to 60 seconds
1676
1677 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) Set transmit frequency to 868.4Mhz
1678
1679 (% style="background-color:#dcdcdc" %)**AT+RX2FQ=868400000** (%%) Set RX2Frequency to 868.4Mhz (according to the result from server)
1680
1681 (% style="background-color:#dcdcdc" %)**AT+RX2DR=5**  (%%) Set RX2DR to match the downlink DR from server. see below
1682
1683 (% style="background-color:#dcdcdc" %)**AT+DADDR=26** (%%) 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1684
1685 (% style="background-color:#dcdcdc" %)**ATZ**       (%%) Reset MCU
1686
1687
1688 (% style="color:red" %)**Note:**
1689
1690 (((
1691 (% style="color:red" %)1. Make sure the device is set to ABP mode in the IoT Server.
1692 2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1693 3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1694 4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1695 )))
1696
1697 [[image:1654136435598-589.png]]
1698
1699
1700
1701 = 6. FAQ =
1702
1703 == 6.1 How to upgrade the image? ==
1704
1705 (((
1706 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1707 )))
1708
1709 * (((
1710 Support new features
1711 )))
1712 * (((
1713 For bug fix
1714 )))
1715 * (((
1716 Change LoRaWAN bands.
1717 )))
1718
1719 (((
1720 Below shows the hardware connection for how to upload an image to RS485-BL:
1721 )))
1722
1723 [[image:1654136646995-976.png]]
1724
1725 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1726
1727 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1728
1729 **Step3: **Open flashloader; choose the correct COM port to update.
1730
1731 [[image:image-20220602102605-1.png]]
1732
1733
1734 [[image:image-20220602102637-2.png]]
1735
1736
1737 [[image:image-20220602102715-3.png]]
1738
1739
1740
1741 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1742
1743 (((
1744 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1745 )))
1746
1747
1748
1749 == 6.3 How many RS485-Slave can RS485-BL connects? ==
1750
1751 (((
1752 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>||anchor="H3.3.3Configurereadcommandsforeachsampling"]].
1753 )))
1754
1755
1756
1757 = 7. Trouble Shooting =
1758
1759
1760 == 7.1 Downlink doesn’t work, how to solve it? ==
1761
1762 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
1763
1764
1765 == 7.2 Why I can’t join TTN V3 in US915 /AU915 bands? ==
1766
1767 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1768
1769
1770 = 8. Order Info =
1771
1772 (% style="color:blue" %)**Part Number: RS485-BL-XXX**
1773
1774 (% style="color:blue" %)**XXX:**
1775
1776 * (% style="color:blue" %)**EU433**(%%): frequency bands EU433
1777 * (% style="color:blue" %)**EU868**(%%): frequency bands EU868
1778 * (% style="color:blue" %)**KR920**(%%): frequency bands KR920
1779 * (% style="color:blue" %)**CN470**(%%): frequency bands CN470
1780 * (% style="color:blue" %)**AS923**(%%): frequency bands AS923
1781 * (% style="color:blue" %)**AU915**(%%): frequency bands AU915
1782 * (% style="color:blue" %)**US915**(%%): frequency bands US915
1783 * (% style="color:blue" %)**IN865**(%%): frequency bands IN865
1784 * (% style="color:blue" %)**RU864**(%%): frequency bands RU864
1785 * (% style="color:blue" %)**KZ865**(%%): frequency bands KZ865
1786
1787
1788
1789
1790 = 9. Packing Info =
1791
1792 (((
1793 **Package Includes**:
1794 )))
1795
1796 * (((
1797 RS485-BL x 1
1798 )))
1799 * (((
1800 Stick Antenna for LoRa RF part x 1
1801 )))
1802 * (((
1803 Program cable x 1
1804 )))
1805
1806 (((
1807 **Dimension and weight**:
1808 )))
1809
1810 * (((
1811 Device Size: 13.5 x 7 x 3 cm
1812 )))
1813 * (((
1814 Device Weight: 105g
1815 )))
1816 * (((
1817 Package Size / pcs : 14.5 x 8 x 5 cm
1818 )))
1819 * (((
1820 Weight / pcs : 170g
1821
1822
1823 )))
1824
1825 = 10. Support =
1826
1827 * (((
1828 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1829 )))
1830 * (((
1831 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1832 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0