Show last authors
1 (% style="text-align:center" %)
2 [[image:1652947681187-144.png||height="385" width="385"]]
3
4
5
6
7 **RS485-BL – Waterproof RS485 to LoRaWAN Converter User Manual**
8
9
10 **Table of Contents:**
11
12
13
14
15
16 = 1.Introduction =
17
18 == 1.1 What is RS485-BL RS485 to LoRaWAN Converter ==
19
20 (((
21
22 )))
23
24 (((
25 The Dragino RS485-BL is a **RS485 / UART to LoRaWAN Converter** for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-BL converter, and configure RS485-BL to periodically read sensor data and upload via LoRaWAN network to IoT server.
26 )))
27
28 (((
29 RS485-BL can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-BL provides **a 3.3v output** and** a 5v output** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
30 )))
31
32 (((
33 RS485-BL is IP67 **waterproof** and powered by **8500mAh Li-SOCI2 battery**, it is designed for long term use for several years.
34 )))
35
36 (((
37 RS485-BL runs standard **LoRaWAN 1.0.3 in Class A**. It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
38 )))
39
40 (((
41 For data uplink, RS485-BL sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-BL will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
42 )))
43
44 (((
45 For data downlink, RS485-BL runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-BL will forward the commands from LoRaWAN server to RS485 devices.
46 )))
47
48 (((
49 Each RS485-BL pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
50 )))
51
52 [[image:1652953304999-717.png||height="424" width="733"]]
53
54 == 1.2 Specifications ==
55
56 **Hardware System:**
57
58 * STM32L072CZT6 MCU
59 * SX1276/78 Wireless Chip 
60 * Power Consumption (exclude RS485 device):
61 ** Idle: 6uA@3.3v
62
63 *
64 ** 20dB Transmit: 130mA@3.3v
65
66 **Interface for Model:**
67
68 * 1 x RS485 Interface
69 * 1 x TTL Serial , 3.3v or 5v.
70 * 1 x I2C Interface, 3.3v or 5v.
71 * 1 x one wire interface
72 * 1 x Interrupt Interface
73 * 1 x Controllable 5V output, max
74
75 **LoRa Spec:**
76
77 * Frequency Range:
78 ** Band 1 (HF): 862 ~~ 1020 Mhz
79 ** Band 2 (LF): 410 ~~ 528 Mhz
80 * 168 dB maximum link budget.
81 * +20 dBm - 100 mW constant RF output vs.
82 * Programmable bit rate up to 300 kbps.
83 * High sensitivity: down to -148 dBm.
84 * Bullet-proof front end: IIP3 = -12.5 dBm.
85 * Excellent blocking immunity.
86 * Fully integrated synthesizer with a resolution of 61 Hz.
87 * LoRa modulation.
88 * Built-in bit synchronizer for clock recovery.
89 * Preamble detection.
90 * 127 dB Dynamic Range RSSI.
91 * Automatic RF Sense and CAD with ultra-fast AFC. ​​​
92
93 == 1.3 Features ==
94
95 * LoRaWAN Class A & Class C protocol (default Class A)
96 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864
97 * AT Commands to change parameters
98 * Remote configure parameters via LoRaWAN Downlink
99 * Firmware upgradable via program port
100 * Support multiply RS485 devices by flexible rules
101 * Support Modbus protocol
102 * Support Interrupt uplink
103
104 == 1.4 Applications ==
105
106 * Smart Buildings & Home Automation
107 * Logistics and Supply Chain Management
108 * Smart Metering
109 * Smart Agriculture
110 * Smart Cities
111 * Smart Factory
112
113 == 1.5 Firmware Change log ==
114
115 [[RS485-BL Image files – Download link and Change log>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/RS485-BL/Firmware/||style="background-color: rgb(255, 255, 255);"]]
116
117 == 1.6 Hardware Change log ==
118
119 (((
120 v1.4
121 )))
122
123 (((
124 ~1. Change Power IC to TPS22916
125 )))
126
127
128 (((
129 v1.3
130 )))
131
132 (((
133 ~1. Change JP3 from KF350-8P to KF350-11P, Add one extra interface for I2C and one extra interface for one-wire
134 )))
135
136
137 (((
138 v1.2
139 )))
140
141 (((
142 Release version ​​​​​
143 )))
144
145 = 2. Pin mapping and Power ON Device =
146
147 (((
148 The RS485-BL is powered on by 8500mAh battery. To save battery life, RS485-BL is shipped with power off. User can put the jumper to power on RS485-BL.
149 )))
150
151 [[image:1652953055962-143.png||height="387" width="728"]]
152
153
154 The Left TXD and RXD are TTL interface for external sensor. TTL level is controlled by 3.3/5v Jumper.
155
156 = 3. Operation Mode =
157
158 == 3.1 How it works? ==
159
160 (((
161 The RS485-BL is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-BL. It will auto join the network via OTAA.
162 )))
163
164 == 3.2 Example to join LoRaWAN network ==
165
166 Here shows an example for how to join the TTN V3 Network. Below is the network structure, we use [[LG308>>url:http://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]] as LoRaWAN gateway here. 
167
168 [[image:1652953414711-647.png||height="337" width="723"]]
169
170 (((
171 The RS485-BL in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
172 )))
173
174 (((
175 The LG308 is already set to connect to [[TTN V3 network >>url:https://www.thethingsnetwork.org/]]. So what we need to now is only configure the TTN V3:
176 )))
177
178 (((
179 **Step 1**: Create a device in TTN V3 with the OTAA keys from RS485-BL.
180 )))
181
182 (((
183 Each RS485-BL is shipped with a sticker with unique device EUI:
184 )))
185
186 [[image:1652953462722-299.png]]
187
188 (((
189 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
190 )))
191
192 (((
193 Add APP EUI in the application.
194 )))
195
196
197
198
199 [[image:image-20220519174512-1.png]]
200
201 [[image:image-20220519174512-2.png||height="328" width="731"]]
202
203 [[image:image-20220519174512-3.png||height="556" width="724"]]
204
205 [[image:image-20220519174512-4.png]]
206
207 You can also choose to create the device manually.
208
209 [[image:1652953542269-423.png||height="710" width="723"]]
210
211 Add APP KEY and DEV EUI
212
213 [[image:1652953553383-907.png||height="514" width="724"]]
214
215
216 (((
217 **Step 2**: Power on RS485-BL and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
218 )))
219
220 [[image:1652953568895-172.png||height="232" width="724"]]
221
222 == 3.3 Configure Commands to read data ==
223
224 (((
225 There are plenty of RS485 and TTL level devices in the market and each device has different command to read the valid data. To support these devices in flexible, RS485-BL supports flexible command set. User can use [[AT Commands or LoRaWAN Downlink>>path:#AT_COMMAND]] Command to configure how RS485-BL should read the sensor and how to handle the return from RS485 or TTL sensors.
226 )))
227
228 === 3.3.1 onfigure UART settings for RS485 or TTL communication ===
229
230 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
231
232 **~1. RS485-MODBUS mode:**
233
234 AT+MOD=1 ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
235
236 **2. TTL mode:**
237
238 AT+MOD=2 ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
239
240 RS485-BL default UART settings is **9600, no parity, stop bit 1**. If the sensor has a different settings, user can change the RS485-BL setting to match.
241
242 (% border="1" style="background-color:#ffffcc; color:green; width:795px" %)
243 |(((
244 **AT Commands**
245 )))|(% style="width:285px" %)(((
246 **Description**
247 )))|(% style="width:347px" %)(((
248 **Example**
249 )))
250 |(((
251 AT+BAUDR
252 )))|(% style="width:285px" %)(((
253 Set the baud rate (for RS485 connection). Default Value is: 9600.
254 )))|(% style="width:347px" %)(((
255 (((
256 AT+BAUDR=9600
257 )))
258
259 (((
260 Options: (1200,2400,4800,14400,19200,115200)
261 )))
262 )))
263 |(((
264 AT+PARITY
265 )))|(% style="width:285px" %)(((
266 (((
267 Set UART parity (for RS485 connection)
268 )))
269
270 (((
271 Default Value is: no parity.
272 )))
273 )))|(% style="width:347px" %)(((
274 (((
275 AT+PARITY=0
276 )))
277
278 (((
279 Option: 0: no parity, 1: odd parity, 2: even parity
280 )))
281 )))
282 |(((
283 AT+STOPBIT
284 )))|(% style="width:285px" %)(((
285 (((
286 Set serial stopbit (for RS485 connection)
287 )))
288
289 (((
290 Default Value is: 1bit.
291 )))
292 )))|(% style="width:347px" %)(((
293 (((
294 AT+STOPBIT=0 for 1bit
295 )))
296
297 (((
298 AT+STOPBIT=1 for 1.5 bit
299 )))
300
301 (((
302 AT+STOPBIT=2 for 2 bits
303 )))
304 )))
305
306 === 3.3.2 Configure sensors ===
307
308 (((
309 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-BL AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
310 )))
311
312 (((
313 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won’t run during each sampling.
314 )))
315
316 (% border="1" style="background-color:#ffffcc; color:green; width:806px" %)
317 |**AT Commands**|(% style="width:418px" %)**Description**|(% style="width:256px" %)**Example**
318 |AT+CFGDEV|(% style="width:418px" %)(((
319 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
320
321 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
322
323 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
324 )))|(% style="width:256px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
325
326 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>path:#AT_CFGDEV]].
327
328 === 3.3.3 Configure read commands for each sampling ===
329
330 (((
331 RS485-BL is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
332 )))
333
334 (((
335 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
336 )))
337
338 (((
339 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
340 )))
341
342 (((
343 This section describes how to achieve above goals.
344 )))
345
346 (((
347 During each sampling, the RS485-BL can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
348 )))
349
350 (((
351 **Command from RS485-BL to Sensor:**
352 )))
353
354 (((
355 RS485-BL can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
356 )))
357
358 (((
359 **Handle return from sensors to RS485-BL**:
360 )))
361
362 (((
363 After RS485-BL send out a string to sensor, RS485-BL will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
364 )))
365
366 * (((
367 **AT+DATACUT**
368 )))
369
370 (((
371 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
372 )))
373
374 * (((
375 **AT+SEARCH**
376 )))
377
378 (((
379 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
380 )))
381
382 (((
383 **Define wait timeout:**
384 )))
385
386 (((
387 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
388 )))
389
390 (((
391 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
392 )))
393
394 **Examples:**
395
396 Below are examples for the how above AT Commands works.
397
398 **AT+COMMANDx : **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
399
400 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:501px" %)
401 |(% style="width:498px" %)(((
402 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
403
404 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
405
406 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
407 )))
408
409 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
410
411 In the RS485-BL, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
412
413 **AT+SEARCHx**: This command defines how to handle the return from AT+COMMANDx.
414
415 (% border="1" class="table-bordered" style="background-color:#4f81bd; color:white; width:580px" %)
416 |(% style="width:577px" %)(((
417 **AT+SEARCHx=aa,xx xx xx xx xx**
418
419 * **aa: 1: prefix match mode; 2: prefix and suffix match mode**
420 * **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
421 )))
422
423 **Examples:**
424
425 1. For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
426
427 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
428
429 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
430
431 [[image:1653271044481-711.png]]
432
433 1. For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
434
435 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
436
437 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
438
439 [[image:1653271276735-972.png]]
440
441 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 45 bytes.
442
443 (% style="background-color:#4f81bd; color:white; width:729px" %)
444 |(% style="width:726px" %)(((
445 **AT+DATACUTx=a,b,c**
446
447 * **a: length for the return of AT+COMMAND**
448 * **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
449 * **c: define the position for valid value.  **
450 )))
451
452 Examples:
453
454 * Grab bytes:
455
456 [[image:1653271581490-837.png||height="313" width="722"]]
457
458 * Grab a section.
459
460 [[image:1653271648378-342.png||height="326" width="720"]]
461
462 * Grab different sections.
463
464 [[image:1653271657255-576.png||height="305" width="730"]]
465
466 (((
467 (% style="color:red" %)**Note:**
468 )))
469
470 (((
471 AT+SEARCHx and AT+DATACUTx can be used together, if both commands are set, RS485-BL will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format AT+DATACUTx=0,xx,xx where the return bytes set to 0.
472 )))
473
474 (((
475 **Example:**
476 )))
477
478 (((
479 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
480 )))
481
482 (((
483 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
484 )))
485
486 (((
487 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
488 )))
489
490 (((
491 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
492 )))
493
494 (((
495 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
496 )))
497
498 (((
499 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
500 )))
501
502 [[image:1653271763403-806.png]]
503
504
505
506
507 1.
508 11.
509 111. Compose the uplink payload
510
511 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
512
513
514 **Examples: AT+DATAUP=0**
515
516 Compose the uplink payload with value returns in sequence and send with **A SIGNLE UPLINK**.
517
518 Final Payload is
519
520 Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx
521
522 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
523
524 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.png]]
525
526
527
528 **Examples: AT+DATAUP=1**
529
530 Compose the uplink payload with value returns in sequence and send with **Multiply UPLINKs**.
531
532 Final Payload is
533
534 Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA
535
536 1. Battery Info (2 bytes): Battery voltage
537 1. PAYVER (1 byte): Defined by AT+PAYVER
538 1. PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
539 1. PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
540 1. DATA: Valid value: max 6 bytes(US915 version here, [[Notice*!>>path:#max_byte]]) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
541
542 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image020.png]]
543
544
545 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
546
547 DATA1=RETURN1 Valid Value = 20 20 0a 33 90 41
548
549 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= 02 aa 05 81 0a 20
550
551 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 = 20 20 20 2d 30
552
553
554
555 Below are the uplink payloads:
556
557 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.png]]
558
559
560 Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:
561
562 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
563
564 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
565
566 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
567
568 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
569
570
571
572 1.
573 11.
574 111. Uplink on demand
575
576 Except uplink periodically, RS485-BL is able to uplink on demand. The server sends downlink command to RS485-BL and RS485 will uplink data base on the command.
577
578 Downlink control command:
579
580 [[0x08 command>>path:#downlink_08]]: Poll an uplink with current command set in RS485-BL.
581
582 [[0xA8 command>>path:#downlink_A8]]: Send a command to RS485-BL and uplink the output from sensors.
583
584
585
586 1.
587 11.
588 111. Uplink on Interrupt
589
590 Put the interrupt sensor between 3.3v_out and GPIO ext.[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image022.png]]
591
592 AT+INTMOD=0  Disable Interrupt
593
594 AT+INTMOD=1  Interrupt trigger by rising or falling edge.
595
596 AT+INTMOD=2  Interrupt trigger by falling edge. ( Default Value)
597
598 AT+INTMOD=3  Interrupt trigger by rising edge.
599
600
601 1.
602 11. Uplink Payload
603
604 |**Size(bytes)**|**2**|**1**|**Length depends on the return from the commands**
605 |Value|(((
606 Battery(mV)
607
608 &
609
610 Interrupt _Flag
611 )))|(((
612 PAYLOAD_VER
613
614
615 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
616
617 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
618
619
620 function Decoder(bytes, port) {
621
622 ~/~/Payload Formats of RS485-BL Deceive
623
624 return {
625
626 ~/~/Battery,units:V
627
628 BatV:((bytes[0]<<8 | bytes[1])&0x7fff)/1000,
629
630 ~/~/GPIO_EXTI 
631
632 EXTI_Trigger:(bytes[0] & 0x80)? "TRUE":"FALSE",
633
634 ~/~/payload of version
635
636 Pay_ver:bytes[2],
637
638 };
639
640 }
641
642
643
644
645
646
647
648 TTN V3 uplink screen shot.
649
650 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
651
652 1.
653 11. Configure RS485-BL via AT or Downlink
654
655 User can configure RS485-BL via [[AT Commands >>path:#_​Using_the_AT]]or LoRaWAN Downlink Commands
656
657 There are two kinds of Commands:
658
659 * **Common Commands**: They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: http:~/~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands
660
661 * **Sensor Related Commands**: These commands are special designed for RS485-BL.  User can see these commands below:
662
663 1.
664 11.
665 111. Common Commands:
666
667 They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.3, user can find what common commands it supports: [[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands]]
668
669
670 1.
671 11.
672 111. Sensor related commands:
673
674 ==== Choose Device Type (RS485 or TTL) ====
675
676 RS485-BL can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
677
678 * AT Command
679
680 **AT+MOD=1** ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
681
682 **AT+MOD=2** ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
683
684
685 * Downlink Payload
686
687 **0A aa**     à same as AT+MOD=aa
688
689
690
691 ==== [[RS485 Debug Command>>path:#downlink_A8]] (AT+CFGDEV) ====
692
693 This command is used to configure the RS485 or TTL sensors; they won’t be used during sampling.
694
695 * AT Command
696
697 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
698
699 m: 0: no CRC; 1: add CRC-16/MODBUS in the end of this command.
700
701
702
703 * Downlink Payload
704
705 Format: A8 MM NN XX XX XX XX YY
706
707 Where:
708
709 * MM: 1: add CRC-16/MODBUS ; 0: no CRC
710 * NN: The length of RS485 command
711 * XX XX XX XX: RS485 command total NN bytes
712 * YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-BL will execute the downlink command without uplink; if YY>0, RS485-BL will uplink total YY bytes from the output of this RS485 command
713
714 **Example 1:**
715
716 To connect a Modbus Alarm with below commands.
717
718 * The command to active alarm is: 0A 05 00 04 00 01 4C B0. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
719
720 * The command to deactivate alarm is: 0A 05 00 04 00 00 8D 70. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
721
722 So if user want to use downlink command to control to RS485 Alarm, he can use:
723
724 **A8 01 06 0A 05 00 04 00 01 00**: to activate the RS485 Alarm
725
726 **A8 01 06 0A 05 00 04 00 00 00**: to deactivate the RS485 Alarm
727
728 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
729
730
731 **Example 2:**
732
733 Check TTL Sensor return:
734
735 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image024.png]]
736
737
738
739
740 ==== Set Payload version ====
741
742 This is the first byte of the uplink payload. RS485-BL can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
743
744 * AT Command:
745
746 AT+PAYVER: Set PAYVER field = 1
747
748
749 * Downlink Payload:
750
751 0xAE 01   à Set PAYVER field =  0x01
752
753 0xAE 0F   à Set PAYVER field =  0x0F
754
755
756 ==== Set RS485 Sampling Commands ====
757
758 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
759
760 These three commands are used to configure how the RS485-BL polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>path:#polling_485]].
761
762
763 * AT Command:
764
765 AT+COMMANDx: Configure RS485 read command to sensor.
766
767 AT+DATACUTx: Configure how to handle return from RS485 devices.
768
769 AT+SEARCHx: Configure search command
770
771
772 * Downlink Payload:
773
774 0xAF downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
775
776 Note: if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.
777
778 Format: AF MM NN LL XX XX XX XX YY
779
780 Where:
781
782 * MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
783 * NN: 0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
784 * LL: The length of AT+COMMAND or AT+DATACUT command
785 * XX XX XX XX: AT+COMMAND or AT+DATACUT command
786 * YY: If YY=0, RS485-BL will execute the downlink command without uplink; if YY=1, RS485-BL will execute an uplink after got this command.
787
788 Example:
789
790 **AF 03 01 06 0A 05 00 04 00 01 00**: Same as AT+COMMAND3=0A 05 00 04 00 01,1
791
792 **AF 03 02 06 10 01 05 06 09 0A 00**: Same as AT+DATACUT3=**16**,**1**,**5+6+9+10**
793
794 **AF 03 02 06 0B 02 05 07 08 0A 00**: Same as AT+DATACUT3=**11**,**2**,**5~~7+8~~10**
795
796
797 0xAB downlink command can be used for set AT+SEARCHx
798
799 Example: **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
800
801 * AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
802 * AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
803
804 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
805
806
807 ==== Fast command to handle MODBUS device ====
808
809 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
810
811 This command is valid since v1.3 firmware version
812
813
814 AT+MBFUN has only two value:
815
816 * AT+MBFUN=1: Enable Modbus reading. And get response base on the MODBUS return
817
818 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
819
820 * AT+MBFUN=0: Disable Modbus fast reading.
821
822 Example:
823
824 * AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
825 * AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
826 * AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
827
828 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.png]]
829
830
831 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image026.png]]
832
833
834 * Downlink Commands:
835
836 A9 aa -à Same as AT+MBFUN=aa
837
838
839 ==== RS485 command timeout ====
840
841 Some Modbus device has slow action to send replies. This command is used to configure the RS485-BL to use longer time to wait for their action.
842
843 Default value: 0, range:  0 ~~ 5 seconds
844
845
846 * AT Command:
847
848 AT+CMDDLaa=hex(bb cc)
849
850 Example:
851
852 **AT+CMDDL1=1000** to send the open time to 1000ms
853
854
855 * Downlink Payload:
856
857 0x AA aa bb cc
858
859 Same as: AT+CMDDLaa=hex(bb cc)
860
861 Example:
862
863 0xAA 01 03 E8  à Same as **AT+CMDDL1=1000 ms**
864
865
866 ==== [[Uplink>>path:#downlink_A8]] payload mode ====
867
868 Define to use one uplink or multiple uplinks for the sampling.
869
870 The use of this command please see: [[Compose Uplink payload>>path:#DataUP]]
871
872 * AT Command:
873
874 AT+DATAUP=0
875
876 AT+DATAUP=1
877
878
879 * Downlink Payload:
880
881 0xAD 00   à Same as AT+DATAUP=0
882
883 0xAD 01   à Same as AT+DATAUP=1
884
885
886 ==== Manually trigger an Uplink ====
887
888 Ask device to send an uplink immediately.
889
890 * Downlink Payload:
891
892 0x08 FF, RS485-BL will immediately send an uplink.
893
894
895 ==== Clear RS485 Command ====
896
897 The AT+COMMANDx and AT+DATACUTx settings are stored in special location, user can use below command to clear them.
898
899
900 * AT Command:
901
902 **AT+CMDEAR=mm,nn**   mm: start position of erase ,nn: stop position of erase
903
904 Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1 to AT+COMMAND10/AT+DATACUT10
905
906 Example screen shot after clear all RS485 commands. 
907
908
909
910 The uplink screen shot is:
911
912 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.png]]
913
914
915 * Downlink Payload:
916
917 0x09 aa bb same as AT+CMDEAR=aa,bb
918
919
920 ==== Set Serial Communication Parameters ====
921
922 Set the Rs485 serial communication parameters:
923
924 * AT Command:
925
926 Set Baud Rate:
927
928 AT+BAUDR=9600    ~/~/ Options: (1200,2400,4800,14400,19200,115200)
929
930
931 Set UART parity
932
933 AT+PARITY=0    ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
934
935
936 Set STOPBIT
937
938 AT+STOPBIT=0    ~/~/ Option: 0 for 1bit; 1 for 1.5 bit ; 2 for 2 bits
939
940
941 * Downlink Payload:
942
943 A7 01 aa bb: Same  AT+BAUDR=hex(aa bb)*100
944
945 Example:
946
947 * A7 01 00 60   same as AT+BAUDR=9600
948 * A7 01 04 80  same as AT+BAUDR=115200
949
950 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
951
952 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 00 , 01 or 02)
953
954
955 ==== Control output power duration ====
956
957 User can set the output power duration before each sampling.
958
959 * AT Command:
960
961 Example:
962
963 AT+3V3T=1000 ~/~/ 3V3 output power will open 1s before each sampling.
964
965 AT+5VT=1000 ~/~/ +5V output power will open 1s before each sampling.
966
967
968 * LoRaWAN Downlink Command:
969
970 07 01 aa bb  Same as AT+5VT=(aa bb)
971
972 07 02 aa bb  Same as AT+3V3T=(aa bb)
973
974
975
976
977 1.
978 11. Buttons
979
980 |**Button**|**Feature**
981 |**RST**|Reboot RS485-BL
982
983 1.
984 11. +3V3 Output
985
986 RS485-BL has a Controllable +3V3 output, user can use this output to power external sensor.
987
988 The +3V3 output will be valid for every sampling. RS485-BL will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
989
990
991 The +3V3 output time can be controlled by AT Command.
992
993 **AT+3V3T=1000**
994
995 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
996
997
998 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
999
1000
1001 1.
1002 11. +5V Output
1003
1004 RS485-BL has a Controllable +5V output, user can use this output to power external sensor.
1005
1006 The +5V output will be valid for every sampling. RS485-BL will enable +5V output before all sampling and disable the +5v after all sampling. 
1007
1008
1009 The 5V output time can be controlled by AT Command.
1010
1011 **AT+5VT=1000**
1012
1013 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1014
1015
1016 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1017
1018
1019
1020
1021 1.
1022 11. LEDs
1023
1024 |**LEDs**|**Feature**
1025 |**LED1**|Blink when device transmit a packet.
1026
1027 1.
1028 11. Switch Jumper
1029
1030 |**Switch Jumper**|**Feature**
1031 |**SW1**|(((
1032 ISP position: Upgrade firmware via UART
1033
1034 Flash position: Configure device, check running status.
1035 )))
1036 |**SW2**|(((
1037 5V position: set to compatible with 5v I/O.
1038
1039 3.3v position: set to compatible with 3.3v I/O.,
1040 )))
1041
1042 +3.3V: is always ON
1043
1044 +5V: Only open before every sampling. The time is by default, it is AT+5VT=0.  Max open time. 5000 ms.
1045
1046 1. Case Study
1047
1048 User can check this URL for some case studies.
1049
1050 [[http:~~/~~/wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS>>url:http://wiki.dragino.com/index.php?title=APP_RS485_COMMUNICATE_WITH_SENSORS]]
1051
1052
1053
1054
1055 1. Use AT Command
1056 11. Access AT Command
1057
1058 RS485-BL supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to RS485-BL to use AT command, as below.
1059
1060 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image027.png]]
1061
1062
1063 In PC, User needs to set **serial tool**(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to **9600** to access to access serial console of RS485-BL. The default password is 123456. Below is the output for reference:
1064
1065 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image028.png]]
1066
1067
1068
1069 More detail AT Command manual can be found at [[AT Command Manual>>path:#AT_COMMAND]]
1070
1071
1072
1073 1.
1074 11. Common AT Command Sequence
1075 111. Multi-channel ABP mode (Use with SX1301/LG308)
1076
1077 If device has not joined network yet:
1078
1079 AT+FDR
1080
1081 AT+NJM=0
1082
1083 ATZ
1084
1085
1086 If device already joined network:
1087
1088 AT+NJM=0
1089
1090 ATZ
1091
1092 1.
1093 11.
1094 111. Single-channel ABP mode (Use with LG01/LG02)
1095
1096 AT+FDR   Reset Parameters to Factory Default, Keys Reserve
1097
1098 AT+NJM=0 Set to ABP mode
1099
1100 AT+ADR=0 Set the Adaptive Data Rate Off
1101
1102 AT+DR=5  Set Data Rate
1103
1104 AT+TDC=60000  Set transmit interval to 60 seconds
1105
1106 AT+CHS=868400000 Set transmit frequency to 868.4Mhz
1107
1108 AT+RX2FQ=868400000 Set RX2Frequency to 868.4Mhz (according to the result from server)
1109
1110 AT+RX2DR=5  Set RX2DR to match the downlink DR from server. see below
1111
1112 AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
1113
1114 ATZ          Reset MCU
1115
1116 **Note:**
1117
1118 1. Make sure the device is set to ABP mode in the IoT Server.
1119 1. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.
1120 1. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.
1121 1. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5
1122
1123 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image029.png]]
1124
1125
1126 1. FAQ
1127 11. How to upgrade the image?
1128
1129 The RS485-BL LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-BL to:
1130
1131 * Support new features
1132 * For bug fix
1133 * Change LoRaWAN bands.
1134
1135 Below shows the hardware connection for how to upload an image to RS485-BL:
1136
1137 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image030.png]]
1138
1139 **Step1:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1140
1141 **Step2**: Download the [[LT Image files>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/image/]].
1142
1143 **Step3: **Open flashloader; choose the correct COM port to update.
1144
1145
1146 |(((
1147 HOLD PRO then press the RST button, SYS will be ON, then click next
1148 )))
1149
1150 |(((
1151 Board detected
1152 )))
1153
1154 |(((
1155
1156 )))
1157
1158 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image031.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image032.png]]
1159
1160
1161
1162 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image033.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image034.png]]
1163
1164
1165 [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image035.png]] [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image036.png]]
1166
1167
1168 1.
1169 11. How to change the LoRa Frequency Bands/Region?
1170
1171 User can follow the introduction for [[how to upgrade image>>path:#upgrade_image]]. When download the images, choose the required image file for download.
1172
1173
1174
1175 1.
1176 11. How many RS485-Slave can RS485-BL connects?
1177
1178 The RS485-BL can support max 32 RS485 devices. Each uplink command of RS485-BL can support max 16 different RS485 command. So RS485-BL can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the [[downlink message (type code 0xA8) to poll their info>>path:#downlink_A8]].
1179
1180
1181
1182
1183 1. Trouble Shooting     
1184 11. Downlink doesn’t work, how to solve it?
1185
1186 Please see this link for debug:
1187
1188 [[http:~~/~~/wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug>>url:http://wiki.dragino.com/index.php?title=Main_Page#LoRaWAN_Communication_Debug]] 
1189
1190
1191
1192 1.
1193 11. Why I can’t join TTN V3 in US915 /AU915 bands?
1194
1195 It might about the channels mapping. Please see for detail.
1196
1197 [[http:~~/~~/wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band>>url:http://wiki.dragino.com/index.php?title=LoRaWAN_Communication_Debug#Notice_of_US915.2FCN470.2FAU915_Frequency_band]]
1198
1199
1200
1201 1. Order Info
1202
1203 **Part Number: RS485-BL-XXX**
1204
1205 **XXX:**
1206
1207 * **EU433**: frequency bands EU433
1208 * **EU868**: frequency bands EU868
1209 * **KR920**: frequency bands KR920
1210 * **CN470**: frequency bands CN470
1211 * **AS923**: frequency bands AS923
1212 * **AU915**: frequency bands AU915
1213 * **US915**: frequency bands US915
1214 * **IN865**: frequency bands IN865
1215 * **RU864**: frequency bands RU864
1216 * **KZ865: **frequency bands KZ865
1217
1218 1. Packing Info
1219
1220 **Package Includes**:
1221
1222 * RS485-BL x 1
1223 * Stick Antenna for LoRa RF part x 1
1224 * Program cable x 1
1225
1226 **Dimension and weight**:
1227
1228 * Device Size: 13.5 x 7 x 3 cm
1229 * Device Weight: 105g
1230 * Package Size / pcs : 14.5 x 8 x 5 cm
1231 * Weight / pcs : 170g
1232
1233 1. Support
1234
1235 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1236 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to
1237
1238 [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0