Show last authors
1 (% style="text-align:center" %)
2 [[image:image-20240103144153-3.png]]
3
4
5
6
7
8 **Table of Contents:**
9
10 {{toc/}}
11
12
13
14
15 = 1. Introduction =
16
17 == 1.1 What is RS485-LB/LS RS485/UART to LoRaWAN Converter ==
18
19
20 (((
21 The Dragino RS485-LB/LS is a (% style="color:blue" %)**RS485 / UART to LoRaWAN Converter**(%%) for Internet of Things solutions. User can connect RS485 or UART sensor to RS485-LB/LS converter, and configure RS485-LB/LS to periodically read sensor data and upload via LoRaWAN network to IoT server.
22 )))
23
24 (((
25 RS485-LB/LS can interface to RS485 sensor, 3.3v/5v UART sensor or interrupt sensor. RS485-LB/LS provides (% style="color:blue" %)**a 3.3v output**(%%) and** (% style="color:blue" %)a 5v output(%%)** to power external sensors. Both output voltages are controllable to minimize the total system power consumption.
26 )))
27
28 (((
29 RS485-LB/LS is IP67 (% style="color:blue" %)**waterproof**(%%) and powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery,**(%%) it is designed for long term use for several years.
30 )))
31
32 (((
33 RS485-LB/LS runs standard (% style="color:blue" %)**LoRaWAN 1.0.3 in Class A**(%%). It can reach long transfer range and easy to integrate with LoRaWAN compatible gateway and IoT server.
34 )))
35
36 (((
37 For data uplink, RS485-LB/LS sends user-defined commands to RS485 devices and gets the return from the RS485 devices. RS485-LB/LS will process these returns data according to user-define rules to get the final payload and upload to LoRaWAN server.
38 )))
39
40 (((
41 For data downlink, RS485-LB/LS runs in LoRaWAN Class A. When there is downlink commands from LoRaWAN server, RS485-LB/LS will forward the commands from LoRaWAN server to RS485 devices.
42
43 (((
44 RS485-LB/LS (% style="color:blue" %)**Supports BLE configure and wireless OTA update**(%%) which make user easy to use.
45 )))
46 )))
47
48 (((
49 Each RS485-LB/LS pre-load with a set of unique keys for LoRaWAN registration, register these keys to LoRaWAN server and it will auto connect after power on.
50
51
52 )))
53
54 [[image:image-20230718114211-2.png||height="419" width="727"]]
55
56
57 == 1.2 Specifications ==
58
59
60 (% style="color:#037691" %)**Common DC Characteristics:**
61
62 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
63 * Operating Temperature: -40 ~~ 85°C
64
65 (% style="color:#037691" %)**I/O Interface:**
66
67 * Battery controllable output (2.6v ~~ 3.6v depends on battery)
68 * +5v controllable output
69 * 1 x RS485 Interface
70 * 1 x UART Interface , 3.3v or 5v
71 * 1 x Interrupt or Digital IN pins
72 * 1 x I2C Interface
73 * 1 x one wire interface
74
75 (% style="color:#037691" %)**LoRa Spec:**
76
77 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
78 * Max +22 dBm constant RF output vs.
79 * RX sensitivity: down to -139 dBm.
80 * Excellent blocking immunity
81
82 (% style="color:#037691" %)**Battery:**
83
84 * Li/SOCI2 un-chargeable battery
85 * Capacity: 8500mAh
86 * Self-Discharge: <1% / Year @ 25°C
87 * Max continuously current: 130mA
88 * Max boost current: 2A, 1 second
89
90 (% style="color:#037691" %)**Power Consumption**
91
92 * Sleep Mode: 5uA @ 3.3v
93 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
94
95 == 1.3 Features ==
96
97
98 * LoRaWAN 1.0.3 Class A
99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865/RU864/MA869
100 * Ultra-low power consumption
101 * Support multiply RS485 devices by flexible rules
102 * Support Modbus protocol
103 * Support Interrupt uplink
104 * Supports connecting a UART sensors with 3.3V or 5V
105 * Support Bluetooth v5.1 and LoRaWAN remote configure
106 * Support wireless OTA update firmware
107 * AT Commands to change parameters
108 * Uplink on periodically
109 * Downlink to change configure
110 * 8500mAh Li/SOCl2 Battery (RS485-LB)
111 * Solar panel + 3000mAh Li-on battery (RS485-LS)
112
113 == 1.4 Applications ==
114
115
116 * Smart Buildings & Home Automation
117 * Logistics and Supply Chain Management
118 * Smart Metering
119 * Smart Agriculture
120 * Smart Cities
121 * Smart Factory
122
123 == 1.5 Sleep mode and working mode ==
124
125
126 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
127
128 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
129
130
131 == 1.6 Button & LEDs ==
132
133
134 [[image:image-20240103160425-4.png]]
135
136 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
137 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on **ACT|=(% style="width: 117px;background-color:#4F81BD;color:white" %)Function|=(% style="width: 225px;background-color:#4F81BD;color:white" %)Action
138 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
139
140
141 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, blue led will blink once.
142 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
143 )))
144 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
145
146
147 Green led will fast blink 5 times, device will enter OTA mode for 3 seconds. And then start to JOIN LoRaWAN network.
148 Green led will solidly turn on for 5 seconds after joined in network.
149 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
150 )))
151 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)Red led will solid on for 5 seconds. Means device is in Deep Sleep Mode.
152
153 == 1.7 BLE connection ==
154
155
156 RS485-LB/LS supports BLE remote configure.
157
158
159 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
160
161 * Press button to send an uplink
162 * Press button to active device.
163 * Device Power on or reset.
164
165 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
166
167
168 == 1.8 Pin Definitions ==
169
170
171 [[image:image-20230804102346-1.png||height="447" width="782"]]
172
173
174 == 1.9 Mechanical ==
175
176 === 1.9.1 for LB version ===
177
178
179 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/WebHome/image-20240109160800-6.png?rev=1.1||alt="image-20240109160800-6.png"]]
180
181
182
183
184 === 1.9.2 for LS version ===
185
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
188
189
190 = 2. Operation Mode =
191
192 == 2.1 How it works? ==
193
194
195 (((
196 The RS485-LB/LS is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the RS485-LB/LS. It will auto join the network via OTAA.
197 )))
198
199
200 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
201
202
203 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
204
205
206
207 [[image:image-20230718114628-3.png||height="360" width="757"]]
208
209
210 (((
211 The RS485-LB/LS in this example connected to two RS485 devices for demonstration, user can connect to other RS485 devices via the same method.
212 )))
213
214 (((
215 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
216 )))
217
218 (((
219 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from RS485-LB/LS.
220 )))
221
222 (((
223 Each RS485-LB/LS is shipped with a sticker with unique device EUI:
224 )))
225
226 [[image:image-20230425173638-1.png]]
227
228
229 (((
230 User can enter this key in their LoRaWAN Server portal. Below is TTN V3 screen shot:
231 )))
232
233 (((
234 **Add APP EUI in the application.**
235 )))
236
237
238 [[image:image-20220519174512-1.png]]
239
240 [[image:image-20220519174512-2.png||height="328" width="731"]]
241
242 [[image:image-20220519174512-3.png||height="556" width="724"]]
243
244 [[image:image-20220519174512-4.png]]
245
246
247 You can also choose to create the device manually.
248
249 [[image:1652953542269-423.png||height="710" width="723"]]
250
251
252 Add APP KEY and DEV EUI
253
254 [[image:1652953553383-907.png||height="514" width="724"]]
255
256
257
258 (((
259 (% style="color:blue" %)**Step 2**(%%): Power on RS485-LB/LS and it will auto join to the TTN V3 network. After join success, it will start to upload message to TTN V3 and user can see in the panel.
260 )))
261
262 [[image:1652953568895-172.png||height="232" width="724"]]
263
264
265 == 2.3 Uplink Payload ==
266
267 === 2.3.1 Device Status, FPORT~=5 ===
268
269
270 Users can use the downlink command(**0x26 01**) to ask LDS12-LB to send device configure detail, include device configure status. RS485-LB/LS will uplink a payload via FPort=5 to server.
271
272 The Payload format is as below.
273
274 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
275 |=(% style="width: 60px;background-color:#4F81BD;color:white" %)(((
276 **Size(bytes)**
277 )))|=(% style="width: 100px; background-color:#4F81BD;color:white" %)**1**|=(% style="width: 100px; background-color:#4F81BD;color:white" %)**2**|=(% style="background-color:#4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color:#4F81BD;color:white; width: 100px;" %)**1**|=(% style="background-color:#4F81BD;color:white; width: 50px;" %)**2**
278 |(% style="width:62.5px" %)Value|(% style="width:110px" %)Sensor Model|(% style="width:48px" %)Firmware Version|(% style="width:94px" %)Frequency Band|(% style="width:91px" %)Sub-band|(% style="width:60px" %)BAT
279
280 (% style="color:blue" %)**Sensor Model**(%%): For RS485-LB/LS, this value is 0x30
281
282 (% style="color:blue" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
283
284 (% style="color:blue" %)**Frequency Band**:
285
286 0x01: EU868
287
288 0x02: US915
289
290 0x03: IN865
291
292 0x04: AU915
293
294 0x05: KZ865
295
296 0x06: RU864
297
298 0x07: AS923
299
300 0x08: AS923-1
301
302 0x09: AS923-2
303
304 0x0a: AS923-3
305
306 0x0b: CN470
307
308 0x0c: EU433
309
310 0x0d: KR920
311
312 0x0e: MA869
313
314 (% style="color:blue" %)**Sub-Band**:
315
316 AU915 and US915:value 0x00 ~~ 0x08
317
318 CN470: value 0x0B ~~ 0x0C
319
320 Other Bands: Always 0x00
321
322 (% style="color:blue" %)**Battery Info**:
323
324 Check the battery voltage.
325
326 Ex1: 0x0B45 = 2885mV
327
328 Ex2: 0x0B49 = 2889mV
329
330
331 === 2.3.2 Uplink Payload, FPORT~=2 ===
332
333
334 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
335 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**1**|(% style="background-color:#4f81bd; color:white; width:270px" %)**Length depends on the return from the commands**
336 |Value|(((
337 Battery(mV) & Interrupt _Flag
338 )))|(((
339 PAYLOAD_VER
340
341
342 )))|If the valid payload is too long and exceed the maximum support payload length in server, server will show payload not provided in the LoRaWAN server.
343
344 Below is the decoder for the first 3 bytes. The rest bytes are dynamic depends on different RS485 sensors.
345
346
347 (% style="color:blue" %)**Battery(mV)**
348
349 Check the battery voltage for RS485-LB/LS.
350
351 Ex1: 0x0B45 = 2885mV
352
353 Ex2: 0x0B49 = 2889mV
354
355
356 (% style="color:blue" %)**Interrupt_Flag**
357
358 Ex1: 0x0B45>>15&0x01=0x00 : Normal uplink packet.
359
360 Ex2: 0x8B49>>15&0x01=0x01 : Interrupt Uplink Packet.
361
362
363 (% style="color:blue" %)**PAYLOAD_VER**
364
365 RS485-LB/LS can connect to different sensors. User can set the PAYVER_VER field to tell server how to decode the current payload.
366
367
368 == 2.4 Payload Decoder file ==
369
370
371 In TTN, use can add a custom payload so it shows friendly reading
372
373 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
374
375
376 == 2.5 Frequency Plans ==
377
378
379 The RS485-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
380
381 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
382
383
384 == 2.6 Configure Device to Read RS485 Sensors ==
385
386
387 (((
388 There are plenty of RS485 and TTL level devices in the market and each device has different commands to read the valid data. To support these devices in most flexible, RS485-LB/LS supports flexible command set. User can use [[Dragino RS485 Tool>>https://www.dropbox.com/sh/us9qecn39fwt8n1/AABREdqUCzEmJMRrfuWuXasoa?dl=0]],  [[AT Commands or LoRaWAN Downlink>>||anchor="H3.5ConfigureRS485-LB/LSviaATorDownlink"]] Command to configure how RS485-LB/LS should read the sensor and how to handle the return from RS485 or TTL sensors.
389 )))
390
391
392 === 2.6.1 Method 1 ~-~- via RS485 Configure Tool ===
393
394
395 Use the RS485 Configure tool is the recommand method. Please see the instruction of how to use the tool:
396
397 * **[[RS485 Configure Tool Instruction>>doc:Main.RS485_Configure_Tool.WebHome]]**
398
399 [[image:image-20231127144411-1.png||height="368" width="494"]]
400
401
402
403 === 2.6.2 Method 2 ~-~- via AT Commands ===
404
405
406 ==== 2.6.2.1 Configure UART settings for RS485 or TTL communication ====
407
408
409 (((
410 RS485-LB/LS can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
411 )))
412
413
414 (((
415 (% style="color:blue" %)**1.  RS485-MODBUS mode:**
416 )))
417
418 (((
419 (% style="color:#037691" %)**AT+MOD=1**  (%%) ~/~/ Support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
420 )))
421
422
423 (((
424 (% style="color:blue" %)**2.  TTL mode:**
425 )))
426
427 (((
428 (% style="color:#037691" %)**AT+MOD=2**  (%%) ~/~/ Support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
429
430
431 )))
432
433 (((
434 RS485-LB/LS default  UART settings is (% style="color:green" %)**9600, no parity, stop bit 1,data bit 8**(%%). If the sensor has a different settings, user can change the RS485-LB/LS setting to match.
435 )))
436
437 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
438 |=(% style="width: 122px; background-color:#4F81BD;color:white" %)(((
439 (((
440 **AT Commands**
441 )))
442 )))|=(% style="width: 190px; background-color:#4F81BD;color:white" %)(((
443 (((
444 **Description**
445 )))
446 )))|=(% style="width: 203px; background-color:#4F81BD;color:white" %)(((
447 (((
448 **Example**
449 )))
450 )))
451 |(% style="width:122px" %)(((
452 (((
453 AT+BAUDR
454 )))
455 )))|(% style="width:192px" %)(((
456 (((
457 Set the baud rate.
458 Default Value is: 9600.
459 )))
460 )))|(% style="width:338px" %)(((
461 (((
462 (((
463 AT+BAUDR=9600
464 )))
465 )))
466
467 (((
468 (((
469 Options: (1200,2400,4800,14400,19200,115200)
470 )))
471 )))
472 )))
473 |(% style="width:122px" %)(((
474 (((
475 AT+PARITY
476 )))
477 )))|(% style="width:192px" %)(((
478 (((
479 (((
480 Set UART parity.
481 )))
482 )))
483
484 (((
485 (((
486 Default Value is: no parity.
487 )))
488 )))
489 )))|(% style="width:338px" %)(((
490 (((
491 (((
492 AT+PARITY=0
493 )))
494 )))
495
496 (((
497 (((
498 Option: 0: no parity, 1: odd parity, 2: even parity
499 )))
500 )))
501 )))
502 |(% style="width:122px" %)(((
503 (((
504 AT+STOPBIT
505 )))
506 )))|(% style="width:192px" %)(((
507 (((
508 (((
509 Set serial stopbit
510 )))
511 )))
512
513 (((
514 (((
515 Default Value is: 1bit.
516 )))
517 )))
518 )))|(% style="width:338px" %)(((
519 (((
520 AT+STOPBIT=1 for 1 bit
521 )))
522
523 (((
524 (((
525 AT+STOPBIT=2 for 2 bits
526 )))
527 )))
528 )))
529 |(% style="width:122px" %)AT+DATABIT|(% style="width:192px" %)(((
530 (((
531 (((
532 Set serial databit.
533 )))
534 )))
535
536 (((
537 (((
538 Default Value is: 8bits.
539 )))
540 )))
541 )))|(% style="width:338px" %)(((
542 (((
543 AT+DATABIT=7 for 7 bits
544 )))
545
546 (((
547 (((
548 AT+DATABIT=8 for 8 bits
549 )))
550 )))
551 )))
552
553 Example(Soil three-parameter detector):
554
555 (% style="color:blue" %)**Wiring the UART sensor**
556
557 (((
558 **GND <~-~-~-~-~-~-~-~-> GND
559 TX  <~-~-~-~-~-~-~-~->  RX
560 RX  <~-~-~-~-~-~-~-~->  TX
561 VCC  <~-~-~-~-~-~-~-~->  3.3/5V**
562 )))
563
564 [[image:image-20231019111951-1.png||height="235" width="410"]]
565
566
567 (% style="color:blue" %)**Set the correct configuration:**
568
569 (% style="color:#037691" %)**AT+BAUDR=9600**
570
571 (% style="color:#037691" %)**AT+PARITY=0**
572
573 (% style="color:#037691" %)**AT+STOPBIT=1**
574
575 (% style="color:#037691" %)**AT+DATABIT=8**
576
577 If the sensor needs 5v. Need to move the switch position to 5v and then use the command (% style="color:blue" %)**AT+5VT=30000**
578
579
580 (% style="color:blue" %)**Configuration read command:**
581
582 (% style="color:#037691" %)**AT+CFGDEV=FE 03 00 00 00 03 11 C4,0**
583
584 **FE:** Station address
585
586 **03:** Function code
587
588 **00 00:**Register start address
589
590 **00 03:**Number of registers
591
592 **11 04:**  Check code
593
594 [[image:image-20230220111709-2.png]]
595
596
597 Use AT+COMMAND1 to set it as a command, and use AT+DATACUT1 to intercept the bytes I need
598
599 [[image:image-20230220112421-3.png]]
600
601
602 (% style="color:blue" %)**upload payload:**
603
604 [[image:image-20230220112517-4.png]]
605
606
607 ==== 2.6.2.2 Configure sensors ====
608
609
610 (((
611 Some sensors might need to configure before normal operation. User can configure such sensor via PC or through RS485-LB/LS AT Commands (% style="color:#4f81bd" %)**AT+CFGDEV**.
612 )))
613
614 (((
615 When user issue an (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) command, Each (% style="color:#4f81bd" %)**AT+CFGDEV**(%%) equals to send a command to the RS485 or TTL sensors. This command will only run when user input it and won't run during each sampling.
616 )))
617
618 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
619 |=(% style="width: 130px;background-color:#4F81BD;color:white" %)**AT Commands**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Description**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Example**
620 |(% style="width:121px" %)AT+CFGDEV|(% style="width:179px" %)(((
621 (((
622 This command is used to configure the RS485/TTL devices; they won’t be used during sampling.
623 )))
624
625 (((
626 AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,
627 )))
628
629 (((
630 mm: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command
631 )))
632 )))|(% style="width:210px" %)AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m
633
634 Detail of AT+CFGDEV command see [[AT+CFGDEV detail>>||anchor="H3.3.2RS485DebugCommand28AT2BCFGDEV29"]].
635
636
637 ==== 2.6.2.3 Configure read commands for each sampling ====
638
639
640 (((
641 RS485-LB/LS is a battery powered device; it will sleep most of time. And wake up on each period and read RS485 / TTL sensor data and uplink.
642 )))
643
644 (((
645 During each sampling, we need to confirm what commands we need to send to the sensors to read data. After the RS485/TTL sensors send back the value, it normally includes some bytes and we only need a few from them for a shorten payload.
646 )))
647
648 (((
649 To save the LoRaWAN network bandwidth, we might need to read data from different sensors and combine their valid value into a short payload.
650 )))
651
652 (((
653 This section describes how to achieve above goals.
654 )))
655
656 (((
657 During each sampling, the RS485-LB/LS can support 15 commands to read sensors. And combine the return to one or several uplink payloads.
658
659
660 )))
661
662 (((
663 (% style="color:blue" %)**Command from RS485-LB/LS to Sensor:**
664 )))
665
666 (((
667 RS485-LB/LS can send out pre-set max 15 strings via **AT+COMMAD1**, **ATCOMMAND2**,…, to **AT+COMMANDF** . All commands are of same grammar.
668 )))
669
670 (((
671 (% style="color:blue" %)**Handle return from sensors to RS485-LB/LS**:
672 )))
673
674 (((
675 After RS485-LB/LS send out a string to sensor, RS485-LB/LS will wait for the return from RS485 or TTL sensor. And user can specify how to handle the return, by **AT+DATACUT or AT+SEARCH commands**
676 )))
677
678 * (((
679 (% style="color:blue" %)**AT+DATACUT**
680 )))
681
682 (((
683 When the return value from sensor have fix length and we know which position the valid value we should get, we can use AT+DATACUT command.
684
685
686 )))
687
688 * (((
689 (% style="color:blue" %)**AT+SEARCH**
690 )))
691
692 (((
693 When the return value from sensor is dynamic length and we are not sure which bytes the valid data is, instead, we know what value the valid value following. We can use AT+SEARCH to search the valid value in the return string.
694 )))
695
696
697 (((
698 (% style="color:blue" %)**Define wait timeout:**
699 )))
700
701 (((
702 Some RS485 device might has longer delay on reply, so user can use AT+CMDDL to set the timeout for getting reply after the RS485 command is sent. For example, AT+CMDDL1=1000 to send the open time to 1000ms
703 )))
704
705 (((
706 After we got the valid value from each RS485 commands, we need to combine them together with the command **AT+DATAUP**.
707 )))
708
709 (((
710 **Examples:**
711 )))
712
713 (((
714 Below are examples for the how above AT Commands works.
715 )))
716
717 (((
718 (% style="color:blue" %)**AT+COMMANDx **(%%)**: **This command will be sent to RS485/TTL devices during each sampling, Max command length is 14 bytes. The grammar is:
719 )))
720
721 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:497px" %)
722 |(% style="width:494px" %)(((
723 (((
724 **AT+COMMANDx=xx xx xx xx xx xx xx xx xx xx xx xx,m**
725 )))
726
727 (((
728 **xx xx xx xx xx xx xx xx xx xx xx xx: The RS485 command to be sent**
729 )))
730
731 (((
732 **m: 0: no CRC, 1: add CRC-16/MODBUS in the end of this command**
733 )))
734 )))
735
736 (((
737 For example, if we have a RS485 sensor. The command to get sensor value is: 01 03 0B B8 00 02 46 0A. Where 01 03 0B B8 00 02 is the Modbus command to read the register 0B B8 where stored the sensor value. The 46 0A is the CRC-16/MODBUS which calculate manually.
738 )))
739
740 (((
741 In the RS485-LB/LS, we should use this command AT+COMMAND1=01 03 0B B8 00 02,1 for the same.
742 )))
743
744
745 If a single command exceeds 14 bytes, you can use the command splicing function.
746
747 When AT+CMDDLx=1, the commands of AT+COMMANDx and AT+COMMAND(x+1) will be merged.
748
749 **Examples:** To send 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F data it should be configured:
750
751 AT+COMMAND1=00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D,0
752
753 AT+COMMAND1=1
754
755 AT+COMMAND2=0E 0F,0
756
757
758 (((
759 (% style="color:blue" %)**AT+SEARCHx**(%%): This command defines how to handle the return from AT+COMMANDx.
760 )))
761
762 (% border="1" class="table-bordered" style="background-color:#f2f2f2; width:473px" %)
763 |(% style="width:470px" %)(((
764 (((
765 **AT+SEARCHx=aa,xx xx xx xx xx**
766 )))
767
768 * (((
769 **aa: 1: prefix match mode; 2: prefix and suffix match mode**
770 )))
771 * (((
772 **xx xx xx xx xx: match string. Max 5 bytes for prefix and 5 bytes for suffix**
773 )))
774 )))
775
776 (((
777 **Examples:**
778 )))
779
780 (((
781 1)For a return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
782 )))
783
784 (((
785 If we set AT+SEARCH1=1,1E 56 34.      (max 5 bytes for prefix)
786 )))
787
788 (((
789 The valid data will be all bytes after 1E 56 34 , so it is (% style="background-color:yellow" %)**2e 30 58 5f 36 41 30 31 00 49**
790 )))
791
792 (((
793 [[image:1653271044481-711.png]]
794
795
796 )))
797
798 (((
799 2)For a return string from AT+COMMAND1:  16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
800 )))
801
802 (((
803 If we set AT+SEARCH1=2, 1E 56 34+31 00 49
804 )))
805
806 (((
807 Device will search the bytes between 1E 56 34 and 31 00 49. So it is(% style="background-color:yellow" %) **2e 30 58 5f 36 41 30**
808 )))
809
810 (((
811 [[image:1653271276735-972.png]]
812 )))
813
814 (((
815 **AT+DATACUTx : **This command defines how to handle the return from AT+COMMANDx, max return length is 100 bytes.
816 )))
817
818 (% style="background-color:#f2f2f2; width:496px" %)
819 |(% style="width:493px" %)(((
820 (((
821 **AT+DATACUTx=a,b,c**
822 )))
823
824 * (((
825 **a: length for the return of AT+COMMAND**
826 )))
827 * (((
828 **b:1: grab valid value by byte, max 6 bytes. 2: grab valid value by bytes section, max 3 sections.**
829 )))
830 * (((
831 **c: define the position for valid value.  **
832 )))
833 )))
834
835 (((
836 **Examples:**
837 )))
838
839 * (((
840 (% style="color:blue" %)**Grab bytes:**
841 )))
842
843 (((
844 [[image:1653271581490-837.png||height="313" width="722"]]
845 )))
846
847
848 * (((
849 (% style="color:blue" %)**Grab a section.**
850 )))
851
852 (((
853 [[image:1653271648378-342.png||height="326" width="720"]]
854 )))
855
856
857 * (((
858 (% style="color:blue" %)**Grab different sections.**
859 )))
860
861 (((
862 [[image:1653271657255-576.png||height="305" width="730"]]
863
864
865 )))
866
867
868 (((
869 (% style="color:red" %)**Note:**
870 )))
871
872 (((
873 (% style="color:#037691" %)**AT+SEARCHx** (%%)and (% style="color:#037691" %)**AT+DATACUTx**(%%) can be used together, if both commands are set, RS485-LB/LS will first process AT+SEARCHx on the return string and get a temporary string, and then process AT+DATACUTx on this temporary string to get the final payload. In this case, AT+DATACUTx need to set to format** AT+DATACUTx=0,xx,xx** where the return bytes set to **0**.
874 )))
875
876 (((
877 **Example:**
878 )))
879
880 (((
881 (% style="color:red" %)AT+COMMAND1=11 01 1E D0,0
882 )))
883
884 (((
885 (% style="color:red" %)AT+SEARCH1=1,1E 56 34
886 )))
887
888 (((
889 (% style="color:red" %)AT+DATACUT1=0,2,1~~5
890 )))
891
892 (((
893 (% style="color:red" %)Return string from AT+COMMAND1: 16 0c 1e 56 34 2e 30 58 5f 36 41 30 31 00 49
894 )))
895
896 (((
897 (% style="color:red" %)String after SEARCH command: 2e 30 58 5f 36 41 30 31 00 49
898 )))
899
900 (((
901 (% style="color:red" %)Valid payload after DataCUT command: 2e 30 58 5f 36
902 )))
903
904
905 (((
906 [[image:1653271763403-806.png]]
907 )))
908
909
910 ==== 2.6.2.4 Compose the uplink payload ====
911
912
913 (((
914 Through AT+COMMANDx and AT+DATACUTx we got valid value from each RS485 commands, Assume these valid value are RETURN1, RETURN2, .., to RETURNx. The next step is how to compose the LoRa Uplink Payload by these RETURNs. The command is **AT+DATAUP.**
915 )))
916
917 (((
918 (% style="color:#037691" %)**Examples: AT+DATAUP=0**
919 )))
920
921 (((
922 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**A SIGNLE UPLINK**.
923 )))
924
925 (((
926 Final Payload is
927 )))
928
929 (((
930 (% style="color:#4f81bd" %)**Battery Info+PAYVER + VALID Value from RETURN1 + Valid Value from RETURN2 + … + RETURNx**
931 )))
932
933 (((
934 Where PAYVER is defined by AT+PAYVER, below is an example screen shot.
935 )))
936
937 [[image:1653272787040-634.png||height="515" width="719"]]
938
939
940
941 (((
942 (% style="color:#037691" %)**Examples: AT+DATAUP=1**
943 )))
944
945
946 (((
947 Compose the uplink payload with value returns in sequence and send with (% style="color:red" %)**Multiply UPLINKs**.
948 )))
949
950 (((
951 Final Payload is
952 )))
953
954 (((
955 (% style="color:#4f81bd" %)**Battery Info+PAYVER + PAYLOAD COUNT + PAYLOAD# + DATA**
956 )))
957
958 1. (((
959 Battery Info (2 bytes): Battery voltage
960 )))
961 1. (((
962 PAYVER (1 byte): Defined by AT+PAYVER
963 )))
964 1. (((
965 PAYLOAD COUNT (1 byte): Total how many uplinks of this sampling.
966 )))
967 1. (((
968 PAYLOAD# (1 byte): Number of this uplink. (from 0,1,2,3…,to PAYLOAD COUNT)
969 )))
970 1. (((
971 DATA: Valid value: max 6 bytes(US915 version here, Notice*!) for each uplink so each uplink <= 11 bytes. For the last uplink, DATA will might less than 6 bytes
972 )))
973
974 [[image:1653272817147-600.png||height="437" width="717"]]
975
976 So totally there will be 3 uplinks for this sampling, each uplink includes 6 bytes DATA
977
978
979 DATA1=RETURN1 Valid Value = (% style="background-color:#4f81bd; color:white" %) 20 20 0a 33 90 41
980
981 DATA2=1^^st^^ ~~ 6^^th^^ byte of Valid value of RETURN10= (% _mstmutation="1" style="background-color:#4f81bd; color:white" %)02 aa 05 81 0a 20
982
983 DATA3=7^^th^^ ~~ 11^^th^^ bytes of Valid value of RETURN10 =(% _mstmutation="1" style="background-color:#4f81bd; color:white" %) 20 20 20 2d 30
984
985
986 Below are the uplink payloads:
987
988 [[image:1653272901032-107.png]]
989
990
991 (% style="color:red" %)**Notice: the Max bytes is according to the max support bytes in different Frequency Bands for lowest SF. As below:**
992
993 ~* For AU915/AS923 bands, if UplinkDwell time=0, max 51 bytes for each uplink ( so 51 -5 = 46 max valid date)
994
995 * For AU915/AS923 bands, if UplinkDwell time=1, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
996
997 * For US915 band, max 11 bytes for each uplink ( so 11 -5 = 6 max valid date).
998
999 ~* For all other bands: max 51 bytes for each uplink  ( so 51 -5 = 46 max valid date).
1000
1001 *(% style="color:red" %)** When AT+DATAUP=1, the maximum number of segments is 15, and the maximum total number of bytes is 1500;**
1002
1003 (% style="color:red" %)** When AT+DATAUP=1 and AT+ADR=0, the maximum number of bytes of each payload is determined by the DR value. (Since v1.4.0)**
1004
1005
1006 * (((
1007 (% style="color:blue" %)**If the data is empty, return to the display(Since v1.4.0)**(%%)
1008 (% style="color:blue" %)
1009 )))
1010
1011 (% class="wikigeneratedid" %)
1012 **1) ** When (% style="color:blue" %)**AT+MOD=1**(%%), if the data intercepted by (% style="color:#037691" %)** AT+DATACUT**(%%) or (% style="color:#037691" %)** AT+MBFUN **(%%)is empty, it will display **NULL**, and the payload will be filled with **n FFs**.
1013
1014
1015 (% class="wikigeneratedid" %)
1016 [[image:image-20220824114359-3.png||height="297" width="1106"]]
1017
1018
1019
1020 **2)**  When** (% style="color:blue" %)AT+MOD=2(%%)**, if the data intercepted by (% style="color:#037691" %)** AT+DATACUT** (%%)or (% style="color:#037691" %)** AT+MBFUN**(%%) is empty, it will display **NULL**, and the payload will be filled with **n 00s**.
1021
1022
1023 [[image:image-20220824114330-2.png]]
1024
1025
1026 === 2.6.3 Uplink on demand ===
1027
1028
1029 (((
1030 Except uplink periodically, RS485-LB/LS is able to uplink on demand. The server sends downlink command to RS485-LB/LS and RS485 will uplink data base on the command.
1031
1032
1033 )))
1034
1035 (((
1036 (% style="color:blue" %)** Downlink control command:**
1037 )))
1038
1039 (((
1040 (% style="color:#4472c4" %)** 0xA8 command**(%%): Send a command to RS485-LB/LS and uplink the output from sensors.
1041 )))
1042
1043
1044 === 2.6.4 Uplink on Interrupt ===
1045
1046
1047 Put the interrupt sensor between 3.3v_out and GPIO ext.
1048
1049 [[image:image-20231019112133-3.png]]
1050
1051
1052 (((
1053 (% style="color:#4472c4" %)**AT+INTMOD=0**(%%)  Disable Interrupt
1054 )))
1055
1056 (((
1057 (% style="color:#4472c4" %)**AT+INTMOD=1**(%%)  Interrupt trigger by rising or falling edge.
1058 )))
1059
1060 (((
1061 (% style="color:#4472c4" %)**AT+INTMOD=2** (%%) Interrupt trigger by falling edge. ( Default Value)
1062 )))
1063
1064 (((
1065 (% style="color:#4472c4" %)**AT+INTMOD=3**(%%)  Interrupt trigger by rising edge.
1066 )))
1067
1068
1069 = 3. Configure RS485-LB/LS =
1070
1071 == 3.1 Configure Methods ==
1072
1073
1074 RS485-LB/LS supports below configure method:
1075
1076 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1077 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
1078 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1079
1080 == 3.2 General Commands ==
1081
1082
1083 These commands are to configure:
1084
1085 * General system settings like: uplink interval.
1086 * LoRaWAN protocol & radio related command.
1087
1088 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1089
1090 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1091
1092
1093 == 3.3 Commands special design for RS485-LB/LS ==
1094
1095
1096 These commands only valid for RS485-LB/LS, as below:
1097
1098
1099 === 3.3.1 Choose Device Type (RS485 or TTL) ===
1100
1101
1102 RS485-LB/LS can connect to either RS485 sensors or TTL sensor. User need to specify what type of sensor need to connect.
1103
1104 * (% style="color:#037691" %)**AT Command**
1105
1106 (% style="color:#4472c4" %)** AT+MOD=1** (%%) ~/~/ Set to support RS485-MODBUS type sensors. User can connect multiply RS485 , Modbus sensors to the A / B pins.
1107
1108 (% style="color:#4472c4" %)** AT+MOD=2** (%%) ~/~/ Set to support TTL Level sensors, User can connect one TTL Sensor to the TXD/RXD/GND pins.
1109
1110
1111 * (% style="color:#037691" %)**Downlink Payload**
1112
1113 (% style="color:#4472c4" %)** 0A aa** (%%) ~-~->  same as AT+MOD=aa
1114
1115
1116 === 3.3.2 RS485 Debug Command (AT+CFGDEV) ===
1117
1118
1119 (((
1120 This command is used to configure the RS485 or TTL sensors; they won't be used during sampling. Max Length of AT+CFGDEV is **40 bytes**.
1121 )))
1122
1123 (((
1124 * (% style="color:#037691" %)**AT Command**
1125
1126 (((
1127 (% style="color:#4472c4" %)** AT+CFGDEV=xx xx xx xx xx xx xx xx xx xx xx xx,m**  (%%) m: 0: no CRC;  1: add CRC-16/MODBUS in the end of this command.
1128 )))
1129 )))
1130
1131
1132 * (((
1133 (% style="color:#037691" %)**Downlink Payload**
1134 )))
1135
1136 (((
1137 Format:  (% style="color:#4472c4" %)** A8 MM NN XX XX XX XX YY**
1138 )))
1139
1140 (((
1141 Where:
1142 )))
1143
1144 * (((
1145 MM: 1: add CRC-16/MODBUS ; 0: no CRC
1146 )))
1147 * (((
1148 NN: The length of RS485 command
1149 )))
1150 * (((
1151 XX XX XX XX: RS485 command total NN bytes
1152 )))
1153 * (((
1154 YY: How many bytes will be uplink from the return of this RS485 command, if YY=0, RS485-LB/LS will execute the downlink command without uplink; if YY>0, RS485-LB/LS will uplink total YY bytes from the output of this RS485 command
1155 )))
1156
1157 (((
1158 (% style="color:blue" %)**Example 1:**
1159 )))
1160
1161 (((
1162 To connect a Modbus Alarm with below commands.
1163 )))
1164
1165 * (((
1166 The command to active alarm is: 0A 05 00 04 00 01 **4C B0**. Where 0A 05 00 04 00 01 is the Modbus command to read the register 00 40 where stored the DI status. The 4C B0 is the CRC-16/MODBUS which calculate manually.
1167 )))
1168
1169 * (((
1170 The command to deactivate alarm is: 0A 05 00 04 00 00 **8D 70**. Where 0A 05 00 04 00 00 is the Modbus command to read the register 00 40 where stored the DI status. The 8D 70 is the CRC-16/MODBUS which calculate manually.
1171 )))
1172
1173 (((
1174 So if user want to use downlink command to control to RS485 Alarm, he can use:
1175 )))
1176
1177 (((
1178 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 01 00**(%%): to activate the RS485 Alarm
1179 )))
1180
1181 (((
1182 (% style="color:#037691" %)**A8 01 06 0A 05 00 04 00 00 00**(%%): to deactivate the RS485 Alarm
1183 )))
1184
1185 (((
1186 A8 is type code and 01 means add CRC-16/MODBUS at the end, the 3^^rd^^ byte is 06, means the next 6 bytes are the command to be sent to the RS485 network, the final byte 00 means this command don’t need to acquire output.
1187 )))
1188
1189
1190 (((
1191 (% style="color:blue" %)**Example 2:**
1192 )))
1193
1194 (((
1195 Check TTL Sensor return:
1196 )))
1197
1198 (((
1199 [[image:1654132684752-193.png]]
1200 )))
1201
1202
1203 === 3.3.3 Set Payload version ===
1204
1205
1206 This is the first byte of the uplink payload. RS485-LB/LS can connect to different sensors. User can set the PAYVER field to tell server how to decode the current payload.
1207
1208 * (% style="color:#037691" %)**AT Command:**
1209
1210 (% style="color:#4472c4" %)** AT+PAYVER:   **(%%)Set PAYVER field = 1
1211
1212
1213 * (% style="color:#037691" %)**Downlink Payload:**
1214
1215 (% style="color:#4472c4" %)** 0xAE 01** (%%) ~-~-> Set PAYVER field =  0x01
1216
1217 (% style="color:#4472c4" %)** 0xAE 0F** (%%) ~-~-> Set PAYVER field =  0x0F
1218
1219
1220 === 3.3.4 Set RS485 Sampling Commands ===
1221
1222
1223 (((
1224 AT+COMMANDx, AT+DATACUTx and AT+SEARCHx
1225 )))
1226
1227 (((
1228 These three commands are used to configure how the RS485-LB polling data from Modbus device. Detail of usage please see : [[polling RS485 device>>||anchor="H2.5.3Configurereadcommandsforeachsampling"]].
1229 )))
1230
1231
1232 * (((
1233 (% style="color:#037691" %)**AT Command:**
1234 )))
1235
1236 (% style="color:#4472c4" %)** AT+COMMANDx: **(%%)** Configure RS485 read command to sensor.**
1237
1238 (% style="color:#4472c4" %)** AT+DATACUTx: **(%%)** Configure how to handle return from RS485 devices.**
1239
1240 (% style="color:#4472c4" %)** AT+SEARCHx:  **(%%)** Configure search command**
1241
1242
1243 * (((
1244 (% style="color:#037691" %)**Downlink Payload:**
1245 )))
1246
1247 (((
1248 (% style="color:#4472c4" %)** 0xAF**(%%) downlink command can be used to set AT+COMMANDx or AT+DATACUTx.
1249 )))
1250
1251 (((
1252 (% style="color:red" %)**Note : if user use AT+COMMANDx to add a new command, he also need to send AT+DATACUTx downlink.**
1253 )))
1254
1255 (((
1256 Format: AF MM NN LL XX XX XX XX YY
1257 )))
1258
1259 (((
1260 Where:
1261 )))
1262
1263 * (((
1264 MM: the ATCOMMAND or AT+DATACUT to be set. Value from 01 ~~ 0F,
1265 )))
1266 * (((
1267 NN:  0: no CRC; 1: add CRC-16/MODBUS ; 2: set the AT+DATACUT value.
1268 )))
1269 * (((
1270 LL:  The length of AT+COMMAND or AT+DATACUT command
1271 )))
1272 * (((
1273 XX XX XX XX: AT+COMMAND or AT+DATACUT command
1274 )))
1275 * (((
1276 YY:  If YY=0, RS485-LB/LS will execute the downlink command without uplink; if YY=1, RS485-LB/LS will execute an uplink after got this command.
1277 )))
1278
1279 (((
1280 **Example:**
1281 )))
1282
1283 (((
1284 (% style="color:#037691" %)**AF 03 01 06 0A 05 00 04 00 01 00**(%%): Same as AT+COMMAND3=0A 05 00 04 00 01,1
1285 )))
1286
1287 (((
1288 (% style="color:#037691" %)**AF 03 02 06**(% style="color:orange" %)** 10 **(% style="color:red" %)**01 **(% style="color:green" %)**05 06 09 0A**(% style="color:#037691" %)** 00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**16**(%%),(% style="color:red" %)**1**(%%),(% style="color:green" %)**5+6+9+10**
1289 )))
1290
1291 (((
1292 (% style="color:#037691" %)**AF 03 02 06 **(% style="color:orange" %)**0B**(% style="color:red" %)** 02 **(% style="color:green" %)**05 07 08 0A **(% style="color:#037691" %)**00**(%%): Same as AT+DATACUT3=(% style="color:orange" %)**11**(%%),(% style="color:red" %)**2**(%%),(% style="color:green" %)**5~~7+8~~10**
1293 )))
1294
1295
1296 (((
1297 (% style="color:#4472c4" %)** 0xAB**(%%) downlink command can be used for set AT+SEARCHx
1298 )))
1299
1300 (((
1301 **Example:** **AB aa 01 03 xx xx xx** (03 here means there are total 3 bytes after 03) So
1302 )))
1303
1304 * (((
1305 AB aa 01 03 xx xx xx  same as AT+SEARCHaa=1,xx xx xx
1306 )))
1307 * (((
1308 AB aa 02 03 xx xx xx 02 yy yy(03 means there are 3 bytes after 03, they are xx xx xx;02 means there are 2 bytes after 02, they are yy yy) so the commands
1309 )))
1310
1311 (((
1312 **AB aa 02 03 xx xx xx 02 yy yy**  same as **AT+SEARCHaa=2,xx xx xx+yy yy**
1313 )))
1314
1315
1316 === 3.3.5 Fast command to handle MODBUS device ===
1317
1318
1319 (((
1320 AT+MBFUN is valid since v1.3 firmware version. The command is for fast configure to read Modbus devices. It is only valid for the devices which follow the [[MODBUS-RTU protocol>>url:https://www.modbustools.com/modbus.html]].
1321 )))
1322
1323 (((
1324 This command is valid since v1.3 firmware version
1325 )))
1326
1327
1328 (((
1329 (% style="color:#037691" %)**AT+MBFUN has only two value:**
1330 )))
1331
1332 * (((
1333 (% style="color:#4472c4" %)** AT+MBFUN=1**(%%): Enable Modbus reading. And get response base on the MODBUS return
1334 )))
1335
1336 (((
1337 AT+MBFUN=1, device can auto read the Modbus function code: 01, 02, 03 or 04. AT+MBFUN has lower priority vs AT+DATACUT command. If AT+DATACUT command is configured, AT+MBFUN will be ignore.
1338 )))
1339
1340 * (((
1341 (% style="color:#4472c4" %)**AT+MBFUN=0**(%%): Disable Modbus fast reading.
1342 )))
1343
1344 (((
1345
1346
1347 **Example:**
1348 )))
1349
1350 * (((
1351 AT+MBFUN=1 and AT+DATACUT1/AT+DATACUT2 are not configure (0,0,0).
1352 )))
1353 * (((
1354 AT+COMMAND1= 01 03 00 10 00 08,1 ~-~-> read slave address 01 , function code 03, start address 00 01, quantity of registers 00 08.
1355 )))
1356 * (((
1357 AT+COMMAND2= 01 02 00 40 00 10,1 ~-~-> read slave address 01 , function code 02, start address 00 40, quantity of inputs 00 10.
1358 )))
1359
1360 [[image:1654133913295-597.png]]
1361
1362
1363 [[image:1654133954153-643.png]]
1364
1365
1366 * (((
1367 (% style="color:#037691" %)**Downlink Commands:**
1368 )))
1369
1370 (((
1371 (% style="color:#4472c4" %)** A9 aa** (%%)~-~-> Same as AT+MBFUN=aa
1372 )))
1373
1374
1375 === 3.3.6 RS485 command timeout ===
1376
1377
1378 (((
1379 Some Modbus device has slow action to send replies. This command is used to configure the RS485-LB to use longer time to wait for their action.
1380 )))
1381
1382 (((
1383 Default value: 0, range:  0 ~~ 10 seconds
1384 )))
1385
1386 (((
1387 * (% style="color:#037691" %)**AT Command:**
1388
1389 (% style="color:#4472c4" %)**AT+CMDDLaa=hex(bb cc)**
1390 )))
1391
1392 (((
1393 **Example:**
1394 )))
1395
1396 (((
1397 **AT+CMDDL1=1000** to send the open time to 1000ms
1398 )))
1399
1400
1401 * (((
1402 (% style="color:#037691" %)**Downlink Payload:**
1403 )))
1404
1405 (((
1406 (% style="color:#4472c4" %) **0x AA aa bb cc**(%%)  Same as:** AT+CMDDLaa=hex(bb cc)**
1407 )))
1408
1409 (((
1410 **Example:**
1411 )))
1412
1413 (((
1414 (% style="color:#4472c4" %)** 0xAA 01 03 E8**(%%)  ~-~-> Same as (% _mstmutation="1" %)**AT+CMDDL1=1000 ms**
1415 )))
1416
1417
1418 === 3.3.7 Uplink payload mode ===
1419
1420
1421 (((
1422 Define to use one uplink or multiple uplinks for the sampling.
1423 )))
1424
1425 (((
1426 The use of this command please see: [[Compose Uplink payload>>||anchor="H2.5.4Composetheuplinkpayload"]]
1427 )))
1428
1429 (((
1430 * (% style="color:#037691" %)**AT Command:**
1431
1432 (% style="color:#4472c4" %)** AT+DATAUP=0**
1433
1434 (% style="color:#4472c4" %)** AT+DATAUP=1**
1435 )))
1436
1437
1438 * (((
1439 (% style="color:#037691" %)**Downlink Payload:**
1440 )))
1441
1442 (((
1443 (% style="color:#4472c4" %)** 0xAD 00**  (%%) **~-~->** Same as AT+DATAUP=0
1444 )))
1445
1446 (((
1447 (% style="color:#4472c4" %)** 0xAD 01**   (%%)**~-~->** Same as AT+DATAUP=1  ~/~/Each uplink is sent to the server one after the other as it is segmented.
1448
1449
1450 )))
1451
1452 (((
1453 * (% style="color:#037691" %)**AT Command:**
1454
1455 (% style="color:#4472c4" %)**AT+DATAUP=1,Timeout**
1456 )))
1457
1458
1459 * (((
1460 (% style="color:#037691" %)**Downlink Payload:**
1461 )))
1462
1463 (((
1464 (% style="color:#4472c4" %)** 0xAD 01 00 00 14** (%%) **~-~->** Same as AT+DATAUP=1,20000 ~/~/(00 00 14 is 20 seconds)
1465 )))
1466
1467 (((
1468 Each uplink is sent to the server at 20-second intervals when segmented.
1469 )))
1470
1471
1472 === 3.3.8 Clear RS485 Command ===
1473
1474
1475 (((
1476 The AT+COMMANDx and AT+DATACUTx  AT+SEARCHx and AT+CMDDLx settings are stored in special location, user can use below command to clear them.
1477 )))
1478
1479
1480 * (((
1481 (% style="color:#037691" %)**AT Command:**
1482 )))
1483
1484 (((
1485 (% style="color:#4472c4" %) **AT+CMDEAR=mm,nn** (%%) mm: start position of erase ,nn: stop position of erase Etc. AT+CMDEAR=1,10 means erase AT+COMMAND1/AT+DATACUT1/AT+SEARCH1/AT+CMDDL1 to AT+COMMANDA/AT+DATACUTA/AT+SEARCHA/AT+CMDDLA.
1486
1487
1488 )))
1489
1490 (((
1491 Example screen shot after clear all RS485 commands. 
1492 )))
1493
1494
1495 (((
1496 The uplink screen shot is:
1497 )))
1498
1499 (((
1500 [[image:1654134704555-320.png]]
1501 )))
1502
1503
1504 * (((
1505 (% style="color:#037691" %)**Downlink Payload:**
1506 )))
1507
1508 (((
1509 (% style="color:#4472c4" %)** 0x09 aa bb**(%%) same as AT+CMDEAR=aa,bb
1510 )))
1511
1512
1513 === 3.3.9 Set Serial Communication Parameters ===
1514
1515
1516 (((
1517 Set the Rs485 serial communication parameters:
1518 )))
1519
1520 * (((
1521 (% style="color:#037691" %)**AT Command:**
1522 )))
1523
1524 (((
1525
1526
1527 * **Set Baud Rate:**
1528 )))
1529
1530 (% style="color:#4472c4" %)** AT+BAUDR=9600** (%%) ~/~/ Options: (200~~115200),When using low baud rate or receiving multiple bytes, you need to use AT+CMDDL to increase the receive timeout (the default receive timeout is 300ms), otherwise data will be lost.
1531
1532
1533 * **Set UART Parity**
1534
1535 (% style="color:#4472c4" %)** AT+PARITY=0**  (%%) ~/~/ Option: 0: no parity, 1: odd parity, 2: even parity
1536
1537
1538 * **Set STOPBIT**
1539
1540 (% style="color:#4472c4" %)** AT+STOPBIT=1** (%%) ~/~/ Option:1 for 1 bit ; 2 for 2 bits
1541
1542
1543 * **Set DATABIT**
1544
1545 (% style="color:#4472c4" %)** AT+DATABIT=8** (%%) ~/~/ Option:7 for 7 bits ; 8 for 8 bits
1546
1547
1548 * (((
1549 (% style="color:#037691" %)**Downlink Payload:**
1550 )))
1551
1552 (((
1553 **Example:**
1554 )))
1555
1556 (((
1557 A7 01 00 60   same as AT+BAUDR=9600
1558 )))
1559
1560 (((
1561 A7 01 04 80  same as AT+BAUDR=115200
1562 )))
1563
1564 (((
1565 A7 02 aa: Same as  AT+PARITY=aa  (aa value: 00 , 01 or 02)
1566 )))
1567
1568 (((
1569 A7 03 aa: Same as  AT+STOPBIT=aa  (aa value: 01 or 02)
1570 )))
1571
1572 A7 04 07: Same as  AT+DATABIT=7
1573
1574 A7 04 08: Same as  AT+DATABIT=8
1575
1576
1577 === 3.3.10 Cut data separation processing ===
1578
1579
1580 AT+NEWLINE command, which only takes effect when AT+DATAUP=1 or AT+DATAUP=1, timeout.
1581
1582 When not set, each part of AT+DATAUP is sent according to the maximum number of bytes of DR.
1583
1584 When setting, each part of AT+DATAUP is sent according to the value set by AT+NEWLINE.
1585
1586
1587 * (((
1588 (% style="color:#037691" %)** AT Command:**
1589 )))
1590
1591 (% style="color:#4472c4" %)//**AT+NEWLINE=ALL**//(%%)//   //The data cut out by each AT+COMMANDx command is sent separately as an uplink.
1592
1593 (% style="color:#4472c4" %)//**AT+NEWLINE=ALL**//(%%)//   equal:  (% style="color:#4472c4" %)**AT+NEWLINE=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15**//
1594
1595
1596 (% style="color:#4472c4" %)//**AT+NEWLINE=a+b+c**//(%%)//  //The data returned by all commands is divided into three parts, COMMAND(1~~a) is the first part, COMMAND(a+1~~b) is the second part,COMMAND(b+1~~c) is the third part.
1597
1598
1599 (% style="color:#4472c4" %)//**AT+NEWLINE=NULL**//(%%)//  //Turn off the functionality of this AT command.
1600
1601
1602 * (((
1603 (% style="color:#037691" %)** Downlink Payload:**
1604 )))
1605
1606 //AT+NEWLINE=ALL  ~-~-->  (% style="color:#4472c4" %)**0xA5 01**//
1607
1608 // AT+NEWLINE= NULL  ~-~-->  (% style="color:#4472c4" %)**0xA5 00**//
1609
1610 //AT+NEWLINE= a+b+c   ~-~-->  (% style="color:#4472c4" %)**0xA5 number of bytes a b c**//
1611
1612 //AT+NEWLINE= 1+5+15 ~-~-->  (% style="color:#4472c4" %)**0xA5 03 01 05 0F**//
1613
1614
1615 === 3.3.11 Control output power duration ===
1616
1617
1618 (((
1619 User can set the output power duration before each sampling.
1620 )))
1621
1622 * (((
1623 (% style="color:#037691" %)**AT Command:**
1624 )))
1625
1626 (((
1627 **Example:**
1628 )))
1629
1630 (((
1631 (% style="color:#4472c4" %)** AT+3V3T=1000**(%%)  ~/~/ 3V3 output power will open 1s before each sampling.
1632
1633 (% style="color:#4472c4" %)** AT+3V3T=0**(%%)  ~/~/ Normally open 3V3 power supply.
1634
1635 (% style="color:#4472c4" %)** AT+3V3T=65535**(%%)  ~/~/ Normally closed 3V3 power supply.
1636 )))
1637
1638 (((
1639 (% style="color:#4472c4" %)** AT+5VT=1000**  (%%) ~/~/ +5V output power will open 1s before each sampling.
1640 )))
1641
1642 (% style="color:#4472c4" %)** AT+5VT=0**(%%)  ~/~/ Normally closed +5V power supply.
1643
1644 (% style="color:#4472c4" %)** AT+5VT=65535**(%%)  ~/~/ Normally open +5V power supply.
1645
1646
1647 * (((
1648 (% style="color:#037691" %)**LoRaWAN Downlink Command:**
1649 )))
1650
1651 (((
1652 (% style="color:#4472c4" %)** 07 01 aa bb** (%%): Same as AT+5VT=(aa bb)
1653 )))
1654
1655 (((
1656 (% style="color:#4472c4" %)** 07 02 aa bb** (%%): Same as AT+3V3T=(aa bb)
1657 )))
1658
1659 (% style="color:#4472c4" %)** 07 03 01** (%%): Same as AT+3V3T=0
1660
1661 (% style="color:#4472c4" %)** 07 03 00** (%%): Same as AT+3V3T=65535
1662
1663 (% style="color:#4472c4" %)** 07 04 01** (%%): Same as AT+5VT=65535
1664
1665 (% style="color:#4472c4" %)** 07 03 00** (%%): Same as AT+5VT=0
1666
1667
1668 === 3.3.12 Encrypted payload ===
1669
1670
1671 * (((
1672 (% style="color:#037691" %)**AT Command:**
1673 )))
1674
1675 (% style="color:#4472c4" %)** AT+DECRYPT=1 **(%%)** **~/~/ The payload is uploaded without encryption
1676
1677 (% style="color:#4472c4" %)** AT+DECRYPT=0   **(%%)~/~/  Encrypt when uploading payload (default)
1678
1679
1680 === 3.3.13 Get sensor value ===
1681
1682
1683 * (((
1684 (% style="color:#037691" %)**AT Command:**
1685 )))
1686
1687 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=0 **(%%)** **~/~/ The serial port gets the reading of the current sensor
1688
1689 (% style="color:#4472c4" %)** AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1690
1691
1692 === 3.3.14 Resets the downlink packet count ===
1693
1694
1695 * (((
1696 (% style="color:#037691" %)**AT Command:**
1697 )))
1698
1699 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=0    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
1700
1701 (% style="color:#4472c4" %)** AT+DISFCNTCHECK=1    **(%%) ~/~/  When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1702
1703
1704 === 3.3.15 When the limit bytes are exceeded, upload in batches ===
1705
1706
1707 * (((
1708 (% style="color:#037691" %)**AT Command:**
1709 )))
1710
1711 (% style="color:#4472c4" %)** AT+DISMACANS=0**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
1712
1713 (% style="color:#4472c4" %)** AT+DISMACANS=1**  (%%) ~/~/  When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of the DR, the node will ignore the MACANS and not reply, and only upload the payload part.
1714
1715
1716 * (((
1717 (% style="color:#037691" %)**Downlink Payload**
1718 )))
1719
1720 (% style="color:#4472c4" %)** 0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1721
1722
1723 === 3.3.16 Copy downlink to uplink ===
1724
1725
1726 * (((
1727 (% style="color:#037691" %)**AT Command:**
1728 )))
1729
1730 (% style="color:#4472c4" %)** AT+RPL=5** (%%) ~/~/ After receiving the package from the server, it will immediately upload the content of the package to the server, the port number is 100.
1731
1732
1733 Example:**aa xx xx xx xx**         ~/~/ aa indicates whether the configuration has changed, 00 is yes, 01 is no; xx xx xx xx are the bytes sent.
1734
1735
1736 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173747-6.png?width=1124&height=165&rev=1.1||alt="image-20220823173747-6.png"]]
1737
1738
1739
1740 For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1741
1742
1743 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1744
1745
1746 For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
1747
1748
1749 === 3.3.17 Query version number and frequency band ===
1750
1751
1752 * (((
1753 (% style="color:#037691" %)**Downlink Payload: 26 01  **(%%) ~/~/ Downlink 26 01 can query device upload frequency, frequency band, software version number, battery.
1754 )))
1755
1756 **Example:**
1757
1758 [[image:image-20231019173852-1.png||height="64" width="1161"]]
1759
1760
1761 == 3.4 +3V3 Output ==
1762
1763
1764 (((
1765 RS485-LB/LS has a Controllable +3V3 output, user can use this output to power external sensor.
1766 )))
1767
1768 (((
1769 The +3V3 output will be valid for every sampling. RS485-LB/LS will enable +3V3 output before all sampling and disable the +3V3 after all sampling. 
1770 )))
1771
1772 (((
1773 The +3V3 output time can be controlled by AT Command.
1774 )))
1775
1776
1777 (((
1778 (% style="color:#037691" %)**AT+3V3T=1000**
1779 )))
1780
1781
1782 (((
1783 Means set +3v3 valid time to have 1000ms. So, the real +3v3 output will actually have 1000ms + sampling time for other sensors.
1784 )))
1785
1786 (((
1787 By default, the AT+3V3T=0. This is a special case, means the +3V3 output is always on at any time
1788 )))
1789
1790
1791 == 3.5 +5V Output ==
1792
1793
1794 (((
1795 RS485-LB/LS has a Controllable +5V output, user can use this output to power external sensor.
1796 )))
1797
1798 (((
1799 The +5V output will be valid for every sampling. RS485-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
1800 )))
1801
1802 (((
1803 The 5V output time can be controlled by AT Command.
1804 )))
1805
1806 (((
1807
1808 )))
1809
1810 (((
1811 (% style="color:#037691" %)**AT+5VT=1000**
1812 )))
1813
1814
1815 (((
1816 Means set 5V valid time to have 1000ms. So, the real 5V output will actually have 1000ms + sampling time for other sensors.
1817 )))
1818
1819 (((
1820 By default, the AT+5VT=0. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
1821 )))
1822
1823
1824 == 3.6 Switch Jumper ==
1825
1826
1827 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:463px" %)
1828 |=(% style="width: 123px;background-color:#4F81BD;color:white" %)**Switch Jumper**|=(% style="width: 340px;background-color:#4F81BD;color:white" %)**Feature**
1829 |(% style="width:123px" %)SW1|(% style="width:336px" %)ISP position: Upgrade firmware via UART
1830 Flash position: Configure device, check running status.
1831 |(% style="width:123px" %)SW2|(% style="width:336px" %)5V position: set to compatible with 5v I/O.
1832 3.3v position: set to compatible with 3.3v I/O.,
1833
1834 (((
1835 (% style="color:blue" %)** +3.3V**(%%): is always ON
1836 )))
1837
1838 (((
1839 (% style="color:blue" %)** +5V**(%%): Only open before every sampling. The time is by default, it is (% style="color:#4472c4" %)** AT+5VT=0**(%%).
1840
1841 (% style="color:red" %)**Note: If SW2 is at +5V and AT+5VT=0, work mode 2 will not be able to send data.**
1842 )))
1843
1844
1845 == 3.7 Battery & Power Consumption ==
1846
1847
1848 RS485-LB use ER26500 + SPC1520 battery pack and RS485-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1849
1850 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1851
1852
1853 = 4. Case Study =
1854
1855
1856 User can check this URL for some case studies:  [[APP RS485 COMMUNICATE WITH SENSORS>>doc:Main.Application Note \: Communicate with Different Sensors ----- RS485-LN RS485-BL.WebHome]]
1857
1858
1859 = 5. OTA Firmware update =
1860
1861
1862 (% class="wikigeneratedid" %)
1863 **User can change firmware RS485-LB/LS to:**
1864
1865 * Change Frequency band/ region.
1866 * Update with new features.
1867 * Fix bugs.
1868
1869 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/nqaaag2ipm07txf/AAC_angqlhA0yQmiWVNbEEdya?dl=0]]**
1870
1871 **Methods to Update Firmware:**
1872
1873 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1874
1875 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1876
1877 = 6. FAQ =
1878
1879 == 6.1 How to upgrade the image? ==
1880
1881
1882 (((
1883 The RS485-LB/LS LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to RS485-LB/LS to:
1884 )))
1885
1886 * (((
1887 Support new features
1888 )))
1889 * (((
1890 For bug fix
1891 )))
1892 * (((
1893 Change LoRaWAN bands.
1894 )))
1895
1896 (((
1897 Below shows the hardware connection for how to upload an image to RS485-LB/LS:
1898 )))
1899
1900 [[image:http://8.211.40.43/xwiki/bin/download/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/WebHome/%E5%BE%AE%E4%BF%A1%E5%9B%BE%E7%89%87_20230809144604.jpg?width=791&height=673&rev=1.1||alt="微信图片_20230809144604.jpg"]]
1901
1902
1903 Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1904
1905
1906 == 6.2 How to change the LoRa Frequency Bands/Region? ==
1907
1908
1909 (((
1910 User can follow the introduction for [[how to upgrade image>>||anchor="H6.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
1911 )))
1912
1913
1914 == 6.3 How many RS485-Slave can RS485-LB/LS connects? ==
1915
1916
1917 (((
1918 The RS485-LB/LS can support max 32 RS485 devices. Each uplink command of RS485-LB/LS can support max 16 different RS485 command. So RS485-LB/LS can support max 16 RS485 devices pre-program in the device for uplink. For other devices no pre-program, user can use the downlink message (type code 0xA8) to poll their info.
1919 )))
1920
1921
1922 == 6.4 How to Use RS485-LB/LS  to connect to RS232 devices? ==
1923
1924
1925 [[Use RS485-LB/LS or RS485-LN to connect to RS232 devices. - DRAGINO>>http://wiki.dragino.com/xwiki/bin/view/Main/RS485%20to%20RS232/]]
1926
1927
1928 == 6.5 How to judge whether there is a problem with the set COMMAND ==
1929
1930 === 6.5.1 Introduce: ===
1931
1932
1933 Users can use below the structure to fast debug the communication between RS485-LB/LS and RS485-LN. The principle is to put the PC in the RS485 network and sniff the packet between Modbus MTU and RS485-LB/LS/LN. We can (% style="color:blue" %)**use this way to:**
1934
1935 1. Test if Modbus-MTU works with PC commands.
1936 1. Check if RS485-LN sent the expected command to Mobus-MTU
1937 1. Check if Modbus-MTU return back the expected result to RS485-LN.
1938 1. If both b) and c) has issue, we can compare PC's output and RS485-LN output.
1939
1940 [[image:image-20230718135819-4.png||height="342" width="638"]]
1941
1942
1943 (% style="color:blue" %)**Example Connection: **
1944
1945 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-2.png?rev=1.1||alt="image-20221130104310-2.png"]]
1946
1947
1948 === 6.5.2 Set up PC to monitor RS485 network With Serial tool ===
1949
1950
1951 (% style="color:red" %)**Note: Receive and send set to hex mode**
1952
1953 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-3.png?width=714&height=616&rev=1.1||alt="image-20221130104310-3.png" height="616" width="714"]]
1954
1955
1956 === 6.5.3 With ModRSsim2: ===
1957
1958
1959 (% style="color:blue" %)**(1) Select serial port MODBUS RS-232**
1960
1961 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-4.png?width=865&height=390&rev=1.1||alt="image-20221130104310-4.png" height="390" width="865"]]
1962
1963
1964 (% style="color:blue" %)**(2) Click the serial port icon**
1965
1966 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-5.png?width=870&height=392&rev=1.1||alt="image-20221130104310-5.png" height="392" width="870"]]
1967
1968
1969 (% style="color:blue" %)**(3) After selecting the correct serial port and baud rate, click ok**
1970
1971 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-6.png?rev=1.1||alt="image-20221130104310-6.png"]]
1972
1973
1974 (% style="color:blue" %)**(4) Click the comms.**
1975
1976 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-7.png?width=835&height=376&rev=1.1||alt="image-20221130104310-7.png" height="376" width="835"]]
1977
1978 Run RS485-LN/BL command and monitor if it is correct.
1979
1980
1981 === 6.5.4 Example – Test the CFGDEV command ===
1982
1983
1984 RS485-LN sent below command:
1985
1986 (% style="color:blue" %)**AT+CFGDEV=01 03 20 00 01 85 c0,1**(%%) to RS485 network, and PC is able to get this command and return commands from MTU to show in the serial tool.
1987
1988 We can see the output from the Serial port tool to analyze. And check if they are expected result.
1989
1990 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-8.png?width=797&height=214&rev=1.1||alt="image-20221130104310-8.png" height="214" width="797"]]
1991
1992
1993 We can also use ModRSsim2 to see the output.
1994
1995 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-9.png?width=729&height=531&rev=1.1||alt="image-20221130104310-9.png" height="531" width="729"]]
1996
1997
1998 === 6.5.5 Example – Test CMD command sets. ===
1999
2000
2001 Run (% style="color:blue" %)**AT+SENSORVALUE=1**(%%) to test the CMD commands set in RS485-LN.
2002
2003 (% style="color:blue" %)**Serial port tool:**
2004
2005 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-10.png?width=844&height=339&rev=1.1||alt="image-20221130104310-10.png" height="339" width="844"]]
2006
2007
2008 (% style="color:blue" %)**ModRSsim2:**
2009
2010 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-11.png?width=962&height=281&rev=1.1||alt="image-20221130104310-11.png" height="281" width="962"]]
2011
2012
2013 === 6.5.6 Test with PC ===
2014
2015
2016 If there is still have problem to set up correctly the commands between RS485-LN and MTU. User can test the correct RS485 command set in PC and compare with the RS485 command sent out via RS485-LN. as long as both commands are the same, the MTU should return correct result.
2017
2018 Or User can send the working commands set in PC serial tool to Dragino Support to check what should be configured in RS485-LN.
2019
2020 (% style="color:blue" %)**Connection method:**
2021
2022 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-12.png?rev=1.1||alt="image-20221130104310-12.png"]]
2023
2024
2025 (% style="color:blue" %)**Link situation:**
2026
2027 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-13.png?width=486&height=458&rev=1.1||alt="image-20221130104310-13.png" height="458" width="486"]]
2028
2029
2030 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LN%20%E2%80%93%20RS485%20to%20LoRaWAN%20Converter/WebHome/image-20221130104310-14.png?width=823&height=371&rev=1.1||alt="image-20221130104310-14.png" height="371" width="823"]]
2031
2032
2033 == 6.6 Where to get the decoder for RS485-LB/LS? ==
2034
2035
2036 The decoder for RS485-LB/LS needs to be written by yourself. Because the sensor to which the user is connected is custom, the read device data bytes also need custom parsing, so there is no universal decoder. We can only provide [[templates>>https://github.com/dragino/dragino-end-node-decoder]] for decoders (no intermediate data parsing part involved)
2037
2038
2039
2040 = 7. Trouble Shooting =
2041
2042 == 7.1 Downlink doesn't work, how to solve it? ==
2043
2044
2045 Please see this link for debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome]]
2046
2047
2048 == 7.2 Why I can't join TTN V3 in US915 /AU915 bands? ==
2049
2050
2051 It might about the channels mapping. Please see for detail: [[Notice of Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2052
2053
2054 == 7.3 Possible reasons why the device is unresponsive: ==
2055
2056 ~1. Check whether the battery voltage is lower than 2.8V
2057 2. Check whether the jumper of the device is correctly connected
2058
2059 [[image:image-20240330172639-1.png||height="308" width="526"]]
2060 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
2061
2062 [[image:image-20240330172716-2.png||height="294" width="523"]]
2063
2064
2065 = 8. Order Info =
2066
2067
2068 **Part Number: (% style="color:blue" %)RS485-LB-XX-YY(%%) or (% style="color:blue" %)RS485-LS-XX-YY(%%)**
2069
2070 (% style="color:blue" %)**XX:**
2071
2072 * (% style="color:red" %)**EU433**(%%):  frequency bands EU433
2073 * (% style="color:red" %)**EU868**(%%):  frequency bands EU868
2074 * (% style="color:red" %)**KR920**(%%):  frequency bands KR920
2075 * (% style="color:red" %)**CN470**(%%):  frequency bands CN470
2076 * (% style="color:red" %)**AS923**(%%):  frequency bands AS923
2077 * (% style="color:red" %)**AU915**(%%):  frequency bands AU915
2078 * (% style="color:red" %)**US915**(%%):  frequency bands US915
2079 * (% style="color:red" %)**IN865**(%%):  frequency bands IN865
2080 * (% style="color:red" %)**RU864**(%%):  frequency bands RU864
2081 * (% style="color:red" %)**KZ865**(%%):  frequency bands KZ865
2082
2083 (% style="color:blue" %)**YY:**(%%)**  Hole Option**
2084
2085 (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
2086 (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
2087
2088 = 9. Packing Info =
2089
2090
2091 (((
2092 **Package Includes**:
2093 )))
2094
2095 * (((
2096 RS485-LB or RS485-LS x 1
2097 )))
2098 * (((
2099 Stick Antenna for LoRa RF part x 1
2100 )))
2101 * (((
2102 Program cable x 1
2103 )))
2104
2105 (((
2106 **Dimension and weight**:
2107 )))
2108
2109 * (((
2110 Device Size: cm
2111 )))
2112 * (((
2113 Device Weight: g
2114 )))
2115 * (((
2116 Package Size / pcs : cm
2117 )))
2118 * (((
2119 Weight / pcs : g
2120
2121
2122
2123 )))
2124
2125 = 10. Support =
2126
2127
2128 * (((
2129 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2130 )))
2131 * (((
2132 Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2133
2134
2135
2136 )))
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0