Show last authors
1
2
3
4 (% style="text-align:center" %)
5 [[image:image-20240109154731-4.png||height="671" width="945"]]
6
7
8
9
10
11
12
13 **Table of Contents :**
14
15 {{toc/}}
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 What is LoRaWAN Pressure Sensor ==
25
26
27 (((
28 The Dragino PS-LB/LS series sensors are (% style="color:blue" %)**LoRaWAN Pressure Sensor**(%%) for Internet of Things solution. PS-LB/LS can measure Air, Water pressure and liquid level and upload the sensor data via wireless to LoRaWAN IoT server.
29 )))
30
31 (((
32 The PS-LB/LS series sensors include (% style="color:blue" %)**Thread Installation Type**(%%) and (% style="color:blue" %)**Immersion Type**(%%), it supports different pressure range which can be used for different measurement requirement.
33 )))
34
35 (((
36 The LoRa wireless technology used in PS-LB/LS allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 )))
38
39 (((
40 PS-LB/LS supports BLE configure and wireless OTA update which make user easy to use.
41 )))
42
43 (((
44 PS-LB/LS is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery **(%%)or (% style="color:blue" %)**solar powered + li-on battery **(%%), it is designed for long term use up to 5 years.
45 )))
46
47 (((
48 Each PS-LB/LS is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
49 )))
50
51 [[image:1675071321348-194.png]]
52
53
54 == 1.2 ​Features ==
55
56
57 * LoRaWAN 1.0.3 Class A
58 * Ultra-low power consumption
59 * Measure air / gas or water pressure
60 * Different pressure range available
61 * Thread Installation Type or Immersion Type
62 * Monitor Battery Level
63 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
64 * Support Bluetooth v5.1 and LoRaWAN remote configure
65 * Support wireless OTA update firmware
66 * Uplink on periodically
67 * Downlink to change configure
68 * Controllable 3.3v,5v and 12v output to power external sensor
69 * 8500mAh Li/SOCl2 Battery (PS-LB)
70 * Solar panel + 3000mAh Li-on battery (PS-LS)
71
72 == 1.3 Specification ==
73
74
75 (% style="color:#037691" %)**Micro Controller:**
76
77 * MCU: 48Mhz ARM
78 * Flash: 256KB
79 * RAM: 64KB
80
81 (% style="color:#037691" %)**Common DC Characteristics:**
82
83 * Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
84 * Operating Temperature: -40 ~~ 85°C
85
86 (% style="color:#037691" %)**LoRa Spec:**
87
88 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz,Band 2 (LF): 410 ~~ 528 Mhz
89 * Max +22 dBm constant RF output vs.
90 * RX sensitivity: down to -139 dBm.
91 * Excellent blocking immunity
92
93 (% style="color:#037691" %)**Current Input Measuring :**
94
95 * Range: 0 ~~ 20mA
96 * Accuracy: 0.02mA
97 * Resolution: 0.001mA
98
99 (% style="color:#037691" %)**Voltage Input Measuring:**
100
101 * Range: 0 ~~ 30v
102 * Accuracy: 0.02v
103 * Resolution: 0.001v
104
105 (% style="color:#037691" %)**Battery:**
106
107 * Li/SOCI2 un-chargeable battery
108 * Capacity: 8500mAh
109 * Self-Discharge: <1% / Year @ 25°C
110 * Max continuously current: 130mA
111 * Max boost current: 2A, 1 second
112
113 (% style="color:#037691" %)**Power Consumption**
114
115 * Sleep Mode: 5uA @ 3.3v
116 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
117
118 == 1.4 Probe Types ==
119
120 === 1.4.1 Thread Installation Type ===
121
122
123 [[image:1675071448299-229.png]]
124
125 * Hersman Pressure Transmitter
126 * Measuring Range: -0.1 ~~ 0 ~~ 60MPa, see order info.
127 * Accuracy: 0.2% F.S
128 * Long-Term Stability: 0.2% F.S ±0.05%
129 * Overload 200% F.S
130 * Zero Temperature Drift: 0.03% FS/℃(≤100Kpa), 0.02%FS/℃(>100Kpa)
131 * FS Temperature Drift: 0.003% FS/℃(≤100Kpa), 0.002%FS/℃(>100Kpa)
132 * Storage temperature: -30℃~~80℃
133 * Operating temperature: -20℃~~60℃
134 * Connector Type: Various Types, see order info
135
136 === 1.4.2 Immersion Type ===
137
138
139 [[image:image-20240109160445-5.png||height="284" width="214"]]
140
141 * Immersion Type, Probe IP Level: IP68
142 * Measuring Range: Measure range can be customized, up to 100m.
143 * Accuracy: 0.2% F.S
144 * Long-Term Stability: ±0.2% F.S / Year
145 * Storage temperature: -30℃~~80℃
146 * Operating temperature: 0℃~~50℃
147 * Material: 316 stainless steels
148
149 == 1.5 Application and Installation ==
150
151 === 1.5.1 Thread Installation Type ===
152
153
154 (% style="color:blue" %)**Application:**
155
156 * Hydraulic Pressure
157 * Petrochemical Industry
158 * Health and Medical
159 * Food & Beverage Processing
160 * Auto-controlling house
161 * Constant Pressure Water Supply
162 * Liquid Pressure measuring
163
164 Order the suitable thread size and install to measure the air / liquid pressure
165
166 [[image:1675071670469-145.png]]
167
168
169 === 1.5.2 Immersion Type ===
170
171
172 (% style="color:blue" %)**Application:**
173
174 Liquid & Water Pressure / Level detect.
175
176 [[image:1675071725288-579.png]]
177
178
179 The Immersion Type pressure sensor is shipped with the probe and device separately. When user got the device, below is the wiring to for connect the probe to the device.
180
181 The Immersion Type Sensor has different variant which defined by Ixx. For example, this means two points:
182
183 * Cable Length: 10 Meters
184 * Water Detect Range: 0 ~~ 10 Meters.
185
186 [[image:1675071736646-450.png]]
187
188
189 [[image:1675071776102-240.png]]
190
191
192 == 1.6 Sleep mode and working mode ==
193
194
195 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
196
197 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
198
199
200 == 1.7 Button & LEDs ==
201
202
203 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]](% style="display:none" %)
204
205 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
206 |=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
207 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT between 1s < time < 3s|(% style="background-color:#f2f2f2; width:117px" %)Send an uplink|(% style="background-color:#f2f2f2; width:225px" %)(((
208 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
209 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
210 )))
211 |(% style="background-color:#f2f2f2; width:167px" %)Pressing ACT for more than 3s|(% style="background-color:#f2f2f2; width:117px" %)Active Device|(% style="background-color:#f2f2f2; width:225px" %)(((
212 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
213 (% style="background-color:#f2f2f2; color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
214 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
215 )))
216 |(% style="background-color:#f2f2f2; width:167px" %)Fast press ACT 5 times.|(% style="background-color:#f2f2f2; width:117px" %)Deactivate Device|(% style="background-color:#f2f2f2; width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means PS-LB is in Deep Sleep Mode.
217
218 == 1.8 Pin Mapping ==
219
220
221 [[image:1675072568006-274.png]]
222
223
224 == 1.9 BLE connection ==
225
226
227 PS-LB/LS support BLE remote configure.
228
229
230 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
231
232 * Press button to send an uplink
233 * Press button to active device.
234 * Device Power on or reset.
235
236 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
237
238
239 == 1.10 Mechanical ==
240
241 === 1.10.1 for LB version(% style="display:none" %) (%%) ===
242
243
244 [[image:image-20240109160800-6.png]]
245
246
247 === 1.10.2 for LS version ===
248
249
250 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/WebHome/image-20231231203439-3.png?width=886&height=385&rev=1.1||alt="image-20231231203439-3.png"]]
251
252
253 = 2. Configure PS-LB/LS to connect to LoRaWAN network =
254
255 == 2.1 How it works ==
256
257
258 The PS-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and activate the PS-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
259
260
261 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
262
263
264 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
265
266
267 [[image:1675144005218-297.png]]
268
269
270 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
271
272
273 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from PS-LB/LS.
274
275 Each PS-LB/LS is shipped with a sticker with the default device EUI as below:
276
277 [[image:image-20230426085320-1.png||height="234" width="504"]]
278
279
280 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
281
282
283 (% style="color:blue" %)**Register the device**
284
285 [[image:1675144099263-405.png]]
286
287
288 (% style="color:blue" %)**Add APP EUI and DEV EUI**
289
290 [[image:1675144117571-832.png]]
291
292
293 (% style="color:blue" %)**Add APP EUI in the application**
294
295
296 [[image:1675144143021-195.png]]
297
298
299 (% style="color:blue" %)**Add APP KEY**
300
301 [[image:1675144157838-392.png]]
302
303 (% style="color:blue" %)**Step 2:**(%%) Activate on PS-LB/LS
304
305
306 Press the button for 5 seconds to activate the PS-LB/LS.
307
308 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
309
310 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
311
312
313 == 2.3 ​Uplink Payload ==
314
315 === 2.3.1 Device Status, FPORT~=5 ===
316
317
318 Include device configure status. Once PS-LB/LS Joined the network, it will uplink this message to the server.
319
320 Users can also use the downlink command(0x26 01) to ask PS-LB/LS to resend this uplink.
321
322
323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
324 |(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
325 |(% style="background-color:#f2f2f2; width:103px" %)**Size (bytes)**|(% style="background-color:#f2f2f2; width:72px" %)**1**|(% style="background-color:#f2f2f2" %)**2**|(% style="background-color:#f2f2f2; width:91px" %)**1**|(% style="background-color:#f2f2f2; width:86px" %)**1**|(% style="background-color:#f2f2f2; width:44px" %)**2**
326 |(% style="background-color:#f2f2f2; width:103px" %)**Value**|(% style="background-color:#f2f2f2; width:72px" %)Sensor Model|(% style="background-color:#f2f2f2" %)Firmware Version|(% style="background-color:#f2f2f2; width:91px" %)Frequency Band|(% style="background-color:#f2f2f2; width:86px" %)Sub-band|(% style="background-color:#f2f2f2; width:44px" %)BAT
327
328 Example parse in TTNv3
329
330 [[image:1675144504430-490.png]]
331
332
333 (% style="color:#037691" %)**Sensor Model**(%%): For PS-LB/LS, this value is 0x16
334
335 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
336
337 (% style="color:#037691" %)**Frequency Band**:
338
339 *0x01: EU868
340
341 *0x02: US915
342
343 *0x03: IN865
344
345 *0x04: AU915
346
347 *0x05: KZ865
348
349 *0x06: RU864
350
351 *0x07: AS923
352
353 *0x08: AS923-1
354
355 *0x09: AS923-2
356
357 *0x0a: AS923-3
358
359 *0x0b: CN470
360
361 *0x0c: EU433
362
363 *0x0d: KR920
364
365 *0x0e: MA869
366
367
368 (% style="color:#037691" %)**Sub-Band**:
369
370 AU915 and US915:value 0x00 ~~ 0x08
371
372 CN470: value 0x0B ~~ 0x0C
373
374 Other Bands: Always 0x00
375
376
377 (% style="color:#037691" %)**Battery Info**:
378
379 Check the battery voltage.
380
381 Ex1: 0x0B45 = 2885mV
382
383 Ex2: 0x0B49 = 2889mV
384
385
386 === 2.3.2 Sensor value, FPORT~=2 ===
387
388
389 Uplink payload includes in total 9 bytes.
390
391
392 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
393 |(% style="background-color:#4f81bd; color:white; width:97px" %)(((
394 **Size(bytes)**
395 )))|(% style="background-color:#4f81bd; color:white; width:48px" %)**2**|(% style="background-color:#4f81bd; color:white; width:71px" %)**2**|(% style="background-color:#4f81bd; color:white; width:98px" %)**2**|(% style="background-color:#4f81bd; color:white; width:73px" %)**2**|(% style="background-color:#4f81bd; color:white; width:122px" %)**1**
396 |(% style="width:97px" %)Value|(% style="width:48px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:71px" %)[[Probe Model>>||anchor="H2.3.4ProbeModel"]]|(% style="width:98px" %)[[0 ~~~~ 20mA value>>||anchor="H2.3.507E20mAvalue28IDC_IN29"]]|(% style="width:73px" %)[[0 ~~~~ 30v value>>||anchor="H2.3.607E30Vvalue28pinVDC_IN29"]]|(% style="width:122px" %)[[IN1 &IN2 Interrupt  flag>>||anchor="H2.3.7IN126IN226INTpin"]]
397
398 [[image:1675144608950-310.png]]
399
400
401 === 2.3.3 Battery Info ===
402
403
404 Check the battery voltage for PS-LB/LS.
405
406 Ex1: 0x0B45 = 2885mV
407
408 Ex2: 0x0B49 = 2889mV
409
410
411 === 2.3.4 Probe Model ===
412
413
414 PS-LB/LS has different kind of probe, 4~~20mA represent the full scale of the measuring range. So a 12mA output means different meaning for different probe. 
415
416
417 **For example.**
418
419 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
420 |(% style="background-color:#4f81bd; color:white" %)**Part Number**|(% style="background-color:#4f81bd; color:white" %)**Probe Used**|(% style="background-color:#4f81bd; color:white" %)**4~~20mA scale**|(% style="background-color:#4f81bd; color:white" %)**Example: 12mA meaning**
421 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I3|(% style="background-color:#f2f2f2" %)immersion type with 3 meters cable|(% style="background-color:#f2f2f2" %)0~~3 meters|(% style="background-color:#f2f2f2" %)1.5 meters pure water
422 |(% style="background-color:#f2f2f2" %)PS-LB/LS-I5|(% style="background-color:#f2f2f2" %)immersion type with 5 meters cable|(% style="background-color:#f2f2f2" %)0~~5 meters|(% style="background-color:#f2f2f2" %)2.5 meters pure water
423 |(% style="background-color:#f2f2f2" %)PS-LB/LS-T20-B|(% style="background-color:#f2f2f2" %)T20 threaded probe|(% style="background-color:#f2f2f2" %)0~~1MPa|(% style="background-color:#f2f2f2" %)0.5MPa air / gas or water pressure
424
425 The probe model field provides the convenient for server to identical how it should parse the 4~~20mA sensor value and get the correct value.
426
427
428 === 2.3.5 0~~20mA value (IDC_IN) ===
429
430
431 The output value from **Pressure Probe**, use together with Probe Model to get the pressure value or water level.
432
433 (% style="color:#037691" %)**Example**:
434
435 27AE(H) = 10158 (D)/1000 = 10.158mA.
436
437
438 Instead of pressure probe, User can also connect a general 4~~20mA in this port to support different types of 4~~20mA sensors. below is the connection example:
439
440 [[image:image-20230225154759-1.png||height="408" width="741"]]
441
442
443 === 2.3.6 0~~30V value ( pin VDC_IN) ===
444
445
446 Measure the voltage value. The range is 0 to 30V.
447
448 (% style="color:#037691" %)**Example**:
449
450 138E(H) = 5006(D)/1000= 5.006V
451
452
453 === 2.3.7 IN1&IN2&INT pin ===
454
455
456 IN1 and IN2 are used as digital input pins.
457
458 (% style="color:#037691" %)**Example**:
459
460 09 (H): (0x09&0x08)>>3=1    IN1 pin is high level.
461
462 09 (H): (0x09&0x04)>>2=0    IN2 pin is low level.
463
464
465 This data field shows if this packet is generated by (% style="color:blue" %)**Interrupt Pin** (%%)or not. [[Click here>>||anchor="H3.3.2SetInterruptMode"]] for the hardware and software set up. Note: The Internet Pin is a separate pin in the screw terminal.
466
467 (% style="color:#037691" %)**Example:**
468
469 09 (H): (0x09&0x02)>>1=1    The level of the interrupt pin.
470
471 09 (H): 0x09&0x01=1              0x00: Normal uplink packet.
472
473 0x01: Interrupt Uplink Packet.
474
475
476 === 2.3.8 Sensor value, FPORT~=7 ===
477
478
479 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
480 |(% style="background-color:#4f81bd; color:white; width:65px" %)(((
481 **Size(bytes)**
482 )))|(% style="background-color:#4f81bd; color:white; width:35px" %)**2**|(% style="background-color:#4f81bd; color:white; width:400px" %)**n**
483 |(% style="width:94px" %)Value|(% style="width:43px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:367px" %)(((
484 Voltage value, each 2 bytes is a set of voltage values.
485 )))
486
487 [[image:image-20230220171300-1.png||height="207" width="863"]]
488
489 Multiple sets of data collected are displayed in this form:
490
491 [voltage value1], [voltage value2], [voltage value3],…[voltage value n/2]
492
493
494 === 2.3.9 ​Decode payload in The Things Network ===
495
496
497 While using TTN network, you can add the payload format to decode the payload.
498
499
500 [[image:1675144839454-913.png]]
501
502
503 PS-LB/LS TTN Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
504
505
506 == 2.4 Uplink Interval ==
507
508
509 The PS-LB/LS by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H4.1ChangeUplinkInterval||style="background-color: rgb(255, 255, 255);"]]
510
511
512 == 2.5 Show Data in DataCake IoT Server ==
513
514
515 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
516
517
518 (% style="color:blue" %)**Step 1: **(%%)Be sure that your device is programmed and properly connected to the network at this time.
519
520 (% style="color:blue" %)**Step 2:**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
521
522
523 [[image:1675144951092-237.png]]
524
525
526 [[image:1675144960452-126.png]]
527
528
529 (% style="color:blue" %)**Step 3:**(%%) Create an account or log in Datacake.
530
531 (% style="color:blue" %)**Step 4:** (%%)Create PS-LB/LS product.
532
533 [[image:1675145004465-869.png]]
534
535
536 [[image:1675145018212-853.png]]
537
538
539
540 [[image:1675145029119-717.png]]
541
542
543 (% style="color:blue" %)**Step 5: **(%%)add payload decode
544
545 [[image:1675145051360-659.png]]
546
547
548 [[image:1675145060812-420.png]]
549
550
551 After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
552
553
554 [[image:1675145081239-376.png]]
555
556
557 == 2.6 Frequency Plans ==
558
559
560 The PS-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
561
562 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
563
564
565 == 2.7 ​Firmware Change Log ==
566
567
568 **Firmware download link:**
569
570 [[https:~~/~~/www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0>>url:https://www.dropbox.com/sh/gf1glloczbzz19h/AABbuYI4WY6VdAmpXo6o1V2Ka?dl=0]]
571
572
573 = 3. Configure PS-LB/LS =
574
575 == 3.1 Configure Methods ==
576
577
578 PS-LB/LS supports below configure method:
579
580 * AT Command via Bluetooth Connection (**Recommand Way**): [[BLE Configure Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
581 * AT Command via UART Connection : See [[FAQ>>||anchor="H6.FAQ"]].
582 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>url:http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
583
584 == 3.2 General Commands ==
585
586
587 These commands are to configure:
588
589 * General system settings like: uplink interval.
590 * LoRaWAN protocol & radio related command.
591
592 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
593
594 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
595
596
597 == 3.3 Commands special design for PS-LB/LS ==
598
599
600 These commands only valid for PS-LB/LS, as below:
601
602
603 === 3.3.1 Set Transmit Interval Time ===
604
605
606 Feature: Change LoRaWAN End Node Transmit Interval.
607
608 (% style="color:blue" %)**AT Command: AT+TDC**
609
610 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
611 |=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 160px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Response**
612 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=?|(% style="background-color:#f2f2f2; width:166px" %)Show current transmit Interval|(% style="background-color:#f2f2f2" %)(((
613 30000
614 OK
615 the interval is 30000ms = 30s
616 )))
617 |(% style="background-color:#f2f2f2; width:157px" %)AT+TDC=60000|(% style="background-color:#f2f2f2; width:166px" %)Set Transmit Interval|(% style="background-color:#f2f2f2" %)(((
618 OK
619 Set transmit interval to 60000ms = 60 seconds
620 )))
621
622 (% style="color:blue" %)**Downlink Command: 0x01**
623
624 Format: Command Code (0x01) followed by 3 bytes time value.
625
626 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
627
628 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
629 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
630
631 === 3.3.2 Set Interrupt Mode ===
632
633
634 Feature, Set Interrupt mode for GPIO_EXIT.
635
636 (% style="color:blue" %)**AT Command: AT+INTMOD**
637
638 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
639 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Response**
640 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=?|(% style="background-color:#f2f2f2; width:196px" %)Show current interrupt mode|(% style="background-color:#f2f2f2; width:157px" %)(((
641 0
642 OK
643 the mode is 0 =Disable Interrupt
644 )))
645 |(% style="background-color:#f2f2f2; width:154px" %)AT+INTMOD=2|(% style="background-color:#f2f2f2; width:196px" %)(((
646 Set Transmit Interval
647 0. (Disable Interrupt),
648 ~1. (Trigger by rising and falling edge)
649 2. (Trigger by falling edge)
650 3. (Trigger by rising edge)
651 )))|(% style="background-color:#f2f2f2; width:157px" %)OK
652
653 (% style="color:blue" %)**Downlink Command: 0x06**
654
655 Format: Command Code (0x06) followed by 3 bytes.
656
657 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
658
659 * Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
660 * Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
661
662 === 3.3.3 Set the output time ===
663
664
665 Feature, Control the output 3V3 , 5V or 12V.
666
667 (% style="color:blue" %)**AT Command: AT+3V3T**
668
669 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:474px" %)
670 |=(% style="width: 154px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 201px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
671 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=?|(% style="background-color:#f2f2f2; width:201px" %)Show 3V3 open time.|(% style="background-color:#f2f2f2; width:116px" %)(((
672 0
673 OK
674 )))
675 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=0|(% style="background-color:#f2f2f2; width:201px" %)Normally open 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
676 OK
677 default setting
678 )))
679 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=1000|(% style="background-color:#f2f2f2; width:201px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:116px" %)(((
680 OK
681 )))
682 |(% style="background-color:#f2f2f2; width:154px" %)AT+3V3T=65535|(% style="background-color:#f2f2f2; width:201px" %)Normally closed 3V3 power supply.|(% style="background-color:#f2f2f2; width:116px" %)(((
683 OK
684 )))
685
686 (% style="color:blue" %)**AT Command: AT+5VT**
687
688 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:470px" %)
689 |=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 196px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**Response**
690 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=?|(% style="background-color:#f2f2f2; width:196px" %)Show 5V open time.|(% style="background-color:#f2f2f2; width:114px" %)(((
691 0
692 OK
693 )))
694 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=0|(% style="background-color:#f2f2f2; width:196px" %)Normally closed 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
695 OK
696 default setting
697 )))
698 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=1000|(% style="background-color:#f2f2f2; width:196px" %)Close after a delay of 1000 milliseconds.|(% style="background-color:#f2f2f2; width:114px" %)(((
699 OK
700 )))
701 |(% style="background-color:#f2f2f2; width:155px" %)AT+5VT=65535|(% style="background-color:#f2f2f2; width:196px" %)Normally open 5V power supply.|(% style="background-color:#f2f2f2; width:114px" %)(((
702 OK
703 )))
704
705 (% style="color:blue" %)**AT Command: AT+12VT**
706
707 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:443px" %)
708 |=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 199px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
709 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=?|(% style="background-color:#f2f2f2; width:199px" %)Show 12V open time.|(% style="background-color:#f2f2f2; width:83px" %)(((
710 0
711 OK
712 )))
713 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=0|(% style="background-color:#f2f2f2; width:199px" %)Normally closed 12V power supply.|(% style="background-color:#f2f2f2; width:83px" %)OK
714 |(% style="background-color:#f2f2f2; width:156px" %)AT+12VT=500|(% style="background-color:#f2f2f2; width:199px" %)Close after a delay of 500 milliseconds.|(% style="background-color:#f2f2f2; width:83px" %)(((
715 OK
716 )))
717
718 (% style="color:blue" %)**Downlink Command: 0x07**
719
720 Format: Command Code (0x07) followed by 3 bytes.
721
722 The first byte is which power, the second and third bytes are the time to turn on.
723
724 * Example 1: Downlink Payload: 070101F4  **~-~-->**  AT+3V3T=500
725 * Example 2: Downlink Payload: 0701FFFF   **~-~-->**  AT+3V3T=65535
726 * Example 3: Downlink Payload: 070203E8  **~-~-->**  AT+5VT=1000
727 * Example 4: Downlink Payload: 07020000  **~-~-->**  AT+5VT=0
728 * Example 5: Downlink Payload: 070301F4  **~-~-->**  AT+12VT=500
729 * Example 6: Downlink Payload: 07030000  **~-~-->**  AT+12VT=0
730
731 === 3.3.4 Set the Probe Model ===
732
733
734 Users need to configure this parameter according to the type of external probe. In this way, the server can decode according to this value, and convert the current value output by the sensor into water depth or pressure value.
735
736 (% style="color:blue" %)**AT Command: AT** **+PROBE**
737
738 AT+PROBE=aabb
739
740 When aa=00, it is the water depth mode, and the current is converted into the water depth value; bb is the probe at a depth of several meters.
741
742 When aa=01, it is the pressure mode, which converts the current into a pressure value;
743
744 bb represents which type of pressure sensor it is.
745
746 (A->01,B->02,C->03,D->04,E->05,F->06,G->07,H->08,I->09,J->0A,K->0B,L->0C)
747
748 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
749 |(% style="background-color:#4f81bd; color:white; width:154px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:269px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
750 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=?|(% style="background-color:#f2f2f2; width:269px" %)Get or Set the probe model.|(% style="background-color:#f2f2f2" %)0
751 OK
752 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0003|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 3m type.|(% style="background-color:#f2f2f2" %)OK
753 |(% style="background-color:#f2f2f2; width:154px" %)(((
754 AT+PROBE=000A
755 )))|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 10m type.|(% style="background-color:#f2f2f2" %)OK
756 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0064|(% style="background-color:#f2f2f2; width:269px" %)Set water depth sensor mode, 100m type.|(% style="background-color:#f2f2f2" %)OK
757 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0101|(% style="background-color:#f2f2f2; width:269px" %)Set pressure transmitters mode, first type(A).|(% style="background-color:#f2f2f2" %)OK
758 |(% style="background-color:#f2f2f2; width:154px" %)AT+PROBE=0000|(% style="background-color:#f2f2f2; width:269px" %)Initial state, no settings.|(% style="background-color:#f2f2f2" %)OK
759
760 (% style="color:blue" %)**Downlink Command: 0x08**
761
762 Format: Command Code (0x08) followed by 2 bytes.
763
764 * Example 1: Downlink Payload: 080003  **~-~-->**  AT+PROBE=0003
765 * Example 2: Downlink Payload: 080101  **~-~-->**  AT+PROBE=0101
766
767 === 3.3.5 Multiple collections are one uplink (Since firmware V1.1) ===
768
769
770 Added AT+STDC command to collect the voltage of VDC_INPUT multiple times and upload it at one time.
771
772 (% style="color:blue" %)**AT Command: AT** **+STDC**
773
774 AT+STDC=aa,bb,bb
775
776 (% style="color:#037691" %)**aa:**(%%)
777 **0:** means disable this function and use TDC to send packets.
778 **1:** means enable this function, use the method of multiple acquisitions to send packets.
779 (% style="color:#037691" %)**bb:**(%%) Each collection interval (s), the value is 1~~65535
780 (% style="color:#037691" %)**cc:**(%%)** **the number of collection times, the value is 1~~120
781
782 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
783 |(% style="background-color:#4f81bd; color:white; width:160px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:215px" %)**Function**|(% style="background-color:#4f81bd; color:white" %)**Response**
784 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=?|(% style="background-color:#f2f2f2; width:215px" %)Get the mode of multiple acquisitions and one uplink.|(% style="background-color:#f2f2f2" %)1,10,18
785 OK
786 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=1,10,18|(% style="background-color:#f2f2f2; width:215px" %)Set the mode of multiple acquisitions and one uplink, collect once every 10 seconds, and report after 18 times.|(% style="background-color:#f2f2f2" %)(((
787 Attention:Take effect after ATZ
788
789 OK
790 )))
791 |(% style="background-color:#f2f2f2; width:160px" %)AT+STDC=0, 0,0|(% style="background-color:#f2f2f2; width:215px" %)(((
792 Use the TDC interval to send packets.(default)
793
794
795 )))|(% style="background-color:#f2f2f2" %)(((
796 Attention:Take effect after ATZ
797
798 OK
799 )))
800
801 (% style="color:blue" %)**Downlink Command: 0xAE**
802
803 Format: Command Code (0x08) followed by 5 bytes.
804
805 * Example 1: Downlink Payload: AE 01 02 58 12** ~-~-->**  AT+STDC=1,600,18
806
807 = 4. Battery & Power Consumption =
808
809
810 PS-LB use ER26500 + SPC1520 battery pack and PS-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
811
812 [[**Battery Info & Power Consumption Analyze**>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
813
814
815 = 5. OTA firmware update =
816
817
818 Please see this link for how to do OTA firmware update: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
819
820
821 = 6. FAQ =
822
823 == 6.1 How to use AT Command via UART to access device? ==
824
825
826 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
827
828
829 == 6.2 How to update firmware via UART port? ==
830
831
832 See: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]
833
834
835 == 6.3 How to change the LoRa Frequency Bands/Region? ==
836
837
838 You can follow the instructions for [[how to upgrade image>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]].
839 When downloading the images, choose the required image file for download. ​
840
841
842 == 6.4 How to measure the depth of other liquids other than water? ==
843
844
845 Test the current values at the depth of different liquids and convert them to a linear scale.
846 Replace its ratio with the ratio of water to current in the decoder.
847
848 **Example:**
849
850 Measure the corresponding current of the sensor when the liquid depth is 2.04m and 0.51m.
851
852 **Calculate scale factor:**
853 Use these two data to calculate the current and depth scaling factors:(7.888-5.035)/(2.04-0.51)=1.86470588235294
854
855 **Calculation formula:**
856
857 Use the calibration formula:(Current current - Minimum calibration current)/Scale factor + Minimum actual calibration height
858
859 **Actual calculations:**
860
861 Use this formula to calculate the value corresponding to the current at a depth of 1.5 meters: (6.918-5.035)/1.86470588235294+0.51=1.519810726
862
863 **Error:**
864
865 0.009810726
866
867
868 [[image:image-20240329175044-1.png]]
869
870 = 7. Troubleshooting =
871
872 == 7.1 Water Depth Always shows 0 in payload ==
873
874
875 If your device's IDC_intput_mA is normal, but your reading always shows 0, please refer to the following points:
876
877 ~1. Please set it to mod1
878
879 2. Please set the command [[AT+PROBE>>http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/PS-LB%20--%20LoRaWAN%20Pressure%20Sensor/#H3.3.4SettheProbeModel]] according to the model of your sensor
880
881 3. Check the connection status of the sensor
882
883
884 = 8. Order Info =
885
886
887 [[image:image-20240109172423-7.png]](% style="display:none" %)
888
889
890 = 9. ​Packing Info =
891
892
893 (% style="color:#037691" %)**Package Includes**:
894
895 * PS-LB or PS-LS LoRaWAN Pressure Sensor
896
897 (% style="color:#037691" %)**Dimension and weight**:
898
899 * Device Size: cm
900 * Device Weight: g
901 * Package Size / pcs : cm
902 * Weight / pcs : g
903
904 = 10. Support =
905
906
907 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
908
909 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]].
910
911
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0