Show last authors
1 (% style="text-align:center" %)
2 [[image:1654846127817-788.png]]
3
4 **Contents:**
5
6
7
8
9
10
11
12
13 = 1.  Introduction =
14
15 == 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16
17 (((
18
19
20 (((
21 The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22
23
24 It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25
26
27 The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
28
29
30 LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31
32
33 Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34
35
36 (% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
37 )))
38 )))
39
40
41 [[image:1654847051249-359.png]]
42
43
44
45 == ​1.2  Features ==
46
47 * LoRaWAN 1.0.3 Class A
48 * Ultra low power consumption
49 * Distance Detection by Ultrasonic technology
50 * Flat object range 280mm - 7500mm
51 * Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 * Cable Length : 25cm
53 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 * AT Commands to change parameters
55 * Uplink on periodically
56 * Downlink to change configure
57 * IP66 Waterproof Enclosure
58 * 4000mAh or 8500mAh Battery for long term use
59
60
61 == 1.3  Specification ==
62
63 === 1.3.1  Rated environmental conditions ===
64
65 [[image:image-20220610154839-1.png]]
66
67 **Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
68
69 **b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
70
71
72
73 === 1.3.2  Effective measurement range Reference beam pattern ===
74
75 **(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
76
77
78 [[image:image-20220610155021-2.png||height="377" width="1021"]]
79
80
81
82 **(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
83
84
85 (% style="display:none" %) [[image:image-20220610155021-3.png||height="374" width="1020"]]** **
86
87
88
89 == 1.5 ​ Applications ==
90
91 * Horizontal distance measurement
92 * Liquid level measurement
93 * Parking management system
94 * Object proximity and presence detection
95 * Intelligent trash can management system
96 * Robot obstacle avoidance
97 * Automatic control
98 * Sewer
99 * Bottom water level monitoring
100
101
102 == 1.6  Pin mapping and power on ==
103
104
105 [[image:1654847583902-256.png]]
106
107
108
109 = 2.  Configure LDDS75 to connect to LoRaWAN network =
110
111 == 2.1  How it works ==
112
113 (((
114 The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
115 )))
116
117 (((
118 In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
119 )))
120
121
122
123 == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
124
125 (((
126 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
127 )))
128
129 (((
130 [[image:1654848616367-242.png]]
131 )))
132
133 (((
134 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
135 )))
136
137 (((
138 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
139 )))
140
141 (((
142 Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
143 )))
144
145 [[image:image-20220607170145-1.jpeg]]
146
147
148 For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
149
150 Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
151
152 **Add APP EUI in the application**
153
154 [[image:image-20220610161353-4.png]]
155
156 [[image:image-20220610161353-5.png]]
157
158 [[image:image-20220610161353-6.png]]
159
160
161 [[image:image-20220610161353-7.png]]
162
163
164 You can also choose to create the device manually.
165
166 [[image:image-20220610161538-8.png]]
167
168
169
170 **Add APP KEY and DEV EUI**
171
172 [[image:image-20220610161538-9.png]]
173
174
175
176 (% style="color:blue" %)**Step 2**(%%): Power on LDDS75
177
178
179 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
180
181 [[image:image-20220610161724-10.png]]
182
183
184 (((
185 (% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
186 )))
187
188 [[image:1654849068701-275.png]]
189
190
191
192 == 2.3  ​Uplink Payload ==
193
194 (((
195 LDDS75 will uplink payload via LoRaWAN with below payload format: 
196
197 Uplink payload includes in total 4 bytes.
198 Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
199 )))
200
201 (((
202
203 )))
204
205 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
206 |=(% style="width: 62.5px;" %)(((
207 **Size (bytes)**
208 )))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
209 |(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
210 [[Distance>>||anchor="H2.3.3A0Distance"]]
211
212 (unit: mm)
213 )))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
214 [[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
215 )))|[[Sensor Flag>>path:#Sensor_Flag]]
216
217 [[image:1654850511545-399.png]]
218
219
220
221 === 2.3.1  Battery Info ===
222
223
224 Check the battery voltage for LDDS75.
225
226 Ex1: 0x0B45 = 2885mV
227
228 Ex2: 0x0B49 = 2889mV
229
230
231
232 === 2.3.2  Distance ===
233
234 Get the distance. Flat object range 280mm - 7500mm.
235
236 For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
237
238
239 * If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
240 * If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
241
242
243
244 === 2.3.3  Interrupt Pin ===
245
246 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
247
248 **Example:**
249
250 0x00: Normal uplink packet.
251
252 0x01: Interrupt Uplink Packet.
253
254
255
256 === 2.3.4  DS18B20 Temperature sensor ===
257
258 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
259
260 **Example**:
261
262 If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
263
264 If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
265
266 (% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
267
268
269
270 === 2.3.5  Sensor Flag ===
271
272 0x01: Detect Ultrasonic Sensor
273
274 0x00: No Ultrasonic Sensor
275
276
277 ===
278 (% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
279
280 While using TTN network, you can add the payload format to decode the payload.
281
282
283 [[image:1654850829385-439.png]]
284
285 The payload decoder function for TTN V3 is here:
286
287 LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
288
289
290
291 == 2.4  Uplink Interval ==
292
293 The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
294
295
296
297 == 2.5  ​Show Data in DataCake IoT Server ==
298
299 (((
300 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
301 )))
302
303 (((
304
305 )))
306
307 (((
308 (% style="color:blue" %)**Step 1**(%%)**: Be sure that your device is programmed and properly connected to the network at this time.**
309 )))
310
311 (((
312 (% style="color:blue" %)**Step 2**(%%)**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:**
313 )))
314
315
316 [[image:1654592790040-760.png]]
317
318
319 [[image:1654592800389-571.png]]
320
321
322 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
323
324 (% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
325
326 [[image:1654851029373-510.png]]
327
328
329 After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
330
331 [[image:image-20220610165129-11.png||height="595" width="1088"]]
332
333
334
335 == 2.6  Frequency Plans ==
336
337 (((
338 The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
339 )))
340
341
342
343 === 2.6.1  EU863-870 (EU868) ===
344
345 (((
346 (% style="color:blue" %)**Uplink:**
347 )))
348
349 (((
350 868.1 - SF7BW125 to SF12BW125
351 )))
352
353 (((
354 868.3 - SF7BW125 to SF12BW125 and SF7BW250
355 )))
356
357 (((
358 868.5 - SF7BW125 to SF12BW125
359 )))
360
361 (((
362 867.1 - SF7BW125 to SF12BW125
363 )))
364
365 (((
366 867.3 - SF7BW125 to SF12BW125
367 )))
368
369 (((
370 867.5 - SF7BW125 to SF12BW125
371 )))
372
373 (((
374 867.7 - SF7BW125 to SF12BW125
375 )))
376
377 (((
378 867.9 - SF7BW125 to SF12BW125
379 )))
380
381 (((
382 868.8 - FSK
383 )))
384
385 (((
386
387 )))
388
389 (((
390 (% style="color:blue" %)**Downlink:**
391 )))
392
393 (((
394 Uplink channels 1-9 (RX1)
395 )))
396
397 (((
398 869.525 - SF9BW125 (RX2 downlink only)
399 )))
400
401
402
403 === 2.6.2  US902-928(US915) ===
404
405 (((
406 Used in USA, Canada and South America. Default use CHE=2
407
408 (% style="color:blue" %)**Uplink:**
409
410 903.9 - SF7BW125 to SF10BW125
411
412 904.1 - SF7BW125 to SF10BW125
413
414 904.3 - SF7BW125 to SF10BW125
415
416 904.5 - SF7BW125 to SF10BW125
417
418 904.7 - SF7BW125 to SF10BW125
419
420 904.9 - SF7BW125 to SF10BW125
421
422 905.1 - SF7BW125 to SF10BW125
423
424 905.3 - SF7BW125 to SF10BW125
425
426
427 (% style="color:blue" %)**Downlink:**
428
429 923.3 - SF7BW500 to SF12BW500
430
431 923.9 - SF7BW500 to SF12BW500
432
433 924.5 - SF7BW500 to SF12BW500
434
435 925.1 - SF7BW500 to SF12BW500
436
437 925.7 - SF7BW500 to SF12BW500
438
439 926.3 - SF7BW500 to SF12BW500
440
441 926.9 - SF7BW500 to SF12BW500
442
443 927.5 - SF7BW500 to SF12BW500
444
445 923.3 - SF12BW500(RX2 downlink only)
446
447
448
449 )))
450
451 === 2.6.3  CN470-510 (CN470) ===
452
453 (((
454 Used in China, Default use CHE=1
455 )))
456
457 (((
458 (% style="color:blue" %)**Uplink:**
459 )))
460
461 (((
462 486.3 - SF7BW125 to SF12BW125
463 )))
464
465 (((
466 486.5 - SF7BW125 to SF12BW125
467 )))
468
469 (((
470 486.7 - SF7BW125 to SF12BW125
471 )))
472
473 (((
474 486.9 - SF7BW125 to SF12BW125
475 )))
476
477 (((
478 487.1 - SF7BW125 to SF12BW125
479 )))
480
481 (((
482 487.3 - SF7BW125 to SF12BW125
483 )))
484
485 (((
486 487.5 - SF7BW125 to SF12BW125
487 )))
488
489 (((
490 487.7 - SF7BW125 to SF12BW125
491 )))
492
493 (((
494
495 )))
496
497 (((
498 (% style="color:blue" %)**Downlink:**
499 )))
500
501 (((
502 506.7 - SF7BW125 to SF12BW125
503 )))
504
505 (((
506 506.9 - SF7BW125 to SF12BW125
507 )))
508
509 (((
510 507.1 - SF7BW125 to SF12BW125
511 )))
512
513 (((
514 507.3 - SF7BW125 to SF12BW125
515 )))
516
517 (((
518 507.5 - SF7BW125 to SF12BW125
519 )))
520
521 (((
522 507.7 - SF7BW125 to SF12BW125
523 )))
524
525 (((
526 507.9 - SF7BW125 to SF12BW125
527 )))
528
529 (((
530 508.1 - SF7BW125 to SF12BW125
531 )))
532
533 (((
534 505.3 - SF12BW125 (RX2 downlink only)
535 )))
536
537
538
539
540 === 2.6.4  AU915-928(AU915) ===
541
542 (((
543 Default use CHE=2
544
545 (% style="color:blue" %)**Uplink:**
546
547 916.8 - SF7BW125 to SF12BW125
548
549 917.0 - SF7BW125 to SF12BW125
550
551 917.2 - SF7BW125 to SF12BW125
552
553 917.4 - SF7BW125 to SF12BW125
554
555 917.6 - SF7BW125 to SF12BW125
556
557 917.8 - SF7BW125 to SF12BW125
558
559 918.0 - SF7BW125 to SF12BW125
560
561 918.2 - SF7BW125 to SF12BW125
562
563
564 (% style="color:blue" %)**Downlink:**
565
566 923.3 - SF7BW500 to SF12BW500
567
568 923.9 - SF7BW500 to SF12BW500
569
570 924.5 - SF7BW500 to SF12BW500
571
572 925.1 - SF7BW500 to SF12BW500
573
574 925.7 - SF7BW500 to SF12BW500
575
576 926.3 - SF7BW500 to SF12BW500
577
578 926.9 - SF7BW500 to SF12BW500
579
580 927.5 - SF7BW500 to SF12BW500
581
582 923.3 - SF12BW500(RX2 downlink only)
583
584
585
586 )))
587
588 === 2.6.5  AS920-923 & AS923-925 (AS923) ===
589
590 (((
591 (% style="color:blue" %)**Default Uplink channel:**
592 )))
593
594 (((
595 923.2 - SF7BW125 to SF10BW125
596 )))
597
598 (((
599 923.4 - SF7BW125 to SF10BW125
600 )))
601
602 (((
603
604 )))
605
606 (((
607 (% style="color:blue" %)**Additional Uplink Channel**:
608 )))
609
610 (((
611 (OTAA mode, channel added by JoinAccept message)
612 )))
613
614 (((
615
616 )))
617
618 (((
619 (% style="color:blue" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
620 )))
621
622 (((
623 922.2 - SF7BW125 to SF10BW125
624 )))
625
626 (((
627 922.4 - SF7BW125 to SF10BW125
628 )))
629
630 (((
631 922.6 - SF7BW125 to SF10BW125
632 )))
633
634 (((
635 922.8 - SF7BW125 to SF10BW125
636 )))
637
638 (((
639 923.0 - SF7BW125 to SF10BW125
640 )))
641
642 (((
643 922.0 - SF7BW125 to SF10BW125
644 )))
645
646 (((
647
648 )))
649
650 (((
651 (% style="color:blue" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
652 )))
653
654 (((
655 923.6 - SF7BW125 to SF10BW125
656 )))
657
658 (((
659 923.8 - SF7BW125 to SF10BW125
660 )))
661
662 (((
663 924.0 - SF7BW125 to SF10BW125
664 )))
665
666 (((
667 924.2 - SF7BW125 to SF10BW125
668 )))
669
670 (((
671 924.4 - SF7BW125 to SF10BW125
672 )))
673
674 (((
675 924.6 - SF7BW125 to SF10BW125
676 )))
677
678 (((
679
680 )))
681
682 (((
683 (% style="color:blue" %)**Downlink:**
684 )))
685
686 (((
687 Uplink channels 1-8 (RX1)
688 )))
689
690 (((
691 923.2 - SF10BW125 (RX2)
692 )))
693
694
695
696
697 === 2.6.6  KR920-923 (KR920) ===
698
699 (((
700 (% style="color:blue" %)**Default channel:**
701 )))
702
703 (((
704 922.1 - SF7BW125 to SF12BW125
705 )))
706
707 (((
708 922.3 - SF7BW125 to SF12BW125
709 )))
710
711 (((
712 922.5 - SF7BW125 to SF12BW125
713 )))
714
715 (((
716
717 )))
718
719 (((
720 (% style="color:blue" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
721 )))
722
723 (((
724 922.1 - SF7BW125 to SF12BW125
725 )))
726
727 (((
728 922.3 - SF7BW125 to SF12BW125
729 )))
730
731 (((
732 922.5 - SF7BW125 to SF12BW125
733 )))
734
735 (((
736 922.7 - SF7BW125 to SF12BW125
737 )))
738
739 (((
740 922.9 - SF7BW125 to SF12BW125
741 )))
742
743 (((
744 923.1 - SF7BW125 to SF12BW125
745 )))
746
747 (((
748 923.3 - SF7BW125 to SF12BW125
749 )))
750
751 (((
752
753 )))
754
755 (((
756 (% style="color:blue" %)**Downlink:**
757 )))
758
759 (((
760 Uplink channels 1-7(RX1)
761 )))
762
763 (((
764 921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
765 )))
766
767
768
769
770 === 2.6.7  IN865-867 (IN865) ===
771
772 (((
773 (% style="color:blue" %)**Uplink:**
774 )))
775
776 (((
777 865.0625 - SF7BW125 to SF12BW125
778 )))
779
780 (((
781 865.4025 - SF7BW125 to SF12BW125
782 )))
783
784 (((
785 865.9850 - SF7BW125 to SF12BW125
786 )))
787
788 (((
789
790 )))
791
792 (((
793 (% style="color:blue" %)**Downlink:**
794 )))
795
796 (((
797 Uplink channels 1-3 (RX1)
798 )))
799
800 (((
801 866.550 - SF10BW125 (RX2)
802 )))
803
804
805
806
807 == 2.7  LED Indicator ==
808
809 The LLDS12 has an internal LED which is to show the status of different state.
810
811 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
812 * Blink once when device transmit a packet.
813
814 == 2.8  ​Firmware Change Log ==
815
816
817 **Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
818
819
820 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
821
822
823
824 = 3.  LiDAR ToF Measurement =
825
826 == 3.1 Principle of Distance Measurement ==
827
828 The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
829
830 [[image:1654831757579-263.png]]
831
832
833
834 == 3.2 Distance Measurement Characteristics ==
835
836 With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
837
838 [[image:1654831774373-275.png]]
839
840
841 (((
842 (% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
843 )))
844
845 (((
846 (% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
847 )))
848
849 (((
850 (% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
851 )))
852
853
854 (((
855 Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
856 )))
857
858
859 [[image:1654831797521-720.png]]
860
861
862 (((
863 In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
864 )))
865
866 [[image:1654831810009-716.png]]
867
868
869 (((
870 If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
871 )))
872
873
874
875 == 3.3 Notice of usage: ==
876
877 Possible invalid /wrong reading for LiDAR ToF tech:
878
879 * Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
880 * While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
881 * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
882 * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
883
884 = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
885
886 (((
887 (((
888 Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
889 )))
890 )))
891
892 * (((
893 (((
894 AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
895 )))
896 )))
897 * (((
898 (((
899 LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
900 )))
901 )))
902
903 (((
904 (((
905
906 )))
907
908 (((
909 There are two kinds of commands to configure LLDS12, they are:
910 )))
911 )))
912
913 * (((
914 (((
915 (% style="color:#4f81bd" %)** General Commands**.
916 )))
917 )))
918
919 (((
920 (((
921 These commands are to configure:
922 )))
923 )))
924
925 * (((
926 (((
927 General system settings like: uplink interval.
928 )))
929 )))
930 * (((
931 (((
932 LoRaWAN protocol & radio related command.
933 )))
934 )))
935
936 (((
937 (((
938 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
939 )))
940 )))
941
942 (((
943 (((
944
945 )))
946 )))
947
948 * (((
949 (((
950 (% style="color:#4f81bd" %)** Commands special design for LLDS12**
951 )))
952 )))
953
954 (((
955 (((
956 These commands only valid for LLDS12, as below:
957 )))
958 )))
959
960
961
962 == 4.1  Set Transmit Interval Time ==
963
964 Feature: Change LoRaWAN End Node Transmit Interval.
965
966 (% style="color:#037691" %)**AT Command: AT+TDC**
967
968 [[image:image-20220607171554-8.png]]
969
970
971 (((
972 (% style="color:#037691" %)**Downlink Command: 0x01**
973 )))
974
975 (((
976 Format: Command Code (0x01) followed by 3 bytes time value.
977 )))
978
979 (((
980 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
981 )))
982
983 * (((
984 Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
985 )))
986 * (((
987 Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
988 )))
989
990 == 4.2  Set Interrupt Mode ==
991
992 Feature, Set Interrupt mode for GPIO_EXIT.
993
994 (% style="color:#037691" %)**AT Command: AT+INTMOD**
995
996 [[image:image-20220610105806-2.png]]
997
998
999 (((
1000 (% style="color:#037691" %)**Downlink Command: 0x06**
1001 )))
1002
1003 (((
1004 Format: Command Code (0x06) followed by 3 bytes.
1005 )))
1006
1007 (((
1008 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1009 )))
1010
1011 * (((
1012 Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1013 )))
1014 * (((
1015 Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1016 )))
1017
1018 == 4.3  Get Firmware Version Info ==
1019
1020 Feature: use downlink to get firmware version.
1021
1022 (% style="color:#037691" %)**Downlink Command: 0x26**
1023
1024 [[image:image-20220607171917-10.png]]
1025
1026 * Reply to the confirmation package: 26 01
1027 * Reply to non-confirmed packet: 26 00
1028
1029 Device will send an uplink after got this downlink command. With below payload:
1030
1031 Configures info payload:
1032
1033 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1034 |=(((
1035 **Size(bytes)**
1036 )))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1037 |**Value**|Software Type|(((
1038 Frequency
1039
1040 Band
1041 )))|Sub-band|(((
1042 Firmware
1043
1044 Version
1045 )))|Sensor Type|Reserve|(((
1046 [[Message Type>>||anchor="H2.3.7A0MessageType"]]
1047 Always 0x02
1048 )))
1049
1050 **Software Type**: Always 0x03 for LLDS12
1051
1052
1053 **Frequency Band**:
1054
1055 *0x01: EU868
1056
1057 *0x02: US915
1058
1059 *0x03: IN865
1060
1061 *0x04: AU915
1062
1063 *0x05: KZ865
1064
1065 *0x06: RU864
1066
1067 *0x07: AS923
1068
1069 *0x08: AS923-1
1070
1071 *0x09: AS923-2
1072
1073 *0xa0: AS923-3
1074
1075
1076 **Sub-Band**: value 0x00 ~~ 0x08
1077
1078
1079 **Firmware Version**: 0x0100, Means: v1.0.0 version
1080
1081
1082 **Sensor Type**:
1083
1084 0x01: LSE01
1085
1086 0x02: LDDS75
1087
1088 0x03: LDDS20
1089
1090 0x04: LLMS01
1091
1092 0x05: LSPH01
1093
1094 0x06: LSNPK01
1095
1096 0x07: LLDS12
1097
1098
1099
1100 = 5.  Battery & How to replace =
1101
1102 == 5.1  Battery Type ==
1103
1104 (((
1105 LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1106 )))
1107
1108 (((
1109 The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1110 )))
1111
1112 [[image:1654593587246-335.png]]
1113
1114
1115 Minimum Working Voltage for the LLDS12:
1116
1117 LLDS12:  2.45v ~~ 3.6v
1118
1119
1120
1121 == 5.2  Replace Battery ==
1122
1123 (((
1124 Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1125 )))
1126
1127 (((
1128 And make sure the positive and negative pins match.
1129 )))
1130
1131
1132
1133 == 5.3  Power Consumption Analyze ==
1134
1135 (((
1136 Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
1137 )))
1138
1139 (((
1140 Instruction to use as below:
1141 )))
1142
1143
1144 **Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1145
1146 [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1147
1148
1149 **Step 2**: Open it and choose
1150
1151 * Product Model
1152 * Uplink Interval
1153 * Working Mode
1154
1155 And the Life expectation in difference case will be shown on the right.
1156
1157 [[image:1654593605679-189.png]]
1158
1159
1160 The battery related documents as below:
1161
1162 * (((
1163 [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1164 )))
1165 * (((
1166 [[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1167 )))
1168 * (((
1169 [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1170 )))
1171
1172 [[image:image-20220607172042-11.png]]
1173
1174
1175
1176 === 5.3.1  ​Battery Note ===
1177
1178 (((
1179 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1180 )))
1181
1182
1183
1184 === ​5.3.2  Replace the battery ===
1185
1186 (((
1187 You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1188 )))
1189
1190 (((
1191 The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1192 )))
1193
1194
1195
1196 = 6.  Use AT Command =
1197
1198 == 6.1  Access AT Commands ==
1199
1200 LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1201
1202 [[image:1654593668970-604.png]]
1203
1204 **Connection:**
1205
1206 (% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1207
1208 (% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1209
1210 (% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1211
1212
1213 (((
1214 (((
1215 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1216 )))
1217
1218 (((
1219 LLDS12 will output system info once power on as below:
1220 )))
1221 )))
1222
1223
1224 [[image:1654593712276-618.png]]
1225
1226 Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1227
1228
1229 = 7.  FAQ =
1230
1231 == 7.1  How to change the LoRa Frequency Bands/Region ==
1232
1233 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1234 When downloading the images, choose the required image file for download. ​
1235
1236
1237 = 8.  Trouble Shooting =
1238
1239 == 8.1  AT Commands input doesn’t work ==
1240
1241
1242 (((
1243 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1244 )))
1245
1246
1247 == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1248
1249
1250 (((
1251 (% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1252 )))
1253
1254 (((
1255 Troubleshooting: Please avoid use of this product under such circumstance in practice.
1256 )))
1257
1258 (((
1259
1260 )))
1261
1262 (((
1263 (% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1264 )))
1265
1266 (((
1267 Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1268 )))
1269
1270
1271
1272 = 9.  Order Info =
1273
1274
1275 Part Number: (% style="color:blue" %)**LLDS12-XX**
1276
1277
1278 (% style="color:blue" %)**XX**(%%): The default frequency band
1279
1280 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
1281 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1282 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1283 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1284 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1285 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1286 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1287 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1288
1289 = 10. ​ Packing Info =
1290
1291
1292 **Package Includes**:
1293
1294 * LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1295
1296 **Dimension and weight**:
1297
1298 * Device Size: cm
1299 * Device Weight: g
1300 * Package Size / pcs : cm
1301 * Weight / pcs : g
1302
1303 = 11.  ​Support =
1304
1305 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1306 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0